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1. Introduction: The orbital counting problem

Find an “explicit” function f(t) such that, as t — oo,

#{ge=: dx(o,g-0) <t} .

0 1.

(Some few) examples

m Gauss: X = R? and = = Z9 ~~ asymptotic proportional to t¢.
X = H? and = < Isom(H9) co-compact ~ more difficult!
(proofs involve techniques from other areas).

m Margulis: X = M, with M closed and negatively curved, and
= = m1(M) ~ asymptotic proportional to e/ for some h > 0.
Key idea: use dynamics (ergodic theory of the geodesic flow).

m Eskin-McMullen: X = G/K, with G (higher rank) semisimple,
K < G maximal compact, and = < G lattice ~» asymptotic of
the form polynomial x exponential.
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2. Goals of the talk

#{ge€=: dx(o,g-0)<t}~?

Discuss counting problems when:

m The basepoint o is replaced by a geodesic submanifold S.

m The space X is replaced by a pseudo-Riemannian (symmetric)
space.
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2. Goals of the talk

Fix integers p>1,g>2and letd :=p+q.
= On RY,

p q
(X Y)pa =D Xi¥i— > XptiVpti
i=1 i=1
m G := projectivized isometry group of (-,-), 4 = PSO(p, q).

Two symmetric spaces associated to G

m The Riemannian symmetric space Xg.
Look at the orbit of certain geodesic submanifolds.

m The pseudo-Riemannian hyperbolic space HP:9~ 1,
Look at the orbit of a basepoint (give meaning to the
counting function).

Discuss the link between the two countings.
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3. The symmetric spaces

Define

Xg := {g—dimensional negative definite subspaces of R?}.

We have

X6 = G/PS(0(p) x O(q)) =

Xg carries a G-invariant Riemannian metric (Killing metric).

Xg is non positively curved (Cartan-Hadamard manifold), but flats!
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3. The symmetric spaces

Define

HP-9~1 .= {negative definite lines in RY} C P(RY).

We have

HP9-1 =~ G/PSO(p,q — 1) =

no G-invariant Riemannian metric on HP9~! (Killing metric has
signature (p, g — 1)).

m HP9~1 has constant negative curvature (pseudo-Riemannian
hyperbolic space).

m Killing metric is proportional to (-, )p q-
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3. The symmetric spaces

affine chart of P(RY)

HHPa1
Natural boundary of HP9~1 : space of isotropic lines.
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3. The symmetric spaces

0 € HP9~1 « S° C X totally geodesic, isometric to Xpso(

p,g—1)-

S? = Xpso(

p:q—1)

Given 0 € HP97 1 set S := {r € Xg: oC T}
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4. A counting problem

Let = < G discrete and take g € =.

Compute
7 AN /
dx.(S°, g -S°) == inf{dx (r,g-7"): 7,77 €S°}.
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Problem

For o € HP9~1 understand the asymptotic behaviour as t — oo of

#{ge=: dx.(5°%g-S°) <t}
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4. A counting problem

Problem

Ast — oo, #{ge=: dx.(5°¢g-5S°) <t}~7

Difficulties/Challenges

m Finiteness of the counting function. Study the exponential
rate: (in)dependence on o.

m Find a “suitable flow” to study this problem.

m Geometric meaning in HP:9~1?

Give some answers for = < G projective Anosov (Py,,1-Anosov).
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4. A counting problem

Known results:

Problem

Ast — oo, #{ge=: dx.(S°g-S°) <t} ~7

Parkkonen-Paulin: negatively curved setting.

Here: X¢ contains flats!
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5. Statement of the results

Projective Anosov representation: p: I — G

m [ word hyperbolic group (let 9T be the Gromov boundary).

m There exists a continuous equivariant map
§p Ol — OHPa—1

which is transverse: for every x # y one has

§p(x) & Eoly)ee.

m Uniform “contraction/dilation” property.
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embeddings.
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5. Statement of the results

£(Ir)

S OHPa-1

Labourie, Guichard-Wienhard: (stable class of) quasi-isometric
embeddings. Higher rank analogue of convex co-compact
representations.
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5. Statement of the results

Q,:={oc HPa—1: o¢ fp(x)Lqu for all x € OI'}.

HP-9~1_convex co-compact subgroups of G satisfy Q, # 0 (c.f.
Danciger-Guéritaud-Kassel).
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5. Statement of the results

Let p: I — G be projective Anosov and

Q,:={oeHPIl: o¢¢,(x)tra forall x € O}

There exists a constant h, > 0 with the following property: take
0 €Q,. Then there exists a constant ¢ = c,, > 0 such that, as
t — o0,

#{vel: dx.(S°py-S°) <t} ~ celrt.

Approach: study the ergodic theory of a suitable flow.

To find this flow: Lie theoretic interpretation of dx (S°, py - S°) ~»
useful to look at HP9~1 (obtain geometric interpretation in
HP-a—1),

Recall: HP9=1 carries a G-invariant metric of signature (p, g — 1).
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Three types of geodesics in HP:971:
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5. Statement of the results

Three types of geodesics in HP:971:

time-like: speed < 0 light-like: speed =0 space-like: speed > 0

For space-like: can define a length.
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5. Statement of the results

Fix o € HP97 L, Let
€ ={o € HP971 . o, 0'] is space-like}.
For o' € €,

o o = length of the geodesic segment [o, 0'].

Proposition

Let g € G such that g - o € €. Then one has

ng(So)g : So) = go,g-o-
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5. Statement of the results

Ifg-o€ ‘5;’ = de(So,g -S%) = log-o-
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5. Statement of the results

Fix p: I — G projective Anosov and o € Q,,.

Proposition

For every v € I large enough one has

py-0€ Lt
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5. Statement of the results

Fix p: I — G projective Anosov and o € Q,,.

Proposition

For every v € I large enough one has

py-0€ Lt

The theorem now becomes

#{vET: Llopyo < th~ celrt,
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#{yET: lopyo <t} ~ celt.

Glorieux-Monclair
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5. Statement of the results

#{yET: lopyo <t} ~ celt.

~{l,. =t}

Glorieux-Monclair: study the exponential growth rate of this
counting function (“pseudo-Riemannian Hausdorff dimension of
the limit set”).
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6. On the proof

Concrete way of computing dx (S, g - S°) = 4o g.o:
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(¢ is explicit).
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6. On the proof

Concrete way of computing dx (S, g - S°) = 4o g.o:
logo = 3M(0°(g)g™).

Here

m \;(-) =logarithm of spectral radius.
m 0°: G — G involution such that Fix(¢°) = Stabg(o) = H°
(¢ is explicit).

Proof of equality goes as follows:
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Concrete way of computing dx (S, g - S°) = 4o g.o:
logo = 3M(0°(g)g™).

Here

m \;(-) =logarithm of spectral radius.
m 0°: G — G involution such that Fix(¢°) = Stabg(o) = H°
(¢ is explicit).

Proof of equality goes as follows:

m Show that g-0 € 6, & g € H? exp(b™)H°
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6. On the proof

Concrete way of computing dx (S, g - S°) = 4o g.o:
logo = 3M(0°(g)g™).

Here

m \;(-) =logarithm of spectral radius.
m 0°: G — G involution such that Fix(¢°) = Stabg(o) = H°
(0° is explicit).
Proof of equality goes as follows:

m Show that g0 € €, < g € H? exp(b™)H®, where b is a
(pre fixed) space-like geodesic ray starting at o.
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6. On the proof

Concrete way of computing dx (S, g - S°) = 4o g.o:
logo = 3M(0°(g)g™).

Here

m \;(-) =logarithm of spectral radius.
m 0°: G — G involution such that Fix(¢°) = Stabg(o) = H°
(¢ is explicit).
Proof of equality goes as follows:
m Show that g0 € €, < g € H? exp(b™)H®, where b is a
(pre fixed) space-like geodesic ray starting at o.

m Show that b™-coordinate coincides with Logo-
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6. On the proof

Concrete way of computing dx (S, g - S°) = 4o g.o:
logo = 3M(0°(g)g™).

Here

m \;(-) =logarithm of spectral radius.

m 0°: G — G involution such that Fix(¢°) = Stabg(o) = H°
(0° is explicit).

Proof of equality goes as follows:

m Show that g0 € €, < g € H? exp(b™)H®, where b is a
(pre fixed) space-like geodesic ray starting at o.

m Show that b™-coordinate coincides with Logo-

m Compute the b™-coordinate using the formula above.
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6. On the proof

Want to prove

#{y el FM(e°(p)pyt) <t} ~ celt.
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m Benoist: precise estimate of eigenvalues of products of
proximal matrices

IX1(a°(p7)py 1) ~ A1(py)+ “cross-ratio” .
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Structure of the proof:

m Benoist: precise estimate of eigenvalues of products of
proximal matrices

IX1(a°(p7)py 1) ~ A1(py)+ “cross-ratio” .

Cross-ratio: “measures” the relative position between
attractors and repellors in P(RY) of py~! and ¢°(p).
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Explicit formula.

L. Carvajales Anosov representations and counting



6. On the proof

Want to prove

#{y el FM(e°(p)pyt) <t} ~ celt.

Structure of the proof:

m Benoist: precise estimate of eigenvalues of products of
proximal matrices
IX1(a°(p7)py 1) ~ A1(py)+ “cross-ratio” .

Cross-ratio: “measures” the relative position between
attractors and repellors in P(RY) of py~! and ¢°(p).
Explicit formula.

= “Geometric quantity”: 3A1(a°(py)py ).
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6. On the proof

Want to prove

#{y el FM(e°(p)pyt) <t} ~ celt.

Structure of the proof:

m Benoist: precise estimate of eigenvalues of products of
proximal matrices
IX1(a°(p7)py 1) ~ A1(py)+ “cross-ratio” .

Cross-ratio: “measures” the relative position between
attractors and repellors in P(RY) of py~! and ¢°(p).
Explicit formula.

= “Geometric quantity”: 3A1(a°(py)py ).
m “Dynamical quantity”: Ai(p7).
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6. On the proof

Want to prove

#{y el FM(e°(p)pyt) <t} ~ celt.

Structure of the proof:

m Benoist: precise estimate of eigenvalues of products of
proximal matrices

IX1(a°(p7)py 1) ~ A1(py)+ “cross-ratio” .

Cross-ratio: “measures” the relative position between
attractors and repellors in P(RY) of py~! and ¢°(p).
Explicit formula.
= “Geometric quantity”: 3A1(a°(py)py ).
m “Dynamical quantity”: Ai(p7).
m Link between the geometric and dynamical quantities:
cross-ratio.
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6. On the proof

Want to prove
#{yeT: sM(o°(p)py™) <t} ~ cehet,

Structure of the proof:

m Benoist: precise estimate of eigenvalues of products of
proximal matrices

FA1(0°(py)py 1) ~ A1(py)+ “cross-ratio” .
m Bridgeman-Canary-Labourie-Sambarino: geodesic flow of p

be UM — UT
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Structure of the proof:

m Benoist: precise estimate of eigenvalues of products of
proximal matrices

FA1(0°(py)py 1) ~ A1(py)+ “cross-ratio” .
m Bridgeman-Canary-Labourie-Sambarino: geodesic flow of p

be UM — UT

m Ul compact quotient of an R-principal bundle over 9°T, under
some proper action of .
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6. On the proof

Want to prove

#{yeT: sM(o°(p)py™) <t} ~ cehet,

Structure of the proof:

m Benoist: precise estimate of eigenvalues of products of
proximal matrices

FA1(0°(py)py 1) ~ A1(py)+ “cross-ratio” .
m Bridgeman-Canary-Labourie-Sambarino: geodesic flow of p

¢ Ul — Ul
m Ul compact quotient of an R-principal bundle over 9°T, under

some proper action of .
m ¢; =action on the fibers.
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6. On the proof

Want to prove

#{yeT: sM(o°(p)py™) <t} ~ cehet,

Structure of the proof:

m Benoist: precise estimate of eigenvalues of products of
proximal matrices

FA1(0°(py)py 1) ~ A1(py)+ “cross-ratio” .
m Bridgeman-Canary-Labourie-Sambarino: geodesic flow of p

be UM — UT

m Ul compact quotient of an R-principal bundle over 9°T, under
some proper action of .

m ¢; =action on the fibers.

m Periodic orbits: [y] € [I]
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6. On the proof

Want to prove

#{yeT: sM(o°(p)py™) <t} ~ cehet,

Structure of the proof:

m Benoist: precise estimate of eigenvalues of products of
proximal matrices

FA1(0°(py)py 1) ~ A1(py)+ “cross-ratio” .
m Bridgeman-Canary-Labourie-Sambarino: geodesic flow of p

be UM — UT

m Ul compact quotient of an R-principal bundle over 9°T, under
some proper action of .

m ¢; =action on the fibers.

m Periodic orbits: [y] € [[], corresponding period A1(py).
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6. On the proof

Want to prove

#{yeT: sM(o°(p)py™) <t} ~ cehet,

Structure of the proof:

m Benoist: precise estimate of eigenvalues of products of
proximal matrices
FA1(0°(py)py 1) ~ A1(py)+ “cross-ratio” .
m Bridgeman-Canary-Labourie-Sambarino: geodesic flow of p

be UM — UT

m Ul compact quotient of an R-principal bundle over 9°T, under
some proper action of .

¢+ =action on the fibers.

Periodic orbits: [y] € [[], corresponding period A1(p7).

Metric Anosov property~~thermodynamical formalism.
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6. On the proof

Apply Roblin/Sambarino’s outline:
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Flow ¢¢ : Ul O with periods A1(py)
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Apply Roblin/Sambarino’s outline:
Flow ¢¢ : Ul O with periods A\1(py) + Markov coding
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6. On the proof

Apply Roblin/Sambarino’s outline:

Flow ¢¢ : Ul O with periods A1(py) + Markov coding + Bowen,
Parry-Pollicott:

getht " 6, @0, —m
y:d(py)<t

on C(0°T), as t — oo.

L. Carvajales Anosov representations and counting



6. On the proof

Apply Roblin/Sambarino’s outline:

Flow ¢¢ : Ul O with periods A1(py) + Markov coding + Bowen,
Parry-Pollicott:
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m h, =topological entropy of ¢; (h, € (0,00)).
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on C(0°T), as t — oo.
Here:

m h, =topological entropy of ¢; (h, € (0,00)).
m /M = l-invariant measure on 0" (lift of the measure of
maximal entropy of ¢;).

m 0., =Dirac mass at attractor/repellor of ~ in Or.
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6. On the proof

Apply Roblin/Sambarino’s outline:
Flow ¢¢ : Ul O with periods A1(py) + Markov coding + Bowen,
Parry-Pollicott:

getht " 6, @0, —m
y:d(py)<t
on C(0°T), as t — oo.
Here:
m h, =topological entropy of ¢; (h, € (0,00)).

m /M = l-invariant measure on 0" (lift of the measure of
maximal entropy of ¢;).

m 0., =Dirac mass at attractor/repellor of ~ in Or.

Purely dynamical result.
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6. On the proof

Apply Roblin/Sambarino’s outline:
Flow ¢¢ : Ul O with periods A1(py) + Markov coding + Bowen,
Parry-Pollicott:

getht " 6, @0, —m
y:d(py)<t

on C(0°T), as t — oo.
Here:
m h, =topological entropy of ¢; (h, € (0,00)).
m /M = l-invariant measure on 0" (lift of the measure of
maximal entropy of ¢;).
m 0., =Dirac mass at attractor/repellor of ~ in Or.
Purely dynamical result. Challenge: try to use this result +

Benoist's estimate to obtain our geometric theorem (use
Patterson-Sullivan theory).
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6. On the proof

geht N 5, ®0,, =M
y:h(py)<t
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geht N 5, ®0,, =M
y:h(py)<t

Margulis, Patterson, Sullivan (c.f. also Ledrappier)
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6. On the proof

geht N 5, ®0,, =M
y:h(py)<t

Margulis, Patterson, Sullivan (c.f. also Ledrappier): several ways of

writing
ﬁ"] — e_hﬂ['v']u ® N

where:
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geht N 5, ®0,, =M
y:h(py)<t

Margulis, Patterson, Sullivan (c.f. also Ledrappier): several ways of

writing
ﬁ"] — e_hﬂ['v']u ® N

where:
m /. finite measure on Ol such that y.u ~ p for all v € T.
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6. On the proof

geht N 5, ®0,, =M
y:h(py)<t

Margulis, Patterson, Sullivan (c.f. also Ledrappier): several ways of

writing
ﬁ"] — e_hﬂ['v']u ® N
where:
m /. finite measure on Ol such that y.u ~ p for all v € T.
m [-,]] : 9°T — R is a continuous function (determined by 1).
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6. On the proof

geht N 5, ®0,, =M
y:h(py)<t

Margulis, Patterson, Sullivan (c.f. also Ledrappier): several ways of
writing

ﬁ"] — e_hﬂ['v']u ® N

where:
m /. finite measure on Ol such that y.u ~ p for all v € T.
m [-,]] : 9°T — R is a continuous function (determined by 1).

Geometric step: find an explicit u for which [-, -] ="cross-ratio”.
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6. On the proof

geht N 6 ®6, »m=e "o
y:h(py)<t

More precisely:
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6. On the proof

geht N 6 ®6, »m=e "o
y:h(py)<t

More precisely:
m Find an explicit p such that

[, v+] =cross-ratio given by Benoist's estimate.
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6. On the proof

ge Pt Z 0y @0y, — M= e el @ p.
A1 (py)<t
More precisely:
m Find an explicit p such that
[, v+] =cross-ratio given by Benoist's estimate.

m Replace A\1(py) by %)\1(0°(p’y)m‘1) in the above sum by
“erasing” the factor e~ holv]
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6. On the proof

ge Pt Z 0y @0y, — M= e el @ p.
A1 (py)<t
More precisely:
m Find an explicit p such that
[, v+] =cross-ratio given by Benoist's estimate.

m Replace A\1(p7y) by %Al(UO(p’y)pfy_l) in the above sum by
“erasing” the factor e "[>1 « obtain

gehet > 6y @6y, > U@
v:3A1(0°(py)py~ 1)<t

on C*(al x 9I), as t — oo.
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6. On the proof

ge Pt Z 0y @0y, — M= e el @ p.
A1 (py)<t
More precisely:
m Find an explicit p such that
[, v+] =cross-ratio given by Benoist's estimate.

m Replace A\1(p7y) by %Al(UO(p’y)pfy_l) in the above sum by
“erasing” the factor e "[>1 « obtain

gehet > 6y @6y, > U@
Y3 (00(py)py 1)<t
on C*(al x 9I), as t — oo.

m Evaluate on 1 € C(Ar x 9I) (c:= &Y |u® ul).
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Gracias! Thanks!
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