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Plan of the Minicourse

Week 1: Specific example: subrings of Q.
Online discussion: Thursday, Sept. 24, 11:00 PDT.

Week 2: Computability and continuity.
Online discussion: Thursday, Oct. 1, 11:00 PDT.

Week 3: Classifications of spaces of structures.
Online discussion: Thursday, Oct. 8, 11:00 PDT.

Week 4: The space of algebraic fields.
Online discussion: Thursday, Oct. 15, 11:00 PDT.

Week 5: Other related questions.
Online discussion: Thursday, Oct. 22, 11:00 PDT.

(Also watch Caleb Springer’s MSRI Junior Seminar: Oct. 20, 09:00.)
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Cantor space 2N

2N means {f : N→ {0,1} }, the set of all binary-valued functions on N.
We think of a point in 2N as a (countable) infinite binary sequence
10001111010010 . . .. This point also names the subset
S = {0,4,5,6,7,9,12, . . .} ⊆ N, by giving its characteristic function.
Finally, each point is a path through the complete binary tree 2<N:

0 ∈ S?

1 ∈ S?

2 ∈ S?
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Topology of Cantor space

Recall: basic open sets are of the form Uσ = {f : N→ {0,1} : σ ⊂ f},
meaning that σ is an initial segment of f . The sets UY ,N defined last
week form a slightly different basis for the same topology. The intuition
is that membership of f in an open set is always confirmed by a finite
amount of information about f .

For f to belong to a closed set may require infinitely much information.
For example, the set

V = {f ∈ 2N : f contains six consecutive zeros somewhere}

is an open set. If f ∈ V, some finite σ ⊂ f gives a reason why. To see
that f /∈ V would require looking at the entire infinite sequence f .

Russell Miller (CUNY) Spaces of Countable Structures Week 2, MSRI Autumn 2020 4 / 21



Doesn’t “Cantor space” mean something else?
In real analysis, one meets the “middle thirds set” in the unit interval.
This is also often called the Cantor set. It is constructed by starting
with the unit interval and repeatedly removing the open middle third of
each remaining interval. Shouldn’t we have chosen a different name?

No: these two spaces are homeomorphic!
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Oracle Turing machines
Since many of our spaces of structures will be homeomorphic to
Cantor space, or to a quotient of it, we want a notion of computability
for functions F : 2N → 2N.

Ordinary Turing machines only compute (partial) functions ϕ : N→ N.

An oracle Turing machine still computes partial functions : N→ N, but
can be endowed with one (or several) oracles. An oracle is a countable
infinite read-only tape on which is written the characteristic function of
a set A ⊆ N. This set A is the oracle.

The program for an oracle Turing machine is still a finite set of
instructions. The oracle is not part of the program. The program uses
the usual Turing-machine instructions, plus new instructions:

Move one cell left or right on the oracle tape.
Read the current oracle-tape cell. If it’s 0, do this. If it’s 1, do that.
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Oracle programs and Turing reducibility

Earlier, we considered membership in HTP(R). For certain subrings
R ⊆ Q, such as semilocal subrings, we could compute, for each
f ∈ Z[~X ], some g such that

f ∈ HTP(R) ⇐⇒ g ∈ HTP(Q).

So HTP(R) ≤T HTP(Q): there is an oracle Turing program that, if it
runs with an oracle for HTP(Q), decides if its input f lies in HTP(R).

More broadly, for any oracle A ⊆ N, the A-computable functions on N
are those computed by an oracle Turing program Φ using oracle A.
A set B ⊆ N is A-computable, or Turing-reducible to A, if χB is
A-computable. (We write B ≤T A.)

But this is only about (partial) functions from N to N.....
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A computable function on 2N

An oracle Turing program, with one or more oracles, computes a
partial function : N→ N. Here is a program with two oracles:

Given the input n ∈ N, move right to the n-th cell on each of the
two oracle tapes.
If the first oracle has a 1 there, print 1 as the output and halt.
If the second oracle has a 1 there, print 1 as the output and halt.
Otherwise, print 0 as the output and halt.

For any two oracle sets A and B, this decides membership in A ∪ B.
We have ΦA⊕B = χA∪B.

So we regard Φ as computing the function F : 2N × 2N → 2N with
F (A,B) = A ∪ B.
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Computable functions on 2N

Definition

A function F : 2N → 2N is computable if there exists an oracle Turing
program Φ such that, for every X ∈ 2N, the program Φ with the oracle
X will compute the characteristic function χF (X) of F (X ):

ΦX = χF (X) (that is: (∀n) ΦX (n) = χF (X)(n)).

For F : (2N)k → 2N, just use an oracle Turing program designed for k
oracle tapes.

The first example above showed that the (binary) union function
F : 2N × 2N → 2N with F (A,B) = A ∪ B is computable.
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Possibilities and impossibilities

The basic set-theoretic operations on subsets of N are computable.

We can collapse countably many oracles into one, using a pairing
function that maps (m,n) ∈ N2 to a code 〈m,n〉 ∈ N bijectively.
Given oracles A0,A1, . . ., we produce ⊕mAm = {〈m,n〉 ∈ N : n ∈ Am}.

However, the projection map ⊕mAm 7→ {n ∈ N : (∃m)n ∈ Am} is not
computable. If Φ computed it, then with all Am = ∅ in the oracle,
Φ⊕m∅(5) would eventually halt and output 0, having checked only
finitely many elements 〈m,5〉 in the oracle. Suppose it did not check
whether 〈70,5〉 was in the oracle. Then we could create another oracle
B = {〈70,5〉} on which ΦB(5) = 0, even though 5 lies in the projection
of B.
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Which functions 2N → 2N are computable?

Proposition
Every computable function F is continuous (for the Cantor topology).

Let Φ compute F . We show that F−1(U∅,{k}) is open.
If F (X ) ∈ U∅,{k}, then ΦX (k) halts and outputs 0 after finitely many
steps. During those steps, it examined only finitely much of the oracle
X . Let σ ⊂ X be the initial segment it examined, so X ∈ Uσ.

Now whenever W ∈ Uσ, ΦW (k) will follow exactly the same steps as
ΦX (k) did, so will output 0. Thus Uσ ⊆ F−1(U∅,{k}).

The point is that Φ used only finitely much information from X to decide
whether k ∈ F (X ); and basic open sets are defined by “containing
some particular (fixed finite piece of) information.”
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Which functions 2N → 2N are continuous?

Plenty of noncomputable functions are continuous. For example,
consider the constant function F (X ) = C. If Φ computes this F , then
Φ∅ = C. But Φ∅ is computable! So even constant functions are mostly
noncomputable.

Similarly, for a fixed noncomputable C, the continuous unary function
F (X ) = C ∪ X is not computable. It would require C itself as an oracle,
along with the input X .

Definition: relative computability

For any fixed C ⊆ N, a function F : 2N → 2N is C-computable if there
there exists an oracle Turing program Φ such that, for every X ∈ 2N,
the program Φ with the oracle C ⊕ X will compute the characteristic
function of F (X ):

ΦC⊕X = χF (X).
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Answer: which functions 2N → 2N are continuous!

Theorem

The continuous functions F : 2N → 2N are precisely the relatively
computable functions: those such that there exists C ⊆ N for which F
is C-computable.

C-computable functions are continuous, by the same proof as before.

For an arbitrary continuous F , use a coding to define two fixed oracles:

C = {〈σ, k〉 : F (Uσ) ⊆ U∅,{k}} ⊆ N
D = {〈τ, k〉 : F (Uτ ) ⊆ U{k},∅} ⊆ N.

Then k ∈ F (X ) iff X ∈ F−1(U{k},∅) iff (∃τ ⊂ X ) 〈τ, k〉 ∈ D;
while k /∈ F (X ) iff X ∈ F−1(U∅,{k}) iff (∃σ ⊂ X ) 〈σ, k〉 ∈ C.
So our Φ just searches in the (C ⊕ D ⊕ X )-oracle for one or the other.
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Open sets

Certain open sets V ⊆ 2N are considered effectively open: these are of
the form ∪σ∈SUσ, where S is a computably enumerable set of finite
binary strings.
The set Af = {W ⊆ P : f has a solution in Z[W−1]} is an example.

Lemma
V is effectively open iff there exists an oracle Turing program Φ s.t.

X ∈ V ⇐⇒ ΦX (0) halts.

Φ simply enumerates the strings in S (which is c.e.), and halts if it finds
any σ ∈ S with σ ⊂ X . For the converse, let S = {σ : Φσ(0) halts}.

Every open set V is “relatively effectively open,” and vice versa.
Indeed, let S = {σ ∈ 2<N : Uσ ⊆ V}: then V = {X : ΦS⊕X (0) halts}.
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Other spaces

For subspaces, some additional functions become continuous. With
the subspace {X ∈ 2N : X is infinite}, it’s safe for Φ to search for the
n-th smallest element in its oracle X . Similarly, with the subspace of
generic sets, it’s safe to search for an initial segment that lies in a given
open dense set.

Sometimes we take quotients of 2N, under the quotient topology. If ∼ is
an equivalence relation on 2N (or a subspace), an open set in 2N/∼ is
the closure under ∼ of an open set in 2N. A computable function Φ
from 2N/∼ to 2N should run on every X ∈ 2N, and should satisfy

X ∼ Y =⇒ ΦX = ΦY .

This can be hazardous. There is a natural equivalence relation E0,
with A E0 B iff A and B have finite symmetric difference as sets. But
the quotient topology on 2N/E0 is the indiscrete topology!
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Measurable functions

Consider the functions

F (X ) = {n ∈ N : X contains some multiple of n}.
G(X ) = {n ∈ N : X contains infinitely many multiples of n}.

These are not continuous, but they are Borel-measurable. For F , there
is an oracle Turing program Φ with χF (X) = ΦX ′

. (Here X ′, the jump of
X , is the Halting Problem for X -computable partial functions.)
For F , there is s Ψ with χG(X) = ΦX ′′

, using the second jump X ′′ of X .

Borel-measurable functions 2N → 2N are all relatively α-jump
computable. This means that each such function can be computed if
you are allowed some fixed oracle C and the oracle Turing program is
given C and the α-th jump of X as oracles. (α can be any countable
ordinal!)
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Other represented spaces

Baire space NN is the set {f : N→ N}, with a similar topology to
Cantor space. Open sets are determined by finite information;
other results mirror those for 2N. But NN is not compact: the initial
segments of length 1 partition the space into∞-many open sets.

The usual topology on R: think of Baire space as QN. Take the
subspace of fast-converging Cauchy sequences q0q1 . . ., with
|qk − limn qn| < 2−k for all k , and mod out by the relation of having
the same limit. This is the usual presentation of R used in
computable analysis. The continuous functions R→ R again
coincide with the relatively computable functions.
From R we get [0,1], C, and various other spaces.
The Scott topology on 2N has basis sets UY = {X ⊆ N : Y ⊆ X}.
Open sets are given by finite positive information, and continuous
functions are described by relativized enumeration operators.
HTP itself can be seen as such an operator.
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The HTP operator

The HTP operator is the map HTP : P(P)→ P(Z[~X ]) given by:

f ∈ HTP(W ) ⇐⇒ f = 0 has a solution in Z[W−1].

(We usually write HTP(Z[W−1]), not HTP(W ).)
Matiyasevich, Davis, Putnam, and Robinson showed that HTP(Z) is
noncomputable, indeed just as hard as the Halting Problem ∅′.
Therefore, the HTP operator is not computable. (Φ∅ would have to
compute HTP(∅), i.e., HTP(Z).)

The existence of nonempty boundary sets Bf shows that HTP is not
continuous. Z = Z[∅−1] contains no nontrivial solution to X 2 + Y 2 = 1,
but no finite initial segment σ = 000 · · · 0 of ∅ is sufficient to guarantee
this. Therefore, HTP is not relatively computable: no single fixed oracle
set (such as HTP(Z) or HTP(Q)) allows one to compute HTP(Z[W−1])
from W uniformly for all W ⊆ P.
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How much oracle is needed?

The HTP operator can be computed with only a single jump, and with
no additional oracle. The question, given a set W ⊆ P and a
polynomial f , is whether a program (with a W -oracle) that searches
through Z[W−1] for a solution to f = 0 will ever find one (and halt), or
whether it will search forever. The jump W ′, the Halting Problem for
W -computable partial functions, includes the answer to this question.

The restriction of HTP to {HTP-generic W ⊆ P} is continuous, and is
computable relative to a fixed oracle HTP(Q). We saw this in Lecture
1. In Baire category, this is a large subset of 2P. In Lebesgue measure,
we don’t know whether it is large or small.
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Enumeration operators
It can be quite productive to consider HTP using the Scott topologies
on P(P) and P(Z[~X ]). Here, the operator is given a list of the primes in
W (not necessarily in order), and must output a list of the polynomials
in HTP(Z[W−1]) (in any order it likes). Only positive information goes
in, and only positive information comes out.
The HTP operator is continuous w.r.t. the Scott topologies, and
requires no additional oracle.

This is the key to several recent results.

Theorem (M., using results of Jockusch and of Kurtz)

Almost all subrings R ⊆ Q have the property that R′ is R-computably
enumerable, but not diophantine in the ring R. This fails only on a
meager set of measure 0. (So the MDPR result for Z is anomalous.)

Theorem (Kramer-M.)
There exist subrings R and S of Q such that R <T S, yet
HTP(S) <T HTP(R), with strict Turing reducibility for both.
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