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Plan of the Minicourse

Week 1: Specific example of subrings of Q.
Online discussion: Thursday, Sept. 24, 11:00 PDT.

Week 2: Computability and continuity.
Online discussion: Thursday, Oct. 1, 11:00 PDT.

Week 3: Classifications of spaces of structures.
Online discussion: Thursday, Oct. 8, 11:00 PDT.

Week 4: The space of algebraic fields.
Online discussion: Thursday, Oct. 15, 11:00 PDT.

Week 5: Other related questions.
Online discussion: Thursday, Oct. 22, 11:00 PDT.

(Also watch Caleb Springer’s MSRI Junior Seminar: Oct. 20, 09:00.)
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The subrings of Q

We begin with a natural class of structures: the subrings of Q.
What are they?

Natural classification: subrings R of Q correspond bijectively to
subsets W ⊆ P of the primes.

W ⊆ P 7→ Z[W−1] =
{m

n
∈ Q : all p dividing n lie in W

}
.

R ⊆ Q 7→
{

p ∈ P :
1
p
∈ R

}
=

{
p : (∃m,n)

m
np
∈ R & p 6 |m

}
.

So the space of subrings of Q “looks like” the power set of P.
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Topology on the power set of P

There is a natural topology, the Cantor topology, on the power set
P(N) of N, which transfers naturally to P(P). For a basis, we take the
collection of all sets

UY ,N = {W ⊆ P : Y ⊆W & N ∩W = ∅},

over all pairs (Y ,N) of finite disjoint subsets of P. So membership of
W in UY ,N is determined by a finite number of conditions on W .

Under the bijection between P(P) and {subrings of Q},

UY ,N =

{
R ⊆ Q : (∀p ∈ Y )

1
p
∈ R & (∀p ∈ N)

1
p
/∈ R

}
.

Open sets are unions of arbitrary collections of these UY ,N ’s.
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Usefulness of open sets

Fix any existential sentence ϕ, in the language of rings. It is well known
that there is an equivalent (for all subrings!) sentence of the form

(∃Y1) · · · (∃Yn) f (Y1, . . . ,Yn) = 0,

with f ∈ Z[Y1, . . . ,Yn]. Then the set Af of subrings R that satisfy ϕ is
soon seen to be an open set.

Reason: each solution ~y (in Q) to f = 0 uses only finitely many primes
in its denominators. If Y is this set of primes, then all rings in UY ,∅
satisfy ϕ. So the class of all subrings realizing ϕ is a union of basic
open sets.

What is unclear here is why we have the set N in the definition of UY ,N .
Using UY ,∅ would have worked just as well for these purposes.
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Closed sets
Notice first that every UY ,N is closed, as well as open.

Lemma
The clopen sets in our topology are exactly the finite unions of basic
open sets UY ,N .

To see this, it is helpful to consider the primes one-by-one, in order.
A set W ⊆ P is a path through the binary tree:

2 ∈W?

3 ∈W?

5 ∈W?

λ
XXX

XXX
XX

���
���

��0 1
HH

H
��
�

HH
H

��
�

00 01 10 11
BB�� AA �� @@ �� @@ ��

�
000 001 010 011 100 101 110 111
BB �� BB �� BB �� BB �� BB �� BB �� BB �� BB ��

...
...

...
...

...
...

...
...
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Clopen sets

Suppose that G (in green) and R (in red) are disjoint open sets (of
paths through the tree). If there is a level at which they are divided up
according to the nodes at that level, then each is a finite union of basic
open sets UY ,N .

2 ∈W?

3 ∈W?

5 ∈W?

λ
XXX

XXX
XX

���
���

��0 1
HH

H
��
�

HH
H

��
�

00 01 10 11
BB�� AA �� @@ �� @@ �

��
000 001 010 011 100 101 110 111
BB �� BB �� BB �� BB �� BB �� BB �� BB �� BB ��

...
...

...
...

...
...

...
...

In this example, with revised notation, R = U000 ∪ U011 ∪ U111.
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Non-clopen sets: König’s Lemma!
If there is no level such as above, then infinitely many nodes are
neither red nor green. Start at λ, and at each level, extend to a node
such that infinitely many nodes above it are neither red nor green.

2 ∈W?

3 ∈W?

5 ∈W?

λ
XXX

XXX
XX

���
���

��0 1
HH

H
��
�

HH
H

��
�

00 01 10 11
BB�� AA �� @@ �� @@ �

��
000 001 010 011 100 101 110 111
BB �� BB �� BB �� BB �� BB �� BB �� BB �� BB ��

...
...

...
...

...
...

...
...

m
m��

����
��

This defines a path /∈ G ∪ R. Thus G cannot be clopen.
Here the path is 101 . . ., meaning the subset W = {2,5, . . .} of P.
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Polynomials

So the first question about polynomials: can they define non-clopen
sets of subrings of Q? One suspects so, and the answer is quickly
seen to be positive.

Define f (X ,Y , . . .) = (X 2 + Y 2 − 1)2 + (“ X > 0 ”)2 + (“ Y > 0 ”)2.

Solutions to f = 0 correspond to nonzero pairs (a
c ,

b
c ) with a2 + b2 = c2.

Elementary number theory shows that f = 0 has solutions in exactly
those subrings of Q in which some prime p ≡ 1 mod 4 is inverted. So
the rings with solutions to f = 0 form an open but not clopen set Af .

The polynomials X 2 + qY 2 − 1 (modified so that Y 6= 0), with q prime,
are similar examples, due to Ken Kramer. Here it is necessary and
sufficient to invert a prime p for which −q is a square modulo p.
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Interior of the complement

An existential formula can fail to have solutions in an entire open set of
rings. (Example: (∃X ,Y ,Z ) (f (X ,Y ))2 + (7Z − 1)2 = 0 and U∅,{7}.)
That is, a set UY ,N can lie within the complement of the open set Af .
The interior Cf of the complement of Af is the union of all such sets.

This is the first time that the set N in UY ,N has mattered!

For a polynomial f ∈ Z[~X ], here are the three relevant sets of rings:
Af = {R : f = 0 has a solution in R}.
Cf = Int({R : f = 0 has no solution in R}), the interior of the
complement of Af .
Bf = complement of (Af ∪ Cf ), the topological boundary of Af .
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Trying to enumerate Cf

Given a polynomial f , we can computably enumerate all basic open
sets UY ,N within Af = {R : f = 0 has a solution in R}. Enumerating the
basic open sets that make up Cf seems much harder. But....

Lemma (Shlapentokh, or Koenigsmann, following J. Robinson)

For each finite set N ⊆ P, the semilocal subring Z[N
−1

] is diophantine
in Q, and its diophantine definition there is uniform in N.

The lemma gives computable maps FN : Z[~X ]→ Z[~X ] for all N, with

U∅,N ⊆ Cf ⇐⇒ f has no solution in Z[N
−1

]

⇐⇒ FN(f ) = 0 has no solution in Q.

This means that, if we knew which polynomials have solutions in Q, we
would be able to enumerate Cf (by the same method for every f ). Thus
Cf is HTP(Q)-computably enumerable.
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What about Bf ?

Recall: Af is an open set. So it does not intersect its boundary Bf : if
R ∈ Bf , then f = 0 has no solution in R. But also R /∈ Cf : there is no
finitary reason why f = 0 has no solution in R. (Even if we know that R
omits all of the first n primes, this does not rule out all possible
solutions.) So, while R indeed contains no solution to f = 0, it “never
loses hope.” (This makes it hard to decide membership in Bf !)

Sometimes Bf = ∅. But for the X 2 + Y 2 − 1 example, Bf contains many
rings: all those R in which no prime ≡ 1 mod 4 has an inverse. So this
Bf has the cardinality of the continuum. We may still think this Bf is
small, but the argument must be more subtle than mere counting: we
need topology. We will appeal to both Lebesgue measure and Baire
category, both of which apply naturally to Cantor space (namely, the
power set of P) and thus transfer readily to the space of all subrings of
Q.
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Lebesgue measure

The Lebesgue measure of a set UY ,N is defined to be 1
2|Y∪N| . If you flip

a coin independently for each prime p to decide whether 1
p ∈ R, the

odds are 2−|Y∪N| that your ring will lie in UY ,N .

This measure is extended to as many sets S of rings as possible (the
measurable sets) by taking the infimum of the measures of countable
covers of S by basic open sets.
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Measure of the boundary set

In the X 2 + Y 2 − 1 example: to lie in Bf , R must invert no primes
≡ 1 mod 4. Clearly this Bf has measure 0.

Open Question

Do all boundary sets Bf of polynomials f ∈ Z[~X ] have measure 0?

This has proven to be a hard question! For a Bf of positive measure,
one could try to build f having (for example) one solution using 1

2 and
1
3 ; another using 1

5 , 1
7 , and 1

11 ; then another requiring the next four
primes to be inverted, and so on. Is anything like this possible?

Theorem
If Z has an existential definition in the field Q, then there exist
polynomials f with boundary sets of measure arbitrarily close to 1.
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Baire category

Recall: a space has the property of Baire if no nonempty open set is
meager, defined as follows.

A set S of rings is nowhere dense if, for every UY ,N , there exist disjoint
sets Y ′ ⊇ Y and N ′ ⊇ N such that S ∩ UY ′,N′ = ∅. (That is, for every
UY ,N , S is not dense inside UY ,N .)

The union of a countable collection of nowhere dense sets can fail to
be nowhere dense, but we still regard it as small. S is meager if S is a
countable union of nowhere dense sets. The large sets are the
comeager sets, the complements of meager sets.

The standard example is the usual topology on R. But Cantor space
also has the property of Baire, so we may use Baire category here.
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Baire category and Bf

Lemma

For every single polynomial f ∈ Z[~X ], Bf is nowhere dense.

Proof: This is just the ordinary proof that boundaries of open sets
(such as Af ) are nowhere dense. Pick any UY ,N . If Af ∩ UY ,N = ∅, then
UY ,N , being open, is ⊆ Cf , so UY ,N ∩ Bf = ∅. But if Af ∩ UY ,N 6= ∅, then
each R there lies within some UY ′,N′ ⊆ Af ∩ UY ,N , just because this
intersection is open. So UY ′,N′ ∩ Bf = ∅.

Corollary
The countable union B = ∪f∈Z[~X ]

Bf is meager.

So in Baire category, almost all rings lie outside every boundary set Bf .
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HTP-genericity: never on the boundary

Definition

A subring R of Q is HTP-generic if, for every f ∈ Z[~X ], R /∈ Bf .

So the HTP-generic subrings form a comeager class. These are the
rings where we expect it to be fairly easy to determine whether a
polynomial has a solution.

Definition
For a subring R of Q, Hilbert’s Tenth Problem is the set

HTP(R) = {f ∈ Z[~X ] : f = 0 has a solution in R}.

Earlier we mentioned that Cf is always HTP(Q)-computably
enumerable. However, the decidability of HTP(Q) is an open question.
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HTP-genericity and computability theory

Julia Robinson’s lemma showed that semilocal subrings R ⊆ Q all
have HTP(R) exactly as hard as HTP(Q). All subrings R have
HTP(R) ≥T HTP(Q), so these subrings have as simple HTP’s as
possible. The first use of HTP-genericity was to extend this result.

Theorem (Eisenträger-M.-Park-Shlapentokh, 2017)
There exist subrings R ⊆ Q such that infinitely many primes p have
1
p /∈ R, yet HTP(R) is Turing-equivalent to HTP(Q). Indeed, such rings
can have computable presentations, and the set of primes inverted in
R can have lower density 0.

The construction used a technique from computability theory called a
finite-injury construction.
(For subrings of Q, having a computable presentation essentially
means that one can computably enumerate the elements of R.)
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HTP for HTP-generic subrings

Proposition
For each HTP-generic subring R of Q, HTP(R) ≡T R ⊕ HTP(Q).

The Turing-equivalence ≡T here means two things. First, if you know
which f have solutions in R, you (or a Turing machine) can decide
which rational numbers lie in R itself, and also which g have solutions
in Q. Second, if you know these latter two items, then you can decide
which f have solutions in R.

The Proposition shows that, if any HTP-generic ring R at all has
HTP(R) 6≤T R, then HTP(Q) is undecidable (as it gives R enough of a
boost to compute HTP(R)).
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Proving the Proposition
Proposition
For each HTP-generic subring R of Q, HTP(R) ≡T R ⊕ HTP(Q).

Exercise: prove the first part (deciding R and HTP(Q) from HTP(R)).

For the second part, knowing both R and HTP(Q), and given any f ,
you can search for:

a solution to f = 0 in R (placing R ∈ Af ); and
a finite set N ⊆ P such that R ∈ U∅,N and the polynomial FN(f )
from Julia Robinson’s lemma has no solution in Q (so U∅,N ⊆ Cf ).

Since R /∈ Bf , one of these must exist, so you will eventually find it.

Recall: The lemma gives computable maps FN : Z[~X ]→ Z[~X ] with

U∅,N ⊆ Cf ⇐⇒ f /∈ HTP(Z[N
−1

]) ⇐⇒ FN(f ) = 0 /∈ HTP(Q).
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HTP(R) ≡T R ⊕ HTP(Q) for HTP-generic subrings
If any HTP-generic ring R has HTP(R) 6≤T R, then HTP(Q) is
undecidable (as it gives R enough of a boost to compute HTP(R)).

Theorem
The following are equivalent, for every set C.

1 HTP(Q) ≥T C.
2 A non-meager class of subrings R satisfy HTP(R) ≥T C.

=⇒ : clear. ⇐: then a non-meager class of HTP-generic R have
R ⊕ HTP(Q) ≥T C. So some single Turing machine Φ computes χC
from R ⊕ HTP(Q) for a somewhere-dense set of R, say dense in Uσ.
Now whenever τ ⊇ σ and Φτ⊕HTP(Q)(n) halts, we know it equals χC(n),
because some R ∈ Uτ computes χC this way.
So, with an HTP(Q)-oracle, we just search for such a τ , and when we
find it, we have computed χC(n). Such a τ must exist, because Uτ
contains a ring from the somewhere-dense set.
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