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Plan of the Minicourse

Week 1: Specific example: subrings of Q.
Online discussion: Thursday, Sept. 24, 11:00 PDT.

Week 2: Computability and continuity.
Online discussion: Thursday, Oct. 1, 11:00 PDT.

Week 3: Classifications of spaces of structures.
Online discussion: Thursday, Oct. 8, 11:00 PDT.

Week 4: The space of algebraic fields.
Online discussion: Thursday, Oct. 15, 11:00 PDT.

Week 5: Other related questions.
Online discussion: Thursday, Oct. 22, 11:00 PDT.

(Also watch Caleb Springer’s MSRI Junior Seminar: Oct. 20, 09:00.)
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The classification of the subrings of Q
Recall our classification of RQ = {all subrings of Q} by the power set
P(P). Each subring is of the form Z[W−1] with W ⊆ P; moreover,
Z[W−1

0 ] 6= Z[W−1
1 ] for W0 6= W1. This is our prototype for a

classification of a space of countable structures:

The bijection between P(P) and RQ feels effective, in both
directions. It’s quite transparent which W ⊆ P corresponds to
which subring.
P(P) is a recognizable, understandable space (of the correct
cardinality). So its elements are reasonable “invariants” to use in a
classification. We call W the index of Z[W−1].

(One other prototype: we classify the countable models F |= ACF0 by
their transcendence degrees 0,1, . . . , ω over Q.)

This is not a formal definition: these criteria are not very well defined.
We will make some of them rigorous, but choosing a classification will
remain a matter of taste, an art more than a science.
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Creating a topological space
Let S be a class of (isomorphism types of) countable structures, in a
signature L. Augment L with constants {cn : n ∈ N}, and fix a Gödel
coding for atomic sentences in the larger signature.

We first consider

SN = {L-structures S with domain N : [S] ∈ S },

which contains copies of every isomorphism type in S . Let

Codes(SN) = {X ∈ 2N : X codes the atomic diagram of some S ∈ SN},

which is a subspace of 2N, with the subspace topology.
Finally, mod out by the relation of being isomorphic:

Codes(SN)/ ∼=

under the quotient topology. We name this space S , forsaking the
original space. (Both contain the same isomorphism types.)
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Testing this out
Let’s try this, on the class (RQ)N of all (+, ·)-structures on the domain
N, given by the Gödel codes of their atomic diagrams. RQ itself is the
quotient space (RQ)N/ ∼=.

We think that the map that accepts the atomic diagram ∆(R) of a
presentation R of a subring of Q, and outputs {p ∈ P : 1

p ∈ R}, should
be a continuous map from (RQ)N to Cantor space. (Since it is constant
on ∼=-classes, the map from (RQ)N/ ∼= to 2N will also be continuous,
and should be a homeomorphism.) Indeed, it should be computable.

Indeed, for a set U{p},∅ ⊆ 2P, the inverse image V is the set of all
presentations that contain 1

p . It only takes a finite portion of ∆(R) to
show that an element x ∈ R satisfies x + x + · · ·+ x = 1 (or p · x = 1).
So, for every R ∈ V, every other ring whose atomic diagram starts with
that same finite portion will also lie in V. Thus V is open.

BUT WAIT.....
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This doesn’t work!

So inverses images of sets U{p},∅ are open. But for inverse images of
sets U∅,{p}, the story is different!

No finite portion of the atomic diagram ∆(R) can ensure that 1
p /∈ R. In

fact, for each n, every ring has a presentation in which ∆(R)�n looks
just like a presentation of Z.

So our map is neither computable nor continuous! What went wrong?

(In fact, we proved on the last slide that this is a continuous map into
2N with the Scott topology, where the sets U{p},∅ form a subbasis. With
this topology, the map turns out to be a homeomorphism. But the Scott
space is not homeomorphic to Cantor space, so we are totally sunk.)
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Analysis of the problem

Open sets in Cantor space are based on finitely much positive and
negative information about elements X ∈ 2N. When we try to compute
W = {p ∈ P : 1

p ∈ R}, we need ∆(R) to tell us which primes are /∈W ,
as well as which ones are ∈W .

Solution: add a unary invertibility predicate to our signature. Now our
symbols will be +, ·, and I, with an axiom

∀x [ I(x) ⇐⇒ (∃y) x · y = 1].

Being definable, I does not change the isomorphism relation. But now,
if 1

p /∈ R, then ∆(R) will eventually reveal an element x such that
x = 1 + 1 + · · ·+ 1 (p times) and ¬I(x). Any other ring whose atomic
diagram begins with this same information must also omit 1

p .
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Problem solved

Now, with I in the signature, the map we defined above is computable,
from (RQ)N onto 2N, and is continuous for the Cantor topology on 2N.
The inverse image of U∅,{p} is now defined by a finite property of
atomic diagrams.

To compute the inverse map, we need to accept any W ∈ 2N as an
oracle, and compute the atomic diagram of a copy of the subring
Z[W−1]. With the W -oracle, this is not difficult. Notice that the oracle
allows us to compute I in this subring as well, so we can output the
atomic diagram of Z[W−1] in the expanded signature, as required.

So our computable map from (RQ)N/ ∼= to 2N has a computable
inverse, and thus is a homeomorphism onto Cantor space.
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Bigger picture

We had reasons for viewing Cantor space as a classification of
{subrings of Q}:

The bijection between P(P) and RQ feels effective, in both
directions. It’s quite transparent which W ⊆ P corresponds to
which subring.
P(P) is a recognizable, understandable space (of the correct
cardinality). So its elements are reasonable “invariants” to use in a
classification. We call W the index of Z[W−1].

In retrospect, to make the bijection computable, we need the predicate
I. Without I, {subrings of Q} is homeomorphic to the Scott space: still
2N, but with a different topology. (The Scott topology is coarser than
the Cantor topology; this reflects that one signature contains the other.)

Which is preferable? Depends on your tastes and your needs. Again,
this is an art, not a science!
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Generalizing the process

Here is our broad process for putting a topology on a class of
isomorphism types of countable (infinite) structures.

Recipe
1 Consider the set SN of all structures in the class with domain N.
2 View the atomic diagram ∆(M) of each M ∈ SN as an element of

2N, using a fixed Gödel coding.
3 Give SN the subspace topology inherited from Cantor space 2N.
4 Mod out by the relation ∼= of isomorphism on structures.

View the quotient space as S itself: it contains one ∼=-class for each
isomorphism type in the original class, and it has the quotient topology.

The chef may add definable predicates to the signature as desired,
prior to step (2). (Lω1ω-definable predicates are acceptable.)
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Test drive: algebraically closed fields
Earlier we mentioned a very simple space: countable models of ACF0.
This is a countable space, indexed by transcendence degrees over Q.

In the pure signature (+, ·) of fields, we get the indiscrete topology.
Every finite piece of every ACF appears in every other ACF.
Add a finitary dependence predicate D:

D(x1, . . . , xn) ⇐⇒ ~x is algebraically dependent over Q.

Now the open sets are {ACFs of tr.deg. ≥ d}, for each d ∈ N.
Add a finitary spanning predicate S (but not D):

S(x1, . . . , xn) ⇐⇒ F is algebraic over Q(~x).

Now the open sets are {ACFs of tr.deg. ≤ d}, for each d ∈ N.
Add D and S: now {d} is open (for degrees d ∈ N). The space is
the one-point compactification of the discrete topology on N.
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Embeddings of structures

One nice aspect of the topology on S is that, for A,B ∈ S ,

A ↪→ B =⇒ every open set V containing A contains B.

Indeed, if A ∈ V, some finite tuple ~a from A witnesses its membership
in V. Under an embedding h, the tuple (h(a1), . . . ,h(an)) has the same
configuration, so B ∈ V as well.

The converse fails. Two nonisomorphic structures with the same
Σ1-diagram will lie in the same open sets – as with distinct ACF’s in the
original signature above.

Beware: changing the signature often eliminates certain embeddings!
After we added the spanning predicate S (which is Π2 as an infinitary
formula), the only remaining embeddings between ACF’s are the
isomorphisms from an ACF onto itself.
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Another test: finite-branching trees

Here we consider finite-branching trees of countable (infinite) height.
The signature has a predecessor function p and a constant r for the
root. For x 6= r , p(x) is the immediate predecessor of x in the tree.
(For simplicity, define p(r) = r .)

In this signature, for each finite tree S0, the space has a basic open set

{trees T : S0 embeds into T}.

This space is not readily recognizable. It has the property of being a
spectral space, which means that it is homeomorphic to the Zariski
topology on the spectrum of prime ideals in some commutative ring.
We don’t know what ring it is, and this does not seem helpful. We need
a better classification.
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Adding predicates
For finite-branching trees, the usual solution is to add unary branching
predicates. Define, for each n ≥ 0,

Bn(x) ⇐⇒ x has exactly n immediate successors.

Now we will define a homeomorphism H from this class onto Baire
space NN = {countable sequences from N}. We will use a computable
list S0,S1, . . . of all finite trees.

Given a tree T , the predicates B1(r),B2(r), . . . eventually tell us the
number n1 of nodes at level 1. H(T ) begins with (n1 − 1).

The initial segment (n1, . . . ,nk−1) of H(T ) describes the isomorphism
type T�k of the first k − 1 levels of T . With this information, we go
through our list of finite trees: find the unique j with T�(k + 1) ∼= Sj ,
and let

nk = |{i < j : ht(Si) = k & T�k ∼= Si�k}|.

Russell Miller (CUNY) Spaces of Countable Structures Week 3, MSRI Autumn 2020 14 / 22



Adding predicates
For finite-branching trees, the usual solution is to add unary branching
predicates. Define, for each n ≥ 0,

Bn(x) ⇐⇒ x has exactly n immediate successors.

Now we will define a homeomorphism H from this class onto Baire
space NN = {countable sequences from N}. We will use a computable
list S0,S1, . . . of all finite trees.

Given a tree T , the predicates B1(r),B2(r), . . . eventually tell us the
number n1 of nodes at level 1. H(T ) begins with (n1 − 1).

The initial segment (n1, . . . ,nk−1) of H(T ) describes the isomorphism
type T�k of the first k − 1 levels of T . With this information, we go
through our list of finite trees: find the unique j with T�(k + 1) ∼= Sj ,
and let

nk = |{i < j : ht(Si) = k & T�k ∼= Si�k}|.

Russell Miller (CUNY) Spaces of Countable Structures Week 3, MSRI Autumn 2020 14 / 22



A classification of trees

The foregoing procedure was effective (using the Bn predicates), and
clearly respects isomorphism, so H is a continuous map from the
space into NN. Moreover, it is not difficult to compute the inverse map:
given (n1,n2, . . .) ∈ NN, create a root r with n1 + 1 immediate
successors, then use n2 to figure out the isomorphism type up to level
2 and build that (defining Bn(x) for each x at level 1), and so on. This
is clearly a computable inverse to H, so our space of trees is classified
by Baire space.
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Possible objections

1 What does an element of NN actually tell me about a tree? It’s not
as intuitive as the classification of subrings of Q was.

2 You required that these trees have infinite height. Why leave out
the finite trees?

3 I like Cantor space better. Couldn’t we have classified these trees
using Cantor space instead?

(3) is addressed quickly: we have shown that the space, with our
predicates Bn, is not compact. Adding further predicates will keep it
noncompact, because taking reducts down to this signature will be a
continuous map onto this noncompact space.

For (1), this is all based on our fixed computable listing of the finite
trees. If you use a good intuitive listing – or think of each ni as a finite
tree, rather than a number – this should seem reasonable.
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Including finite trees

So far all structures have had domain N. There are ways to allow the
atomic diagram to enumerate its own domain instead, which allows the
space to include finite structures. (This would be most important when
considering algebraic field extensions of Z/(p) for primes p.)

An intriguing note: Baire space NN is homeomorphic to the space of all
irrational real numbers. (Map a sequence ~n to the continued fraction

1
1+n0+ 1

1+n1+···
∈ (0,1).) It’s natural to wonder whether, if we include finite

trees in our space of finite-branching trees, they might correspond to
rational numbers and make the whole space homeomorphic to R.

The immediate answer is that this fails: with the Bn predicates, each
finite tree is an isolated point in the space. So one would need to play
with the signature, in a natural way, to see if some version is
homeomorphic to R. It does not seem easy.
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Finite-valence graphs

The classification of undirected graphs of finite valence (a.k.a. finite
degree) is very similar to that of finite-branching trees, if we restrict to
connected, pointed graphs (G, c).
(Pointed means that there is a constant c, naming some node in G.
But adding an undefined constant already messes with isomorphisms.)

We add valence predicates Vn, analogous to the Bn’s, and assume G
is infinite. The space {pointed connected finite-valence graphs} with
the Vn’s, is homeomorphic to NN, using a fixed computable list of all
finite pointed graphs.

It’s not too hard to imagine dropping the connectedness, if each
connected component is pointed. But how to drop the pointedness?
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Finite-valence connected (non-pointed) graphs

Two connected graphs G0 and G1 are isomorphic iff (with c0 ∈ G0
fixed) there exists c1 ∈ G1 s.t. (G0, c0) ∼= (G1, c1).

For each c1 ∈ G1, we can compute the index H(G1, c1) ∈ NN, but it is
not decidable whether this index equals H(G0, c0). Equality in NN is a
Π1 property, and so (with Vn’s but no c) it is Σ2 whether G0 ∼= G1:

(∃c1 ∈ G1) [(G0, c0) ∼= (G1, c1)].
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Isomorphism problems

To determine whether two structures are isomorphic, it is often
necessary to use jumps.

Definition
For a class SN of structures on N, the isomorphism problem is the set
{(A,B) ∈ (SN)2 : A ∼= B}. This problem is:

Σ0
n+1 if ∃ a program Φ such that, for all A,B ∈ SN,

A ∼= B ⇐⇒ Φ(∆(A)⊕∆(B))(n)
(0) halts.

Π0
n+1 if ∃ a program Φ such that, for all A,B ∈ SN,

A ∼= B ⇐⇒ Φ(∆(A)⊕∆(B))(n)
(0) never halts.

For a classification H, of course, A ∼= B ⇐⇒ H(∆(A)) = H(∆(B)).
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Isomorphism problems and predicates

The isomorphism problem for (RQ)N, in the pure signature (+, ·), is Π0
2:

A ∼= B ⇐⇒ (∀p ∈ P) [((∃x ∈ A)x · p = 1) ⇐⇒ ((∃x ∈ B)x · p = 1)].

Adding invertibility reduces this to Π0
1, which helps explain why I is

necessary to get a classification by Cantor space. Every space
classified by Cantor space (or Baire space) must have a Π0

1
isomorphism problem.

But the isomorphism problem for connected graphs is Σ0
3, and

becomes (properly) Σ0
2 in the signature with the Vn’s. This makes it

very hard to see any definable predicates that would allow
classification by a space where equality is Π0

1. The best approach is to
determine the natural equivalence relation E on Baire space for which
NN/E classifies {connected graphs on N}. This E should be Σ0

2, to
match the isomorphism problem.
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Connections between classes

If SN and TN are two classes of structures on N, one naturally asks
whether SN/∼= can be mapped computably into TN/∼= via a map that
is injective (on ∼=-classes). If so, then the isomorphism problem for SN
reduces to that for TN.

The maps in question were considered by the logic group at Notre
Dame, and are known as Turing-computable embeddings.

Using the ideas of this lecture, it would be natural to consider cases
where there is no Turing-computable embedding, and to ask which
definable predicates (if any) can be added to the signature to enable
such an embedding to be computed.
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