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1. Introduction: The orbital counting problem

Find an “explicit” function f (t) such that, as t →∞,

#{g ∈ Ξ : dX(o, g · o) ≤ t}
f (t)

→ 1.

(Some few) examples

Gauss: X = Rd and Ξ = Zd  asymptotic proportional to td .
X = Hd and Ξ < Isom(Hd) co-compact  more difficult!
(proofs involve techniques from other areas).

Margulis: X = M̃, with M closed and negatively curved, and
Ξ = π1(M) asymptotic proportional to eht for some h > 0.
Key idea: use dynamics (ergodic theory of the geodesic flow).

Eskin-McMullen: X = G/K, with G (higher rank) semisimple,
K < G maximal compact, and Ξ < G lattice  asymptotic of
the form polynomial × exponential.
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2. Goals of the talk

#{g ∈ Ξ : dX(o, g · o) ≤ t} ∼?

Goal

Discuss counting problems when:

The basepoint o is replaced by a geodesic submanifold S.

The space X is replaced by a pseudo-Riemannian (symmetric)
space.
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2. Goals of the talk

Fix integers p ≥ 1, q ≥ 2 and let d := p + q.

On Rd ,

〈x , y〉p,q :=

p∑
i=1

xiyi −
q∑

i=1

xp+iyp+i .

G := projectivized isometry group of 〈·, ·〉p,q ∼= PSO(p, q).

Two symmetric spaces associated to G

The Riemannian symmetric space XG.
Look at the orbit of certain geodesic submanifolds.

The pseudo-Riemannian hyperbolic space Hp,q−1.
Look at the orbit of a basepoint (give meaning to the
counting function).

Discuss the link between the two countings.
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3. The symmetric spaces

Define

XG := {q−dimensional negative definite subspaces of Rd}.

Remark

We have

XG
∼= G/PS(O(p)× O(q))⇒

XG carries a G-invariant Riemannian metric (Killing metric).

Fact

XG is non positively curved (Cartan-Hadamard manifold), but flats!
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3. The symmetric spaces

Define

Hp,q−1 := {negative definite lines in Rd} ⊂ P(Rd).

Remark

We have

Hp,q−1 ∼= G/PSO(p, q − 1)⇒

no G-invariant Riemannian metric on Hp,q−1 (Killing metric has
signature (p, q − 1)).

Fact

Hp,q−1 has constant negative curvature (pseudo-Riemannian
hyperbolic space).

Killing metric is proportional to 〈·, ·〉p,q.
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3. The symmetric spaces

affine chart of P(Rd)

Hp,q−1XG

∂Hp,q−1

Natural boundary of Hp,q−1 : space of isotropic lines.
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3. The symmetric spaces

Fact

o ∈ Hp,q−1

 So ⊂ XG totally geodesic, isometric to XPSO(p,q−1).

So ∼= XPSO(p,q−1)

XG

Given o ∈ Hp,q−1, set So := {τ ∈ XG : o ⊂ τ}.
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4. A counting problem

Let Ξ < G discrete and take g ∈ Ξ.

g · So

So

XG

Compute

dXG
(So , g · So) := inf{dXG

(τ, g · τ ′) : τ, τ ′ ∈ So}.
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4. A counting problem

g · So

≤ t

So

XG

Problem

For o ∈ Hp,q−1, understand the asymptotic behaviour as t →∞ of

#{g ∈ Ξ : dXG
(So , g · So) ≤ t}.
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4. A counting problem

Problem

As t →∞, #{g ∈ Ξ : dXG
(So , g · So) ≤ t} ∼?.

Difficulties/Challenges

Finiteness of the counting function. Study the exponential
rate: (in)dependence on o.

Find a “suitable flow” to study this problem.

Geometric meaning in Hp,q−1?

Give some answers for Ξ < G projective Anosov (P{α1}-Anosov).
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5. Statement of the results

Projective Anosov representation

: ρ : Γ→ G

Γ word hyperbolic group (let ∂Γ be the Gromov boundary).

There exists a continuous equivariant map

ξρ : ∂Γ→ ∂Hp,q−1

which is transverse: for every x 6= y one has

ξρ(x) /∈ ξρ(y)⊥p,q .

Uniform “contraction/dilation” property.
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5. Statement of the results

ξρ(∂Γ)

Hp,q−1

∂Hp,q−1

Labourie, Guichard-Wienhard: (stable class of) quasi-isometric
embeddings. Higher rank analogue of convex co-compact
representations.
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ΩΩΩρ := {o ∈ Hp,q−1 : o /∈ ξρ(x)⊥p,q for all x ∈ ∂Γ}.

ΩΩΩρ
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Hp,q−1

∂Hp,q−1

Example

Hp,q−1-convex co-compact subgroups of G satisfy ΩΩΩρ 6= ∅ (c.f.
Danciger-Guéritaud-Kassel).
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5. Statement of the results

Let ρ : Γ→ G be projective Anosov and

ΩΩΩρ := {o ∈ Hp,q−1 : o /∈ ξρ(x)⊥p,q for all x ∈ ∂Γ}.

Theorem

There exists a constant hρ > 0 with the following property: take
o ∈ ΩΩΩρ. Then there exists a constant c = cρ,o > 0 such that, as
t →∞,

#{γ ∈ Γ : dXG
(So , ργ · So) ≤ t} ∼ cehρt .

Approach: study the ergodic theory of a suitable flow.
To find this flow: Lie theoretic interpretation of dXG

(So , ργ · So) 
useful to look at Hp,q−1 (obtain geometric interpretation in
Hp,q−1).
Recall: Hp,q−1 carries a G-invariant metric of signature (p, q − 1).
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5. Statement of the results

Fix o ∈ Hp,q−1.

Let

C+
o := {o ′ ∈ Hp,q−1 : [o, o ′] is space-like}.

For o ′ ∈ C+
o ,

`o,o′ := length of the geodesic segment [o, o ′].

Proposition

Let g ∈ G such that g · o ∈ C+
o . Then one has

dXG
(So , g · So) = `o,g ·o .
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5. Statement of the results

If g · o ∈ C+
o ⇒ dXG

(So , g · So) = `o,g ·o .

`o,g ·o

Hp,q−1

dXG
(So, g · So)

XG

So

g · So

o

g · o
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5. Statement of the results

Fix ρ : Γ→ G projective Anosov and o ∈ ΩΩΩρ.

Proposition

For every γ ∈ Γ large enough one has

ργ · o ∈ C+
o .

The theorem now becomes

#{γ ∈ Γ : `o,ργ·o ≤ t} ∼ cehρt .
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5. Statement of the results

#{γ ∈ Γ : `o,ργ·o ≤ t} ∼ cehρt .

o

Hp,q−1

{`o,· = t}

Glorieux-Monclair: study the exponential growth rate of this
counting function (“pseudo-Riemannian Hausdorff dimension of
the limit set”).
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6. On the proof

Concrete way of computing dXG
(So , g · So) = `o,g ·o :

`o,g ·o = 1
2λ1(σo(g)g−1).

Here

λ1(·) =logarithm of spectral radius.

σo : G→ G involution such that Fix(σo) = StabG(o) = Ho

(σo is explicit).

Proof of equality goes as follows:

Show that g · o ∈ C+
o ⇔ g ∈ Ho exp(b+)Ho , where b+ is a

(pre fixed) space-like geodesic ray starting at o.

Show that b+-coordinate coincides with `o,g ·o .

Compute the b+-coordinate using the formula above.
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Show that b+-coordinate coincides with `o,g ·o .

Compute the b+-coordinate using the formula above.
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6. On the proof

Want to prove

#{γ ∈ Γ : 1
2λ1(σo(ργ)ργ−1) ≤ t} ∼ cehρt .

Structure of the proof:

Benoist: precise estimate of eigenvalues of products of
proximal matrices

1
2λ1(σo(ργ)ργ−1) ∼ λ1(ργ)+“cross-ratio”.

Cross-ratio: “measures” the relative position between
attractors and repellors in P(Rd) of ργ−1 and σo(ργ).
Explicit formula.

“Geometric quantity”: 1
2λ1(σo(ργ)ργ−1).

“Dynamical quantity”: λ1(ργ).
Link between the geometric and dynamical quantities:
cross-ratio.
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Want to prove
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2λ1(σo(ργ)ργ−1) ≤ t} ∼ cehρt .

Structure of the proof:

Benoist: precise estimate of eigenvalues of products of
proximal matrices

1
2λ1(σo(ργ)ργ−1) ∼ λ1(ργ)+“cross-ratio”.

Bridgeman-Canary-Labourie-Sambarino: geodesic flow of ρ

φt : UΓ→ UΓ

UΓ compact quotient of an R-principal bundle over ∂2Γ, under
some proper action of Γ.
φt =action on the fibers.
Periodic orbits: [γ] ∈ [Γ], corresponding period λ1(ργ).
Metric Anosov property thermodynamical formalism.
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6. On the proof

Apply Roblin/Sambarino’s outline:

Flow φt : UΓ 	 with periods λ1(ργ) + Markov coding + Bowen,
Parry-Pollicott:

c̃e−hρt
∑

γ:λ1(ργ)≤t

δγ− ⊗ δγ+ → m̃

on C ∗c (∂2Γ), as t →∞.
Here:

hρ =topological entropy of φt (hρ ∈ (0,∞)).

m̃ = Γ-invariant measure on ∂2Γ (lift of the measure of
maximal entropy of φt).

δγ± =Dirac mass at attractor/repellor of γ in ∂Γ.

Purely dynamical result. Challenge: try to use this result +
Benoist’s estimate to obtain our geometric theorem (use
Patterson-Sullivan theory).
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6. On the proof

c̃e−hρt
∑

γ:λ1(ργ)≤t

δγ− ⊗ δγ+ → m̃.

Margulis, Patterson, Sullivan (c.f. also Ledrappier): several ways of
writing

m̃ = e−hρ[·,·]µ⊗ µ

where:

µ finite measure on ∂Γ such that γ∗µ ∼ µ for all γ ∈ Γ.

[·, ·] : ∂2Γ→ R is a continuous function (determined by µ).

Geometric step: find an explicit µ for which [·, ·] =“cross-ratio”.
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6. On the proof

c̃e−hρt
∑

γ:λ1(ργ)≤t

δγ− ⊗ δγ+ → m̃ = e−hρ[·,·]µ⊗ µ.

More precisely:

Find an explicit µ such that

[γ−, γ+] =cross-ratio given by Benoist’s estimate.

Replace λ1(ργ) by 1
2λ1(σo(ργ)ργ−1) in the above sum by

“erasing” the factor e−hρ[·,·]  obtain

c̃e−hρt
∑

γ: 1
2
λ1(σo(ργ)ργ−1)≤t

δγ− ⊗ δγ+ → µ⊗ µ

on C ∗(∂Γ× ∂Γ), as t →∞.

Evaluate on 1 ∈ C (∂Γ× ∂Γ) (c := c̃−1‖µ⊗ µ‖).
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Gracias! Thanks!
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