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Plan of the Minicourse

Week 1: Specific example: subrings of Q.
Online discussion: Thursday, Sept. 24, 11:00 PDT.

Week 2: Computability and continuity.
Online discussion: Thursday, Oct. 1, 11:00 PDT.

Week 3: Classifications of spaces of structures.
Online discussion: Thursday, Oct. 8, 11:00 PDT.

Week 4: The space of algebraic fields.
Online discussion: Thursday, Oct. 15, 11:00 PDT.

Week 5: Other related questions.
Online discussion: Thursday, Oct. 22, 11:00 PDT.

(Also watch Caleb Springer’s MSRI Junior Seminar: Oct. 20, 09:00.)
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Algebraic field extensions of Q

Now we consider AlgQ, the set of all algebraic field extensions of Q.
We often say “subfields of Q” synonymously, where Q is the algebraic
closure of Q. However, the meaning is that this is a set of isomorphism
types. Many distinct subfields of Q are isomorphic, and in AlgQ such
subfields are identified.

The process of creating a topology is the same as in Week 3: consider
all presentations of such fields on the domain N, as a subspace of
Cantor space 2N, and mod out by isomorphism. However, we must
decide what signature to use.
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Indexing of algebraic fields
The isomorphism problem for AlgQ is Π0

2 :

Lemma
For all algebraic fields K0 and K1 of characteristic 0,

K0 ∼= K1 ⇐⇒ (∀f ∈ Q[X ]) [f has a root in K0 ⇐⇒ f has a root in K1].

This suggests an indexing for these fields. Fix a computable list
f0, f1, . . . of all monic irreducible polynomials in Q[X ], and define

IK = {n ∈ N : fn has a root in K} ∈ 2N.

By the Lemma, K0 ∼= K1 ⇐⇒ IK0 = IK1 .

But beware! Not all I ∈ 2N are indices of algebraic fields this way. For
example, I might indicate that X 4 − 2 has a root, but that X 2 − 2 does
not. Clearly no field K has such an I as its index IK .
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Picture of {IK : K ⊆ Q} ⊂ 2N
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With the red nodes eliminated, there will be no terminal nodes and no
isolated paths, and the paths through this tree will be precisely the
indices IK . So they form a subspace homeomorphic to Cantor space.

Question: Is it decidable which nodes are red?
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Working towards IK

We face two questions.
1 Is {IK ∈ 2N : K ∈ AlgQ}?, with the subspace topology, computably

homeomorphic to Cantor space?
2 Can we compute IK from a presentation of K , and vice versa?

For (2), the function K 7→ IK is not continuous, just as Z[W−1] 7→W
was discontinuous on RQ without I in the signature. It becomes
continuous, with continuous inverse, if we adjoin d-ary root predicates
Rd to the signature, for all d > 1:

Rd (a0, . . . ,ad−1) ⇐⇒ (∃x) xd + ad−1xd−1 + · · ·+ a1x + a0 = 0.

With these Rd in the atomic diagram, one can recognize when fn has
no root in K , as well as when it has a root.
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Presenting K using IK

This is not as simple as one thinks. As an example: Suppose IK says

that K contains elements x , y with x8 = 2 = y12. Then
(

x2

y3

)4
= 1, but

this does not specify whether x2 = ±y3 or x2 = ±iy3: either is
possible, and the resulting fields Q(x , y) do not embed into each other.

The solution is to find a primitive generator for each of the two
possibilities, then determine the minimal polynomial over Q of each
generator, and check IK to see which of the two minimal polynomials
has a root in K .

This requires certain tools.....
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Tools we need: Kronecker’s Theorem
The splitting set SL of a countable field L is the set of reducible
polynomials in L[X ]. SL computes which f ∈ L[X ] have roots in L.

Kronecker’s Theorem (1882)
SQ is decidable.
If t is transcendental over L within a larger field E , then
SL(t) ≤T SL ⊕∆(E), uniformly.
If x is algebraic over L within E , then SL(x) ≤T SL ⊕∆(E),
uniformly in the minimal polynomial of x over L.

The algorithms for transcendental and algebraic elements are distinct.

Viz. H.M. Edwards, Galois Theory (Springer GTM 101, 1984) §§ 55-60.

This allows you to decide, e.g., whether a given f (Y ) has a root in a
given number field F – or whether f (Y ) would acquire a root when F is
extended to F (x) = F [X ]/(g(X )).
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Computable homeomorphism

Kronecker’s Theorem shows that the set of red nodes is decidable:
A node σ0 is red iff the field built up to node σ already has a root
of the relevant polynomial f|σ|. (E.g., Q(

√
2,
√

3) already contains
the square roots of 6.)
A node σ1 is red iff adjoining a root of the relevant polynomial f|σ|
would generate a root of some earlier fm with σ(m) = 0. E.g., for
the node 011, adjoining

√
6 to Q(

√
3) would result in a field

containing
√

2, which was ruled out by the “0” in 011.
So the homeomorphism between 2N and the set of indices IK is
computable (in both directions). Each index IK corresponds to a
unique JK ∈ 2N, and every J ∈ 2N is JK for some K ∈ AlgQ.
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Tools we need: Primitive Element Theorem

Effective Theorem of the Primitive Element
For every finite algebraic field extension E/K , there is a single x ∈ E
such that E = K (x). Moreover, x may be found effectively, uniformly in
∆(K ) and in generators x1, . . . , xk for E over K . (So may its minimal
polynomial over K , provided that SK is decidable.)

To describe the generators, we give polynomials gi ∈ K [X1, . . . ,Xi ]
such that each gi(x1, . . . , xi−1,Xi) is the minimal polynomial of xi over
K (x1, . . . , xi−1).

Finding x can be a blind search, since we know it exists. For a more
efficient algorithm: Fried & Jarden, Field Arithmetic (Springer, 1986).
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Homework problem!
We discussed the space FBT of (infinite) finite-branching trees in
Week 3. With branching predicates in the signature, it is
homeomorphic to Baire space NN.

FBT is very similar to AlgQ. Once again, the isomorphism problem is
Π0

2: two trees are isomorphic iff every finite subtree of each tree
embeds into the other tree.

For T ∈ FBT, let IT = {n ∈ N : Sn ↪→ T} be the set of finite trees that
embed into T . So T ∼= T ′ ⇐⇒ IT = IT ′ . With branching predicates in
the signature, IT is computable from T , and isomorphism becomes Π0

1.

So why is FBT, with branching, not homeomorphic to Cantor space?
Where does the argument for AlgQ break down on FBT?

We will discuss this in the discussion section on October 15!
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Basic open sets

AlgQ is more difficult to present than RQ was. Another version of the
homeomorphism onto 2N appears in:
Miller, Isomorphism and classification for countable structures,
Computability 8 (2019) 2, 99–117, DOI 10.3233/COM-180095.

But the simplest version is probably:
For each number field F and each h ∈ Q[X ] with no roots in F , let

UF ,h = {algebraic fields K ⊇ Q : F ↪→ K & h has no roots in K}.

So F is the “positive” information (essentially finite, since F is a
number field) about K , and h is the “negative” information.
(These are the basic open sets used in current joint work with
Eisenträger, Springer, and Westrick.)
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Indices and presentations
For an isomorphism type K in AlgQ, we have defined the index

IK = {n ∈ N : fn has a root in K}.

The set of all indices maps homeomorphically onto Cantor space,
and JK is the image of IK there, with IK ≡T JK uniformly.
A presentation of K is a field L, isomorphic to K , whose domain is N.
The atomic diagram of L is basically the addition and multiplication
tables for L, coded as a subset of N. For each presentation L of K , we
have the following sets, all ∆(L)-computably enumerable:

SL = {h ∈ L[X ] : h factors in L[X ]} (the splitting set of L).

RL = {h ∈ L[X ] : h has a root in L} (the root set of L).
HTP(L) = {h ∈ L[X1,X2, . . .] : h = 0 has a solution in L}

The relationships among these, relative to ∆(L), for each L of type K :

IK ≡T JK ≡T RL ≡T SL ≤T HTP(L) ≤T (∆(L))′.
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An application
With AlgQ homeomorphic to Cantor space, we can now use the
notions of Baire category to investigate the prevalence of various
properties of algebraic fields. A sample result is the following,
describing the difficulty of computing the root set RF of a field from a
presentation F of the field (in the signature (+, ·)). It is well known that
RF is always c.e. in ∆(F ), but can fail to be computable from ∆(F ).

Theorem (M., 2020 CiE Proceedings, LNCS 12098)
These two classes of algebraic fields are both co-meager in AlgQ.
{K ∈ AlgQ : some presentation L of K has RL 6≤T ∆(L)}.
(Direct proof here is joint with Eisenträger-Springer-Westrick.)
{K ∈ AlgQ : every presentation L of K has (RL)′ ≤T (∆(L))′}.
(That is, RL is low relative to every presentation L.)

To prove the second item, we relativize to ∆(L), proving
(JK )′ ≤T (∆(L))′ and then invoking JK ⊕∆(L) ≡T RL ⊕∆(L).
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Procedure to show (JK )′ ≤T (∆(L))′

We need to decide whether a given oracle Turing program Φ, when run
with oracle JK , halts on a given input e. To help us decide, we have our
own oracle (∆(L))′.

With (∆(L))′, we can compute JK , so we can run ΦJK (e). If we ever
see it halt, we have our answer.

For each initial segment σ of JK , one by one, we ask (∆(L))′ whether

(∀τ ⊇ σ) [Φτ (e) does not halt within |τ | steps].

If we ever find such a σ, then we know that ΦJK (e) never halts. (If it
halted, some initial segment τ of JK would contradict the above.)

This is our decision procedure. It does not always give an answer, but
we claim that, for some comeager set of indices JK , it answers
correctly for all programs Φ and inputs e, on all presentations L of K .
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The procedure works on a comeager set
All answers given by our procedure are correct, so if it messes up, let
Φ and e be a program and input for which it never gives an answer.
Then ΦJK (e) never halts, but for every initial segment σ of JK , there is
a τ ⊇ σ that would make it halt.
Now consider Uσ = {E ∈ AlgQ : σ ⊂ JE} (for any σ). If there exists
some K ∈ Uσ with a presentation L on which our procedure never halts
for this Φ and e, then there is some τ ⊇ σ that would make the
procedure halt (on this Φ and e). This means that, for every E ∈ Uτ ,
the procedure gives the correct answer on this Φ and e and on every
presentation L of E . (Arbitrarily much of ∆(L) might be required to
compute E� |τ | from ∆(L)⊕ RL, depending on the presentation L.) So
{E : ∃ a presentation L of E s.t. the procedure never halts on Φ & e}
is a nowhere dense set: it is not dense within Uσ, because it contains
no element of Uτ .
But the countable union of these nowhere dense sets, across all Φ and
e, is meager and contains all JK for which our procedure messes up.
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Presentations L with RL 6≤T ∆(L)

If every presentation of K computes IK , then they all enumerate IK . By
a theorem of Knight from 1986, IK ≤e Σ1-Th(K ), which in turn is ≤e IK .
But we claim that each e-reduction succeeds in reducing IK to IK only
for a nowhere dense set of fields K .

Suppose a single e-reduction gives IK ≤e IK for certain fields K ∈ UF ,h.
Since F is a number field, we can fix a prime p > max([F : Q],deg(h)).
Then h has no root in F ( p

√
2), and F contains no p-th root of 2, so we

consider UF ,h·(Y p−2). Assume the enumeration reduction works for
some K here. Now Y p − 2 lies in IK , so let K0 ⊆ K be a number field
extending F , with enough elements that the enumeration reduction on
IK0 says that Y p − 2 ∈ IK0 .
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Presentations L with RL 6≤T ∆(L), continued

Now h has no root in K0 since K0 ⊆ K ; and with K0( p
√

2) minimal over
K0 of prime degree p > deg(h), h can have no root there either. So
UK0(

p√2),h is a basic open set within UF ,h.

But every E ∈ UK0(
p√2),h will have K0 ⊆ E , so running the e-reduction

on a presentation of E will say that p
√

2 /∈ E , which is wrong. Thus the
e-reduction fails on an entire open subset of UF ,h, and so the set where
it succeeds is not a dense subset of UF ,h. Since F and h were arbitrary,
this enumeration reduction succeeds only on a nowhere dense set.

Thus, if every presentation of K computes IK , then K lies in the union
of these countably many nowhere dense sets (one set for each
e-reduction). So co-meager-many K have a presentation L for which
∆(L) does not compute IK . But if ∆(L) computed RL, then it would
compute IK . So we are done.
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