Minicourse: Lecture 1 Applying Topology to Spaces of Countable Structures

Russell Miller

Queens College & CUNY Graduate Center

DDC Program, Part I: Virtual Semester

Mathematical Sciences Research Institute Berkeley, CA (remotely) Autumn 2020

Russell Miller (CUNY) [Spaces of Countable Structures](#page-34-0) MSRI Autumn 2020 1 / 21

Plan of the Minicourse

Week 1: Specific example of subrings of \mathbb{O} . Online discussion: Thursday, Sept. 24, 11:00 PDT.

Week 2: Computability and continuity. Online discussion: Thursday, Oct. 1, 11:00 PDT.

Week 3: Classifications of spaces of structures. Online discussion: Thursday, Oct. 8, 11:00 PDT.

Week 4: The space of algebraic fields. Online discussion: Thursday, Oct. 15, 11:00 PDT.

Week 5: Other related questions. Online discussion: Thursday, Oct. 22, 11:00 PDT.

(Also watch Caleb Springer's MSRI Junior Seminar: Oct. 20, 09:00.)

The subrings of Q

We begin with a natural class of structures: the subrings of Q . What are they?

The subrings of Q

We begin with a natural class of structures: the subrings of \mathbb{O} . What are they?

Natural classification: subrings *R* of Q correspond bijectively to subsets $W \subseteq \mathbb{P}$ of the primes.

$$
W \subseteq \mathbb{P} \mapsto \mathbb{Z}[W^{-1}] = \left\{ \frac{m}{n} \in \mathbb{Q} \ : \ \text{all } p \text{ dividing } n \text{ lie in } W \right\}.
$$

$$
R \subseteq \mathbb{Q} \mapsto \left\{ p \in \mathbb{P} \ : \ \frac{1}{p} \in R \right\} = \left\{ p \ : \ (\exists m, n) \ \frac{m}{np} \in R \ \& \ p \nmid m \right\}.
$$

So the space of subrings of $\mathbb Q$ "looks like" the power set of $\mathbb P$.

Topology on the power set of $\mathbb P$

There is a natural topology, the *Cantor topology*, on the power set $P(N)$ of N, which transfers naturally to $P(P)$. For a basis, we take the collection of all sets

$$
\mathcal{U}_{Y,N} = \{W \subseteq \mathbb{P} : Y \subseteq W \& N \cap W = \emptyset\},\
$$

over all pairs (*Y*, *N*) of finite disjoint subsets of P. So membership of *W* in U_Y _N is determined by a finite number of conditions on *W*.

Under the bijection between $\mathcal{P}(\mathbb{P})$ and {subrings of Q },

$$
\mathcal{U}_{Y,N} = \left\{ R \subseteq \mathbb{Q} \; : \; (\forall p \in Y) \; \frac{1}{p} \in R \; \& \; (\forall p \in N) \; \frac{1}{p} \notin R \right\}.
$$

Open sets are unions of arbitrary collections of these $U_{Y,N}$'s.

Usefulness of open sets

Fix any existential sentence φ , in the language of rings. It is well known that there is an equivalent (for all subrings!) sentence of the form

$$
(\exists Y_1)\cdots(\exists Y_n)\;f(Y_1,\ldots,Y_n)=0,
$$

with $f \in \mathbb{Z}[Y_1, \ldots, Y_n]$. Then the set \mathcal{A}_f of subrings R that satisfy φ is soon seen to be an open set.

Usefulness of open sets

Fix any existential sentence φ , in the language of rings. It is well known that there is an equivalent (for all subrings!) sentence of the form

$$
(\exists Y_1)\cdots(\exists Y_n)\;f(Y_1,\ldots,Y_n)=0,
$$

with $f \in \mathbb{Z}[Y_1,\ldots,Y_n]$. Then the set \mathcal{A}_f of subrings R that satisfy φ is soon seen to be an open set.

Reason: each solution \vec{v} (in \mathbb{O}) to $f = 0$ uses only finitely many primes in its denominators. If *Y* is this set of primes, then all rings in $\mathcal{U}_{Y,\emptyset}$ satisfy φ . So the class of all subrings realizing φ is a union of basic open sets.

Usefulness of open sets

Fix any existential sentence φ , in the language of rings. It is well known that there is an equivalent (for all subrings!) sentence of the form

$$
(\exists Y_1)\cdots(\exists Y_n)\;f(Y_1,\ldots,Y_n)=0,
$$

with $f \in \mathbb{Z}[Y_1, \ldots, Y_n]$. Then the set \mathcal{A}_f of subrings R that satisfy φ is soon seen to be an open set.

Reason: each solution \vec{v} (in \mathbb{O}) to $f = 0$ uses only finitely many primes in its denominators. If *Y* is this set of primes, then all rings in $\mathcal{U}_{Y,\emptyset}$ satisfy φ . So the class of all subrings realizing φ is a union of basic open sets.

What is unclear here is why we have the set N in the definition of $\mathcal{U}_{\gamma,N}$. Using $\mathcal{U}_{Y,\emptyset}$ would have worked just as well for these purposes.

Closed sets

Notice first that every $\mathcal{U}_{Y,N}$ is closed, as well as open.

Lemma

The clopen sets in our topology are exactly the finite unions of basic open sets U*Y*,*N*.

To see this, it is helpful to consider the primes one-by-one, in order. A set $W \subseteq \mathbb{P}$ is a path through the binary tree:

Clopen sets

Suppose that *G* (in green) and *R* (in red) are disjoint open sets (of paths through the tree). If there is a level at which they are divided up according to the nodes at that level, then each is a finite union of basic open sets U*Y*,*N*.

In this example, with revised notation, $R = U_{000} \cup U_{011} \cup U_{111}$.

If there is no level such as above, then infinitely many nodes are neither red nor green. Start at λ , and at each level, extend to a node such that infinitely many nodes above it are neither red nor green.

This defines a path $\notin G \cup R$. Thus *G* cannot be clopen. Here the path is 101..., meaning the subset $W = \{2, 5, \ldots\}$ of \mathbb{P} .

Polynomials

So the first question about polynomials: can they define non-clopen sets of subrings of Q? One suspects so, and the answer is quickly seen to be positive.

Define
$$
f(X, Y, ...)= (X^2 + Y^2 - 1)^2 + ("X > 0")^2 + ("Y > 0")^2
$$
.

Solutions to $f = 0$ correspond to nonzero pairs ($\frac{a}{c}$ *c* , *b* $\frac{b}{c}$) with $a^2 + b^2 = c^2$. Elementary number theory shows that $f = 0$ has solutions in exactly those subrings of $\mathbb O$ in which some prime $p \equiv 1 \mod 4$ is inverted. So the rings with solutions to $f=0$ form an open but not clopen set $\mathcal{A}_f.$

The polynomials $X^2 + qY^2 - 1$ (modified so that $Y \neq 0$), with q prime, are similar examples, due to Ken Kramer. Here it is necessary and sufficient to invert a prime *p* for which −*q* is a square modulo *p*.

Interior of the complement

An existential formula can fail to have solutions in an entire open set of rings. (Example: $(\exists X, \, \mathsf{Y}, \mathsf{Z}) \; (f(X, \, \mathsf{Y}))^2 + (7\mathsf{Z} - 1)^2 = 0$ and $\mathcal{U}_{\emptyset, \{7\}}.$) That is, a set ${\mathcal U}_{\mathsf Y,\mathsf N}$ can lie within the complement of the open set ${\mathcal A}_{\mathsf f}.$ The *interior* \mathcal{C}_f of the complement of \mathcal{A}_f is the union of all such sets.

This is the first time that the set N in $\mathcal{U}_{\gamma,N}$ has mattered!

For a polynomial $f \in \mathbb{Z}[\vec{X}]$, here are the three relevant sets of rings: $A_f = \{R : f = 0$ has a solution in $R\}.$ $C_f = \text{Int}(\{R : f = 0 \text{ has no solution in } R\})$, the interior of the complement of \mathcal{A}_f .

 $\mathcal{B}_f =$ complement of $(\mathcal{A}_f\cup\mathcal{C}_f),$ the topological *boundary* of $\mathcal{A}_f.$

Trying to enumerate C*^f*

Given a polynomial *f*, we can computably enumerate all basic open sets U_Y ^{*N*} within $A_f = \{R : f = 0 \text{ has a solution in } R\}$. Enumerating the basic open sets that make up C*^f* seems much harder. But....

Trying to enumerate C*^f*

Given a polynomial *f*, we can computably enumerate all basic open sets U_Y ^{*N*} within $A_f = \{R : f = 0 \text{ has a solution in } R\}$. Enumerating the basic open sets that make up C*^f* seems much harder. But....

Lemma (Shlapentokh, or Koenigsmann, following J. Robinson)

For each finite set $\mathcal{N}\subseteq \mathbb{P},$ the semilocal subring $\mathbb{Z}[\overline{\mathcal{N}}^{-1}]$ is diophantine in Q, and its diophantine definition there is uniform in *N*.

The lemma gives computable maps $F_N : \mathbb{Z}[\vec{X}] \to \mathbb{Z}[\vec{X}]$ for all *N*, with

$$
\mathcal{U}_{\emptyset,N}\subseteq\mathcal{C}_f\iff f\text{ has no solution in }\mathbb{Z}[\overline{N}^{-1}]\iff F_N(f)=0\text{ has no solution in }\mathbb{Q}.
$$

This means that, if we knew which polynomials have solutions in Q, we would be able to enumerate \mathcal{C}_f (by the same method for every f). Thus C*f* is *HTP*(Q)*-computably enumerable*.

What about B*f***?**

Recall: A_f is an open set. So it does not intersect its boundary \mathcal{B}_f : if $\mathsf{R} \in \mathcal{B}_\mathsf{f},$ then $\mathsf{f} = \mathsf{0}$ has no solution in $\mathsf{R}.$ But also $\mathsf{R} \notin \mathcal{C}_\mathsf{f}.$ there is no finitary reason why $f = 0$ has no solution in R . (Even if we know that R omits all of the first *n* primes, this does not rule out all possible solutions.) So, while *R* indeed contains no solution to $f = 0$, it "never loses hope." (This makes it hard to decide membership in \mathcal{B}_f !)

Sometimes $\mathcal{B}_f = \emptyset$. But for the $X^2 + Y^2 - 1$ example, \mathcal{B}_f contains many rings: all those *R* in which no prime \equiv 1 mod 4 has an inverse. So this \mathcal{B}_f has the cardinality of the continuum. We may still think this \mathcal{B}_f is small, but the argument must be more subtle than mere counting: we need topology. We will appeal to both Lebesgue measure and Baire category, both of which apply naturally to Cantor space (namely, the power set of \mathbb{P}) and thus transfer readily to the space of all subrings of Q.

The Lebesgue measure of a set $\mathcal{U}_{Y,N}$ is defined to be $\frac{1}{2^{|Y \cup N|}}.$ If you flip a coin independently for each prime ρ to decide whether $\frac{1}{\rho}\in R,$ the odds are 2^{−|Y∪*N*| that your ring will lie in ${\cal U}_{Y,N}.$}

This measure is extended to as many sets *S* of rings as possible (the *measurable sets*) by taking the infimum of the measures of countable covers of *S* by basic open sets.

Measure of the boundary set

In the $X^2 + Y^2 - 1$ example: to lie in \mathcal{B}_f , R must invert no primes \equiv 1 mod 4. Clearly this B_f has measure 0.

Open Question

Do all boundary sets \mathcal{B}_f of polynomials $f \in \mathbb{Z}[\vec{X}]$ have measure 0?

This has proven to be a hard question! For a B_f of positive measure, one could try to build *f* having (for example) one solution using $\frac{1}{2}$ and 1 $\frac{1}{3}$; another using $\frac{1}{5}$, $\frac{1}{7}$ $\frac{1}{7}$, and $\frac{1}{11}$; then another requiring the next four primes to be inverted, and so on. Is anything like this possible?

Measure of the boundary set

In the $X^2 + Y^2 - 1$ example: to lie in \mathcal{B}_f , R must invert no primes \equiv 1 mod 4. Clearly this B_f has measure 0.

Open Question

Do all boundary sets \mathcal{B}_f of polynomials $f \in \mathbb{Z}[\vec{X}]$ have measure 0?

This has proven to be a hard question! For a B_f of positive measure, one could try to build *f* having (for example) one solution using $\frac{1}{2}$ and 1 $\frac{1}{3}$; another using $\frac{1}{5}$, $\frac{1}{7}$ $\frac{1}{7}$, and $\frac{1}{11}$; then another requiring the next four primes to be inverted, and so on. Is anything like this possible?

Theorem

If $\mathbb Z$ has an existential definition in the field $\mathbb Q$, then there exist polynomials *f* with boundary sets of measure arbitrarily close to 1.

Baire category

Recall: a space has the *property of Baire* if no nonempty open set is meager, defined as follows.

A set *S* of rings is *nowhere dense* if, for every $\mathcal{U}_{Y,N}$, there exist disjoint sets $\mathsf{Y}'\supseteq\mathsf{Y}$ and $\mathsf{N}'\supseteq\mathsf{N}$ such that $\mathcal{S}\cap{\mathcal{U}}_{\mathsf{Y}',\mathsf{N}'}=\emptyset.$ (That is, for every $U_{Y,N}$, *S* is not dense inside $U_{Y,N}$.)

The union of a countable collection of nowhere dense sets can fail to be nowhere dense, but we still regard it as small. *S* is *meager* if *S* is a countable union of nowhere dense sets. The large sets are the *comeager* sets, the complements of meager sets.

The standard example is the usual topology on \mathbb{R} . But Cantor space also has the property of Baire, so we may use Baire category here.

Baire category and B_f

Lemma

For every single polynomial $f\in \mathbb{Z}[\vec X],$ \mathcal{B}_f is nowhere dense.

Proof: This is just the ordinary proof that boundaries of open sets (such as \mathcal{A}_f) are nowhere dense. Pick any $\mathcal{U}_{\mathsf{Y},\mathsf{N}}.$ If $\mathcal{A}_f\cap\mathcal{U}_{\mathsf{Y},\mathsf{N}}=\emptyset,$ then ${\cal U}_{\mathsf Y,N}$, being open, is $\subseteq{\cal C}_f$, so ${\cal U}_{\mathsf Y,N}\cap{\cal B}_f=\emptyset.$ But if ${\cal A}_f\cap{\cal U}_{\mathsf Y,N}\neq\emptyset,$ then each R there lies within some ${\mathcal U}_{Y',N'} \subseteq {\mathcal A}_f \cap {\mathcal U}_{Y,N},$ just because this intersection is open. So ${\mathcal U}_{Y',N'}\cap \mathcal B_f=\emptyset.$

Baire category and B_f

Lemma

For every single polynomial $f\in \mathbb{Z}[\vec X],$ \mathcal{B}_f is nowhere dense.

Proof: This is just the ordinary proof that boundaries of open sets (such as \mathcal{A}_f) are nowhere dense. Pick any $\mathcal{U}_{\mathsf{Y},\mathsf{N}}.$ If $\mathcal{A}_f\cap\mathcal{U}_{\mathsf{Y},\mathsf{N}}=\emptyset,$ then ${\cal U}_{\mathsf Y,N}$, being open, is $\subseteq{\cal C}_f$, so ${\cal U}_{\mathsf Y,N}\cap{\cal B}_f=\emptyset.$ But if ${\cal A}_f\cap{\cal U}_{\mathsf Y,N}\neq\emptyset,$ then each R there lies within some ${\mathcal U}_{Y',N'} \subseteq {\mathcal A}_f \cap {\mathcal U}_{Y,N},$ just because this intersection is open. So ${\mathcal U}_{Y',N'}\cap \mathcal B_f=\emptyset.$

Corollary

The countable union $\mathcal{B} = \cup_{f \in \mathbb{Z}[\vec X]} \mathcal{B}_f$ is meager.

So in Baire category, almost all rings lie outside *every* boundary set B*^f* .

HTP-genericity: never on the boundary

Definition

A subring R of $\mathbb Q$ is HTP -*generic* if, for every $f\in \mathbb Z[\vec X],\, R\notin \mathcal B_f.$

So the HTP-generic subrings form a comeager class. These are the rings where we expect it to be fairly easy to determine whether a polynomial has a solution.

HTP-genericity: never on the boundary

Definition

A subring R of $\mathbb Q$ is HTP -*generic* if, for every $f\in \mathbb Z[\vec X],\, R\notin \mathcal B_f.$

So the HTP-generic subrings form a comeager class. These are the rings where we expect it to be fairly easy to determine whether a polynomial has a solution.

Definition

For a subring *R* of Q, *Hilbert's Tenth Problem* is the set

 $HTP(R) = {f \in \mathbb{Z}[\vec{X}] : f = 0 \text{ has a solution in } R}.$

Earlier we mentioned that C_f is always $\text{HTP}(\mathbb{Q})$ -computably enumerable. However, the decidability of $HTP(\mathbb{Q})$ is an open question.

HTP-genericity and computability theory

Julia Robinson's lemma showed that semilocal subrings *R* ⊆ Q all have HTP(*R*) exactly as hard as HTP(Q). All subrings *R* have $HTP(R) > T HTP(\mathbb{Q})$, so these subrings have as simple HTP's as possible. The first use of HTP-genericity was to extend this result.

Theorem (Eisentrager-M.-Park-Shlapentokh, 2017) ¨

There exist subrings *R* ⊆ Q such that infinitely many primes *p* have 1 $\frac{1}{p} \notin R$, yet HTP (R) is Turing-equivalent to HTP (\mathbb{Q}) . Indeed, such rings can have computable presentations, and the set of primes inverted in *R* can have lower density 0.

The construction used a technique from computability theory called a *finite-injury construction*.

(For subrings of Q, having a computable presentation essentially means that one can computably enumerate the elements of *R*.)

HTP for HTP-generic subrings

Proposition

For each HTP-generic subring *R* of \mathbb{Q} , HTP(*R*) \equiv *T* $R \oplus$ HTP(\mathbb{Q}).

The Turing-equivalence $\equiv_{\mathcal{T}}$ here means two things. First, if you know which *f* have solutions in *R*, you (or a Turing machine) can decide which rational numbers lie in *R* itself, and also which *g* have solutions in Q. Second, if you know these latter two items, then you can decide which *f* have solutions in *R*.

The Proposition shows that, if any HTP-generic ring *R* at all has HTP(*R*) \nless *T R*, then HTP(\mathbb{Q}) is undecidable (as it gives *R* enough of a boost to compute HTP(*R*)).

Proving the Proposition

Proposition

For each HTP-generic subring *R* of \mathbb{Q} , HTP(*R*) \equiv *T* $R \oplus$ HTP(\mathbb{Q}).

Exercise: prove the first part (deciding *R* and HTP(Q) from HTP(*R*)).

For the second part, knowing both *R* and HTP(Q), and given any *f*, you can search for:

- a solution to $f=0$ in R (placing $R\in \mathcal{A}_f);$ and
- a finite set $N \subseteq P$ such that $R \in \mathcal{U}_{\emptyset, N}$ and the polynomial $F_N(f)$ from Julia Robinson's lemma has no solution in $\mathbb Q$ (so $\mathcal U_{\emptyset,N} \subseteq \mathcal C_f).$

Since $R \notin \mathcal{B}_f$, one of these must exist, so you will eventually find it.

Recall: The lemma gives computable maps $F_N : \mathbb{Z}[\vec{X}] \to \mathbb{Z}[\vec{X}]$ with

$$
\mathcal{U}_{\emptyset,N}\subseteq\mathcal{C}_f\iff f\notin \mathsf{HTP}(\mathbb{Z}[\overline{N}^{-1}])\iff F_N(f)=0\notin \mathsf{HTP}(\mathbb{Q}).
$$

$\mathsf{HTP}(R) \equiv_T R \oplus \mathsf{HTP}(\mathbb{Q})$ for HTP-generic subrings

If any HTP-generic ring *R* has HTP(*R*) \leq *T R*, then HTP(\mathbb{Q}) is undecidable (as it gives *R* enough of a boost to compute HTP(*R*)).

$\mathsf{HTP}(R) \equiv_T R \oplus \mathsf{HTP}(\mathbb{Q})$ for HTP-generic subrings

If any HTP-generic ring *R* has HTP(*R*) \leq *T R*, then HTP(\mathbb{Q}) is undecidable (as it gives *R* enough of a boost to compute HTP(*R*)).

Theorem

The following are equivalent, for every set *C*.

1 HTP(\mathbb{Q}) $\geq_T C$.

² A non-meager class of subrings *R* satisfy HTP(*R*) ≥*^T C*.

=⇒ : clear. ⇐: then a non-meager class of HTP-generic *R* have $R \oplus HTP(Q) > T$ *C*. So some single Turing machine Φ computes χ_C from $R \oplus \text{HTP}(Q)$ for a somewhere-dense set of R, say dense in \mathcal{U}_{σ} . Now whenever $\tau \supseteq \sigma$ and $\Phi^{\tau \oplus \text{HTP}(\mathbb{Q})}(\mathsf{n})$ halts, we know it equals $\chi_{\pmb{C}}(\mathsf{n}),$ because some $R \in \mathcal{U}_{\tau}$ computes χ_C this way.

 $\mathsf{HTP}(R) \equiv_T R \oplus \mathsf{HTP}(\mathbb{Q})$ for HTP-generic subrings

If any HTP-generic ring *R* has HTP(*R*) \leq *T R*, then HTP(\mathbb{Q}) is undecidable (as it gives *R* enough of a boost to compute HTP(*R*)).

Theorem

The following are equivalent, for every set *C*.

1 HTP(\mathbb{Q}) $\geq_T C$.

² A non-meager class of subrings *R* satisfy HTP(*R*) ≥*^T C*.

=⇒ : clear. ⇐: then a non-meager class of HTP-generic *R* have $R \oplus HTP(Q) > T$ *C*. So some single Turing machine Φ computes χ_C from $R \oplus \text{HTP}(Q)$ for a somewhere-dense set of R, say dense in \mathcal{U}_{σ} . Now whenever $\tau \supseteq \sigma$ and $\Phi^{\tau \oplus \text{HTP}(\mathbb{Q})}(\mathsf{n})$ halts, we know it equals $\chi_{\pmb{C}}(\mathsf{n}),$ because some $R \in \mathcal{U}_{\tau}$ computes χ_C this way. So, with an $HTP(\mathbb{Q})$ -oracle, we just search for such a τ , and when we find it, we have computed $\chi_C(n)$. Such a τ must exist, because \mathcal{U}_{τ} contains a ring from the somewhere-dense set.