Minicourse: Lecture 1 Applying Topology to Spaces of Countable Structures

Russell Miller

Queens College & CUNY Graduate Center

DDC Program, Part I: Virtual Semester

Mathematical Sciences Research Institute Berkeley, CA (remotely) Autumn 2020

Plan of the Minicourse

Week 1: Specific example of subrings of \mathbb{Q} . Online discussion: Thursday, Sept. 24, 11:00 PDT.

Week 2: Computability and continuity. Online discussion: Thursday, Oct. 1, 11:00 PDT.

Week 3: Classifications of spaces of structures. Online discussion: Thursday, Oct. 8, 11:00 PDT.

Week 4: The space of algebraic fields. Online discussion: Thursday, Oct. 15, 11:00 PDT.

Week 5: Other related questions. Online discussion: Thursday, Oct. 22, 11:00 PDT.

(Also watch Caleb Springer's MSRI Junior Seminar: Oct. 20, 09:00.)

The subrings of $\ensuremath{\mathbb{Q}}$

We begin with a natural class of structures: the subrings of $\mathbb{Q}.$ What are they?

The subrings of $\ensuremath{\mathbb{Q}}$

We begin with a natural class of structures: the subrings of \mathbb{Q} . What are they?

Natural classification: subrings *R* of \mathbb{Q} correspond bijectively to subsets $W \subseteq \mathbb{P}$ of the primes.

$$W \subseteq \mathbb{P} \mapsto \mathbb{Z}[W^{-1}] = \left\{ \frac{m}{n} \in \mathbb{Q} : \text{ all } p \text{ dividing } n \text{ lie in } W
ight\}.$$

 $R \subseteq \mathbb{Q} \mapsto \left\{ p \in \mathbb{P} : \frac{1}{p} \in R
ight\} = \left\{ p : (\exists m, n) \ \frac{m}{np} \in R \& p
mid m
ight\}.$

So the space of subrings of \mathbb{Q} "looks like" the power set of \mathbb{P} .

Topology on the power set of $\ensuremath{\mathbb{P}}$

There is a natural topology, the *Cantor topology*, on the power set $\mathcal{P}(\mathbb{N})$ of \mathbb{N} , which transfers naturally to $\mathcal{P}(\mathbb{P})$. For a basis, we take the collection of all sets

$$\mathcal{U}_{Y,N} = \{ W \subseteq \mathbb{P} : Y \subseteq W \& N \cap W = \emptyset \},\$$

over all pairs (Y, N) of finite disjoint subsets of \mathbb{P} . So membership of W in $\mathcal{U}_{Y,N}$ is determined by a finite number of conditions on W.

Under the bijection between $\mathcal{P}(\mathbb{P})$ and {subrings of Q},

$$\mathcal{U}_{Y,N} = \left\{ R \subseteq \mathbb{Q} \ : \ (\forall p \in Y) \ \frac{1}{p} \in R \And (\forall p \in N) \ \frac{1}{p} \notin R \right\}.$$

Open sets are unions of arbitrary collections of these $U_{Y,N}$'s.

Usefulness of open sets

Fix any existential sentence φ , in the language of rings. It is well known that there is an equivalent (for all subrings!) sentence of the form

$$(\exists Y_1)\cdots(\exists Y_n) f(Y_1,\ldots,Y_n)=0,$$

with $f \in \mathbb{Z}[Y_1, \ldots, Y_n]$. Then the set \mathcal{A}_f of subrings R that satisfy φ is soon seen to be an open set.

Usefulness of open sets

Fix any existential sentence φ , in the language of rings. It is well known that there is an equivalent (for all subrings!) sentence of the form

$$(\exists Y_1)\cdots(\exists Y_n) f(Y_1,\ldots,Y_n)=0,$$

with $f \in \mathbb{Z}[Y_1, \ldots, Y_n]$. Then the set \mathcal{A}_f of subrings R that satisfy φ is soon seen to be an open set.

Reason: each solution \vec{y} (in \mathbb{Q}) to f = 0 uses only finitely many primes in its denominators. If Y is this set of primes, then all rings in $\mathcal{U}_{Y,\emptyset}$ satisfy φ . So the class of all subrings realizing φ is a union of basic open sets.

Usefulness of open sets

Fix any existential sentence φ , in the language of rings. It is well known that there is an equivalent (for all subrings!) sentence of the form

$$(\exists Y_1)\cdots(\exists Y_n) f(Y_1,\ldots,Y_n)=0,$$

with $f \in \mathbb{Z}[Y_1, \ldots, Y_n]$. Then the set \mathcal{A}_f of subrings R that satisfy φ is soon seen to be an open set.

Reason: each solution \vec{y} (in \mathbb{Q}) to f = 0 uses only finitely many primes in its denominators. If Y is this set of primes, then all rings in $\mathcal{U}_{Y,\emptyset}$ satisfy φ . So the class of all subrings realizing φ is a union of basic open sets.

What is unclear here is why we have the set *N* in the definition of $\mathcal{U}_{Y,N}$. Using $\mathcal{U}_{Y,\emptyset}$ would have worked just as well for these purposes.

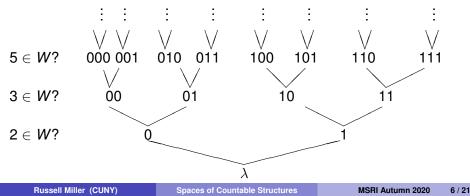
Closed sets

Notice first that every $U_{Y,N}$ is closed, as well as open.

Lemma

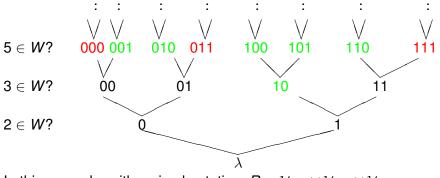
The clopen sets in our topology are exactly the finite unions of basic open sets $\mathcal{U}_{Y,N}$.

To see this, it is helpful to consider the primes one-by-one, in order. A set $W \subseteq \mathbb{P}$ is a path through the binary tree:

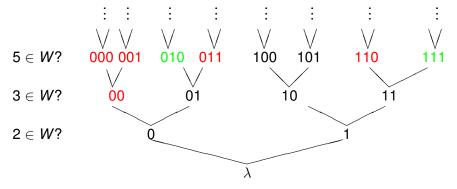


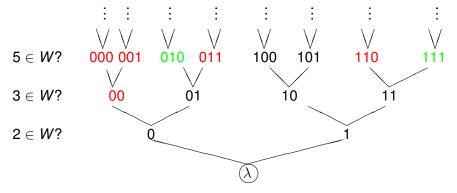
Clopen sets

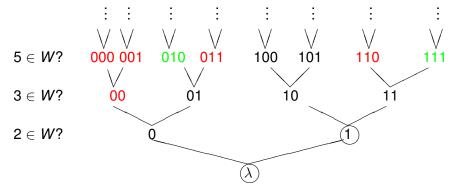
Suppose that *G* (in green) and *R* (in red) are disjoint open sets (of paths through the tree). If there is a level at which they are divided up according to the nodes at that level, then each is a finite union of basic open sets $U_{Y,N}$.

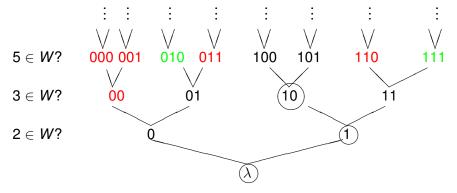


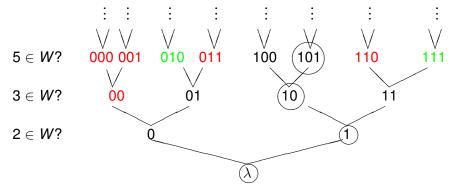
In this example, with revised notation, $R = U_{000} \cup U_{011} \cup U_{111}$.



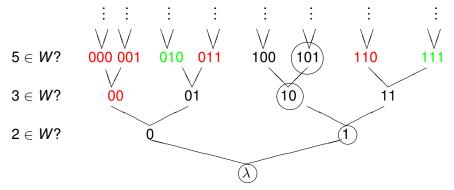








If there is no level such as above, then infinitely many nodes are neither red nor green. Start at λ , and at each level, extend to a node such that infinitely many nodes above it are neither red nor green.



This defines a path $\notin G \cup R$. Thus *G* cannot be clopen. Here the path is 101..., meaning the subset $W = \{2, 5, ...\}$ of \mathbb{P} .

Polynomials

So the first question about polynomials: can they define non-clopen sets of subrings of \mathbb{Q} ? One suspects so, and the answer is quickly seen to be positive.

Define
$$f(X, Y, ...) = (X^2 + Y^2 - 1)^2 + ("X > 0")^2 + ("Y > 0")^2$$
.

Solutions to f = 0 correspond to nonzero pairs $(\frac{a}{c}, \frac{b}{c})$ with $a^2 + b^2 = c^2$. Elementary number theory shows that f = 0 has solutions in exactly those subrings of \mathbb{Q} in which some prime $p \equiv 1 \mod 4$ is inverted. So the rings with solutions to f = 0 form an open but not clopen set \mathcal{A}_f .

The polynomials $X^2 + qY^2 - 1$ (modified so that $Y \neq 0$), with *q* prime, are similar examples, due to Ken Kramer. Here it is necessary and sufficient to invert a prime *p* for which -q is a square modulo *p*.

Interior of the complement

An existential formula can fail to have solutions in an entire open set of rings. (Example: $(\exists X, Y, Z) (f(X, Y))^2 + (7Z - 1)^2 = 0$ and $\mathcal{U}_{\emptyset, \{7\}}$.) That is, a set $\mathcal{U}_{Y,N}$ can lie within the complement of the open set \mathcal{A}_f . The *interior* \mathcal{C}_f of the complement of \mathcal{A}_f is the union of all such sets.

This is the first time that the set *N* in $U_{Y,N}$ has mattered!

For a polynomial $f \in \mathbb{Z}[\vec{X}]$, here are the three relevant sets of rings: $\mathcal{A}_f = \{R : f = 0 \text{ has a solution in } R\}$. $\mathcal{C}_f = \operatorname{Int}(\{R : f = 0 \text{ has no solution in } R\})$, the interior of the complement of \mathcal{A}_f .

 \mathcal{B}_f = complement of $(\mathcal{A}_f \cup \mathcal{C}_f)$, the topological *boundary* of \mathcal{A}_f .

Trying to enumerate C_f

Given a polynomial *f*, we can computably enumerate all basic open sets $U_{Y,N}$ within $A_f = \{R : f = 0 \text{ has a solution in } R\}$. Enumerating the basic open sets that make up C_f seems much harder. But....

Trying to enumerate C_f

Given a polynomial *f*, we can computably enumerate all basic open sets $U_{Y,N}$ within $A_f = \{R : f = 0 \text{ has a solution in } R\}$. Enumerating the basic open sets that make up C_f seems much harder. But....

Lemma (Shlapentokh, or Koenigsmann, following J. Robinson)

For each finite set $N \subseteq \mathbb{P}$, the semilocal subring $\mathbb{Z}[\overline{N}^{-1}]$ is diophantine in \mathbb{Q} , and its diophantine definition there is uniform in *N*.

The lemma gives computable maps $F_N : \mathbb{Z}[\vec{X}] \to \mathbb{Z}[\vec{X}]$ for all N, with

$$\begin{aligned} \mathcal{U}_{\emptyset,N} \subseteq \mathcal{C}_f \iff f \text{ has no solution in } \mathbb{Z}[\overline{N}^{-1}] \\ \iff F_N(f) = 0 \text{ has no solution in } \mathbb{Q}. \end{aligned}$$

This means that, if we knew which polynomials have solutions in \mathbb{Q} , we would be able to enumerate C_f (by the same method for every *f*). Thus C_f is $HTP(\mathbb{Q})$ -computably enumerable.

What about \mathcal{B}_f ?

Recall: A_f is an open set. So it does not intersect its boundary B_f : if $R \in B_f$, then f = 0 has no solution in R. But also $R \notin C_f$: there is no finitary reason why f = 0 has no solution in R. (Even if we know that R omits all of the first n primes, this does not rule out all possible solutions.) So, while R indeed contains no solution to f = 0, it "never loses hope." (This makes it hard to decide membership in B_f !)

Sometimes $\mathcal{B}_f = \emptyset$. But for the $X^2 + Y^2 - 1$ example, \mathcal{B}_f contains many rings: all those R in which no prime $\equiv 1 \mod 4$ has an inverse. So this \mathcal{B}_f has the cardinality of the continuum. We may still think this \mathcal{B}_f is small, but the argument must be more subtle than mere counting: we need topology. We will appeal to both Lebesgue measure and Baire category, both of which apply naturally to Cantor space (namely, the power set of \mathbb{P}) and thus transfer readily to the space of all subrings of \mathbb{Q} .

Lebesgue measure

The Lebesgue measure of a set $\mathcal{U}_{Y,N}$ is defined to be $\frac{1}{2^{|Y \cup N|}}$. If you flip a coin independently for each prime *p* to decide whether $\frac{1}{p} \in R$, the odds are $2^{-|Y \cup N|}$ that your ring will lie in $\mathcal{U}_{Y,N}$.

This measure is extended to as many sets S of rings as possible (the *measurable sets*) by taking the infimum of the measures of countable covers of S by basic open sets.

Measure of the boundary set

In the $X^2 + Y^2 - 1$ example: to lie in \mathcal{B}_f , R must invert no primes $\equiv 1 \mod 4$. Clearly this \mathcal{B}_f has measure 0.

Open Question

Do all boundary sets \mathcal{B}_f of polynomials $f \in \mathbb{Z}[\vec{X}]$ have measure 0?

This has proven to be a hard question! For a \mathcal{B}_f of positive measure, one could try to build *f* having (for example) one solution using $\frac{1}{2}$ and $\frac{1}{3}$; another using $\frac{1}{5}$, $\frac{1}{7}$, and $\frac{1}{11}$; then another requiring the next four primes to be inverted, and so on. Is anything like this possible?

Measure of the boundary set

In the $X^2 + Y^2 - 1$ example: to lie in \mathcal{B}_f , R must invert no primes $\equiv 1 \mod 4$. Clearly this \mathcal{B}_f has measure 0.

Open Question

Do all boundary sets \mathcal{B}_f of polynomials $f \in \mathbb{Z}[\vec{X}]$ have measure 0?

This has proven to be a hard question! For a \mathcal{B}_f of positive measure, one could try to build *f* having (for example) one solution using $\frac{1}{2}$ and $\frac{1}{3}$; another using $\frac{1}{5}$, $\frac{1}{7}$, and $\frac{1}{11}$; then another requiring the next four primes to be inverted, and so on. Is anything like this possible?

Theorem

If \mathbb{Z} has an existential definition in the field \mathbb{Q} , then there exist polynomials *f* with boundary sets of measure arbitrarily close to 1.

Baire category

Recall: a space has the *property of Baire* if no nonempty open set is meager, defined as follows.

A set *S* of rings is *nowhere dense* if, for every $\mathcal{U}_{Y,N}$, there exist disjoint sets $Y' \supseteq Y$ and $N' \supseteq N$ such that $S \cap \mathcal{U}_{Y',N'} = \emptyset$. (That is, for every $\mathcal{U}_{Y,N}$, *S* is not dense inside $\mathcal{U}_{Y,N}$.)

The union of a countable collection of nowhere dense sets can fail to be nowhere dense, but we still regard it as small. *S* is *meager* if *S* is a countable union of nowhere dense sets. The large sets are the *comeager* sets, the complements of meager sets.

The standard example is the usual topology on \mathbb{R} . But Cantor space also has the property of Baire, so we may use Baire category here.

Baire category and \mathcal{B}_f

Lemma

For every single polynomial $f \in \mathbb{Z}[\vec{X}]$, \mathcal{B}_f is nowhere dense.

Proof: This is just the ordinary proof that boundaries of open sets (such as \mathcal{A}_f) are nowhere dense. Pick any $\mathcal{U}_{Y,N}$. If $\mathcal{A}_f \cap \mathcal{U}_{Y,N} = \emptyset$, then $\mathcal{U}_{Y,N}$, being open, is $\subseteq \mathcal{C}_f$, so $\mathcal{U}_{Y,N} \cap \mathcal{B}_f = \emptyset$. But if $\mathcal{A}_f \cap \mathcal{U}_{Y,N} \neq \emptyset$, then each *R* there lies within some $\mathcal{U}_{Y',N'} \subseteq \mathcal{A}_f \cap \mathcal{U}_{Y,N}$, just because this intersection is open. So $\mathcal{U}_{Y',N'} \cap \mathcal{B}_f = \emptyset$.

Baire category and \mathcal{B}_f

Lemma

For every single polynomial $f \in \mathbb{Z}[\vec{X}]$, \mathcal{B}_f is nowhere dense.

Proof: This is just the ordinary proof that boundaries of open sets (such as \mathcal{A}_f) are nowhere dense. Pick any $\mathcal{U}_{Y,N}$. If $\mathcal{A}_f \cap \mathcal{U}_{Y,N} = \emptyset$, then $\mathcal{U}_{Y,N}$, being open, is $\subseteq C_f$, so $\mathcal{U}_{Y,N} \cap \mathcal{B}_f = \emptyset$. But if $\mathcal{A}_f \cap \mathcal{U}_{Y,N} \neq \emptyset$, then each *R* there lies within some $\mathcal{U}_{Y',N'} \subseteq \mathcal{A}_f \cap \mathcal{U}_{Y,N}$, just because this intersection is open. So $\mathcal{U}_{Y',N'} \cap \mathcal{B}_f = \emptyset$.

Corollary

The countable union $\mathcal{B} = \bigcup_{f \in \mathbb{Z}[\vec{X}]} \mathcal{B}_f$ is meager.

So in Baire category, almost all rings lie outside *every* boundary set \mathcal{B}_f .

HTP-genericity: never on the boundary

Definition

A subring *R* of \mathbb{Q} is *HTP-generic* if, for every $f \in \mathbb{Z}[\vec{X}], R \notin \mathcal{B}_f$.

So the HTP-generic subrings form a comeager class. These are the rings where we expect it to be fairly easy to determine whether a polynomial has a solution.

HTP-genericity: never on the boundary

Definition

A subring *R* of \mathbb{Q} is *HTP-generic* if, for every $f \in \mathbb{Z}[\vec{X}], R \notin \mathcal{B}_f$.

So the HTP-generic subrings form a comeager class. These are the rings where we expect it to be fairly easy to determine whether a polynomial has a solution.

Definition

For a subring R of \mathbb{Q} , *Hilbert's Tenth Problem* is the set

 $HTP(R) = \{ f \in \mathbb{Z}[\vec{X}] : f = 0 \text{ has a solution in } R \}.$

Earlier we mentioned that C_f is always $HTP(\mathbb{Q})$ -computably enumerable. However, the decidability of $HTP(\mathbb{Q})$ is an open question.

HTP-genericity and computability theory

Julia Robinson's lemma showed that semilocal subrings $R \subseteq \mathbb{Q}$ all have HTP(R) exactly as hard as HTP(\mathbb{Q}). All subrings R have HTP(R) \geq_T HTP(\mathbb{Q}), so these subrings have as simple HTP's as possible. The first use of HTP-genericity was to extend this result.

Theorem (Eisenträger-M.-Park-Shlapentokh, 2017)

There exist subrings $R \subseteq \mathbb{Q}$ such that infinitely many primes p have $\frac{1}{p} \notin R$, yet HTP(R) is Turing-equivalent to HTP(\mathbb{Q}). Indeed, such rings can have computable presentations, and the set of primes inverted in R can have lower density 0.

The construction used a technique from computability theory called a *finite-injury construction*.

(For subrings of \mathbb{Q} , having a computable presentation essentially means that one can computably enumerate the elements of *R*.)

HTP for HTP-generic subrings

Proposition

For each HTP-generic subring *R* of \mathbb{Q} , HTP(*R*) $\equiv_T R \oplus$ HTP(\mathbb{Q}).

The Turing-equivalence \equiv_T here means two things. First, if you know which *f* have solutions in *R*, you (or a Turing machine) can decide which rational numbers lie in *R* itself, and also which *g* have solutions in \mathbb{Q} . Second, if you know these latter two items, then you can decide which *f* have solutions in *R*.

The Proposition shows that, if any HTP-generic ring R at all has $HTP(R) \not\leq_T R$, then $HTP(\mathbb{Q})$ is undecidable (as it gives R enough of a boost to compute HTP(R)).

Proving the Proposition

Proposition

For each HTP-generic subring R of \mathbb{Q} , HTP(R) $\equiv_T R \oplus$ HTP(\mathbb{Q}).

Exercise: prove the first part (deciding *R* and HTP(\mathbb{Q}) from HTP(*R*)).

For the second part, knowing both *R* and HTP(\mathbb{Q}), and given any *f*, you can search for:

- a solution to f = 0 in R (placing $R \in A_f$); and
- a finite set $N \subseteq \mathbb{P}$ such that $R \in \mathcal{U}_{\emptyset,N}$ and the polynomial $F_N(f)$ from Julia Robinson's lemma has no solution in \mathbb{Q} (so $\mathcal{U}_{\emptyset,N} \subseteq C_f$).

Since $R \notin B_f$, one of these must exist, so you will eventually find it.

Recall: The lemma gives computable maps $F_N : \mathbb{Z}[\vec{X}] \to \mathbb{Z}[\vec{X}]$ with

$$\mathcal{U}_{\emptyset,N} \subseteq \mathcal{C}_f \iff f \notin \mathsf{HTP}(\mathbb{Z}[\overline{N}^{-1}]) \iff F_N(f) = 0 \notin \mathsf{HTP}(\mathbb{Q}).$$

$HTP(R) \equiv_T R \oplus HTP(\mathbb{Q})$ for HTP-generic subrings

If any HTP-generic ring *R* has HTP(*R*) $\leq_{\mathcal{T}} R$, then HTP(\mathbb{Q}) is undecidable (as it gives *R* enough of a boost to compute HTP(*R*)).

$HTP(R) \equiv_T R \oplus HTP(\mathbb{Q})$ for HTP-generic subrings

If any HTP-generic ring *R* has HTP(*R*) $\leq_{\mathcal{T}} R$, then HTP(\mathbb{Q}) is undecidable (as it gives *R* enough of a boost to compute HTP(*R*)).

Theorem

The following are equivalent, for every set C.

• HTP(\mathbb{Q}) $\geq_T C$.

2 A non-meager class of subrings R satisfy $HTP(R) \ge_T C$.

⇒ : clear. ⇐: then a non-meager class of HTP-generic *R* have $R \oplus \text{HTP}(Q) \ge_T C$. So some single Turing machine Φ computes χ_C from $R \oplus \text{HTP}(Q)$ for a somewhere-dense set of *R*, say dense in \mathcal{U}_{σ} . Now whenever $\tau \supseteq \sigma$ and $\Phi^{\tau \oplus \text{HTP}(\mathbb{Q})}(n)$ halts, we know it equals $\chi_C(n)$, because some $R \in \mathcal{U}_{\tau}$ computes χ_C this way.

$HTP(R) \equiv_T R \oplus HTP(\mathbb{Q})$ for HTP-generic subrings

If any HTP-generic ring *R* has HTP(*R*) $\leq_{\mathcal{T}} R$, then HTP(\mathbb{Q}) is undecidable (as it gives *R* enough of a boost to compute HTP(*R*)).

Theorem

The following are equivalent, for every set *C*.

• HTP(\mathbb{Q}) $\geq_T C$.

2 A non-meager class of subrings R satisfy $HTP(R) \ge_T C$.

⇒ : clear. ⇐: then a non-meager class of HTP-generic *R* have $R \oplus \text{HTP}(Q) \ge_{T} C$. So some single Turing machine Φ computes χ_{C} from $R \oplus \text{HTP}(Q)$ for a somewhere-dense set of *R*, say dense in \mathcal{U}_{σ} . Now whenever $\tau \supseteq \sigma$ and $\Phi^{\tau \oplus \text{HTP}(\mathbb{Q})}(n)$ halts, we know it equals $\chi_{C}(n)$, because some $R \in \mathcal{U}_{\tau}$ computes χ_{C} this way. So, with an $HTP(\mathbb{Q})$ -oracle, we just search for such a τ , and when we find it, we have computed $\chi_{C}(n)$. Such a τ must exist, because \mathcal{U}_{τ} contains a ring from the somewhere-dense set.