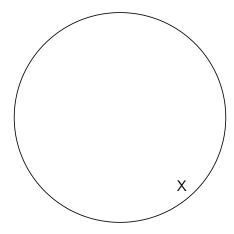
Anosov representations and counting in some PSO(p,q)-symmetric spaces

León Carvajales

Mathematical Sciences Research Institute

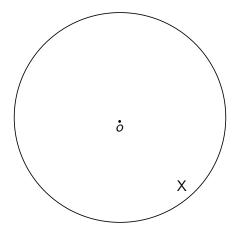
October 2, 2020

L. Carvajales Anosov representations and counting



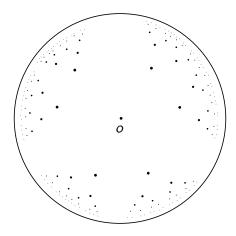
X proper non compact metric space.

 $\Xi < Isom(X)$ discrete.



X proper non compact metric space.

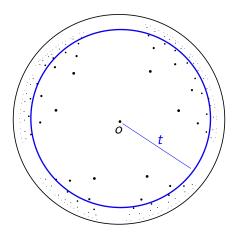
$$\Xi < \text{Isom}(X)$$
 discrete, $o \in X$.



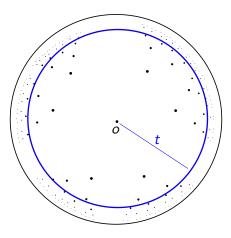
X proper non compact metric space.

$$\Xi < \text{Isom}(X)$$
 discrete, $o \in X$.

Let $t \geq 0$.



Let $t \geq 0$.



The orbital counting problem As $t \to \infty$, $\#\{g \in \Xi : d_X(o, g \cdot o) \le t\} \sim$?.

Find an "explicit" function f(t) such that, as $t \to \infty$,

$$\frac{\#\{g\in\Xi:\ d_{\mathsf{X}}(o,g\cdot o)\leq t\}}{f(t)}\to 1.$$

Find an "explicit" function f(t) such that, as $t \to \infty$,

$$rac{\#\{g\in\Xi:\ d_{\mathsf{X}}(o,g\cdot o)\leq t\}}{f(t)}
ightarrow 1.$$

Find an "explicit" function f(t) such that, as $t \to \infty$,

$$rac{\#\{ \mathsf{g}\in \Xi: \ \ d_{\mathsf{X}}(o,\mathsf{g}\cdot o)\leq t\}}{f(t)}
ightarrow 1.$$

• Gauss:
$$X = \mathbb{R}^d$$
 and $\Xi = \mathbb{Z}^d$

Find an "explicit" function f(t) such that, as $t \to \infty$,

$$rac{\#\{g\in \Xi: \ \ d_{\mathsf{X}}(o,g\cdot o)\leq t\}}{f(t)}
ightarrow 1.$$

(Some few) examples

Gauss: $X = \mathbb{R}^d$ and $\Xi = \mathbb{Z}^d \rightsquigarrow$ asymptotic proportional to t^d .

Find an "explicit" function f(t) such that, as $t \to \infty$,

$$rac{\#\{g\in \Xi: \ \ d_{\mathsf{X}}(o,g\cdot o)\leq t\}}{f(t)}
ightarrow 1.$$

(Some few) examples

 Gauss: X = ℝ^d and Ξ = ℤ^d → asymptotic proportional to t^d.
 X = H^d and Ξ < Isom(H^d) co-compact → more difficult! (proofs involve techniques from other areas).

Find an "explicit" function f(t) such that, as $t \to \infty$,

$$rac{\#\{g\in \Xi: \ \ d_{\mathsf{X}}(o,g\cdot o)\leq t\}}{f(t)}
ightarrow 1.$$

- Gauss: X = ℝ^d and Ξ = ℤ^d → asymptotic proportional to t^d.
 X = H^d and Ξ < lsom(H^d) co-compact → more difficult! (proofs involve techniques from other areas).
- Margulis: $X = \tilde{M}$, with M closed and negatively curved, and $\Xi = \pi_1(M)$

Find an "explicit" function f(t) such that, as $t \to \infty$,

$$rac{\#\{g\in \Xi: \ \ d_{\mathsf{X}}(o,g\cdot o)\leq t\}}{f(t)}
ightarrow 1.$$

- Gauss: X = ℝ^d and Ξ = ℤ^d → asymptotic proportional to t^d.
 X = H^d and Ξ < lsom(H^d) co-compact → more difficult! (proofs involve techniques from other areas).
- Margulis: X = M̃, with M closed and negatively curved, and Ξ = π₁(M) → asymptotic proportional to e^{ht} for some h > 0.

Find an "explicit" function f(t) such that, as $t \to \infty$,

$$rac{\#\{g\in \Xi: \ \ d_{\mathsf{X}}(o,g\cdot o)\leq t\}}{f(t)}
ightarrow 1.$$

- Gauss: X = ℝ^d and Ξ = ℤ^d → asymptotic proportional to t^d.
 X = H^d and Ξ < lsom(H^d) co-compact → more difficult! (proofs involve techniques from other areas).
- Margulis: X = M̃, with M closed and negatively curved, and Ξ = π₁(M) → asymptotic proportional to e^{ht} for some h > 0. Key idea: use dynamics (ergodic theory of the geodesic flow).

Find an "explicit" function f(t) such that, as $t \to \infty$,

$$rac{\#\{g\in \Xi: \ \ d_{\mathsf{X}}(o,g\cdot o)\leq t\}}{f(t)}
ightarrow 1.$$

- Gauss: X = ℝ^d and Ξ = ℤ^d → asymptotic proportional to t^d.
 X = H^d and Ξ < lsom(H^d) co-compact → more difficult! (proofs involve techniques from other areas).
- Margulis: X = M̃, with M closed and negatively curved, and Ξ = π₁(M) → asymptotic proportional to e^{ht} for some h > 0. Key idea: use dynamics (ergodic theory of the geodesic flow).
- Eskin-McMullen: X = G/K, with G (higher rank) semisimple, K < G maximal compact

Find an "explicit" function f(t) such that, as $t \to \infty$,

$$rac{\#\{g\in \Xi: \ \ d_{\mathsf{X}}(o,g\cdot o)\leq t\}}{f(t)}
ightarrow 1.$$

- Gauss: X = ℝ^d and Ξ = ℤ^d → asymptotic proportional to t^d.
 X = H^d and Ξ < lsom(H^d) co-compact → more difficult! (proofs involve techniques from other areas).
- Margulis: X = M
 , with M closed and negatively curved, and Ξ = π₁(M) → asymptotic proportional to e^{ht} for some h > 0. Key idea: use dynamics (ergodic theory of the geodesic flow).
- Eskin-McMullen: X = G/K, with G (higher rank) semisimple, K < G maximal compact, and Ξ < G lattice

Find an "explicit" function f(t) such that, as $t \to \infty$,

$$rac{\#\{g\in \Xi: \ \ d_{\mathsf{X}}(o,g\cdot o)\leq t\}}{f(t)}
ightarrow 1.$$

- Gauss: X = ℝ^d and Ξ = ℤ^d → asymptotic proportional to t^d.
 X = H^d and Ξ < lsom(H^d) co-compact → more difficult! (proofs involve techniques from other areas).
- Margulis: X = M
 , with M closed and negatively curved, and Ξ = π₁(M) → asymptotic proportional to e^{ht} for some h > 0. Key idea: use dynamics (ergodic theory of the geodesic flow).
- Eskin-McMullen: X = G/K, with G (higher rank) semisimple, K < G maximal compact, and Ξ < G lattice → asymptotic of the form polynomial × exponential.

$$\#\{g\in \Xi: \quad d_X(o,g\cdot o)\leq t\}\sim?$$

Goal

Discuss counting problems when:

L. Carvajales Anosov representations and counting

æ

▶ ▲ 문 ▶ ▲ 문 ▶

$\#\{g\in \Xi: \quad d_X(o,g\cdot o)\leq t\}\sim?$

Goal

Discuss counting problems when:

• The basepoint *o* is replaced by a geodesic submanifold S.

$\#\{g\in \Xi: \quad d_{\mathsf{X}}(o,g\cdot o)\leq t\}\sim?$

Goal

Discuss counting problems when:

- The basepoint *o* is replaced by a geodesic submanifold S.
- The space X is replaced by a pseudo-Riemannian (symmetric) space.

Fix integers $p \ge 1$, $q \ge 2$ and let d := p + q.

• • = • • = •

Fix integers $p \ge 1$, $q \ge 2$ and let d := p + q. • On \mathbb{R}^d ,

$$\langle x,y\rangle_{p,q}:=\sum_{i=1}^p x_iy_i-\sum_{i=1}^q x_{p+i}y_{p+i}.$$

• • = • • = •

э

Fix integers $p \ge 1$, $q \ge 2$ and let d := p + q. • On \mathbb{R}^d .

$$\langle x,y\rangle_{p,q} := \sum_{i=1}^p x_i y_i - \sum_{i=1}^q x_{p+i} y_{p+i}.$$

• G := projectivized isometry group of $\langle \cdot, \cdot \rangle_{p,q} \cong \mathsf{PSO}(p,q)$.

(E)

Fix integers $p \ge 1$, $q \ge 2$ and let d := p + q.

• On \mathbb{R}^d ,

$$\langle x,y\rangle_{p,q}:=\sum_{i=1}^p x_iy_i-\sum_{i=1}^q x_{p+i}y_{p+i}.$$

• G := projectivized isometry group of $\langle \cdot, \cdot \rangle_{p,q} \cong \mathsf{PSO}(p,q)$.

Two symmetric spaces associated to G

• • = • • = •

Fix integers $p \ge 1$, $q \ge 2$ and let d := p + q.

• On \mathbb{R}^d ,

$$\langle x,y\rangle_{p,q}:=\sum_{i=1}^p x_iy_i-\sum_{i=1}^q x_{p+i}y_{p+i}.$$

• G := projectivized isometry group of $\langle \cdot, \cdot \rangle_{p,q} \cong \mathsf{PSO}(p,q)$.

Two symmetric spaces associated to G

The Riemannian symmetric space X_G.

Fix integers $p \ge 1$, $q \ge 2$ and let d := p + q.

• On \mathbb{R}^d ,

$$\langle x,y\rangle_{p,q} := \sum_{i=1}^p x_i y_i - \sum_{i=1}^q x_{p+i} y_{p+i}.$$

• G := projectivized isometry group of $\langle \cdot, \cdot \rangle_{p,q} \cong \mathsf{PSO}(p,q)$.

Two symmetric spaces associated to G

The Riemannian symmetric space X_G.
 Look at the orbit of certain geodesic submanifolds.

Fix integers $p \ge 1$, $q \ge 2$ and let d := p + q.

• On \mathbb{R}^d ,

$$\langle x,y\rangle_{p,q}:=\sum_{i=1}^p x_iy_i-\sum_{i=1}^q x_{p+i}y_{p+i}.$$

• G := projectivized isometry group of $\langle \cdot, \cdot \rangle_{p,q} \cong \mathsf{PSO}(p,q)$.

Two symmetric spaces associated to G

- The Riemannian symmetric space X_G.
 Look at the orbit of certain geodesic submanifolds.
- The pseudo-Riemannian hyperbolic space $H^{p,q-1}$.

Fix integers $p \ge 1$, $q \ge 2$ and let d := p + q.

• On \mathbb{R}^d ,

$$\langle x,y\rangle_{p,q} := \sum_{i=1}^p x_i y_i - \sum_{i=1}^q x_{p+i} y_{p+i}.$$

• G := projectivized isometry group of $\langle \cdot, \cdot \rangle_{p,q} \cong \mathsf{PSO}(p,q)$.

Two symmetric spaces associated to G

- The Riemannian symmetric space X_G.
 Look at the orbit of certain geodesic submanifolds.
- The pseudo-Riemannian hyperbolic space H^{p,q-1}.
 Look at the orbit of a basepoint (give meaning to the counting function).

Fix integers $p \ge 1$, $q \ge 2$ and let d := p + q.

• On \mathbb{R}^d ,

$$\langle x,y\rangle_{p,q} := \sum_{i=1}^p x_i y_i - \sum_{i=1}^q x_{p+i} y_{p+i}.$$

• G := projectivized isometry group of $\langle \cdot, \cdot \rangle_{p,q} \cong \mathsf{PSO}(p,q)$.

Two symmetric spaces associated to G

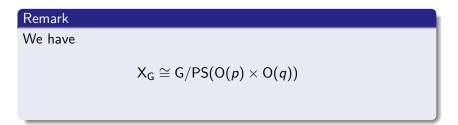
- The Riemannian symmetric space X_G.
 Look at the orbit of certain geodesic submanifolds.
- The pseudo-Riemannian hyperbolic space H^{p,q-1}.
 Look at the orbit of a basepoint (give meaning to the counting function).

Discuss the link between the two countings.

 $X_G := \{q - dimensional negative definite subspaces of <math>\mathbb{R}^d\}.$

∃ ► < ∃ ►</p>

 $X_G := \{q - dimensional negative definite subspaces of <math>\mathbb{R}^d\}.$



• = • •

 $X_G := \{q - dimensional negative definite subspaces of <math>\mathbb{R}^d\}.$

Remark

We have

$$\mathsf{X}_\mathsf{G} \cong \mathsf{G}/\mathsf{PS}(\mathsf{O}(p) \times \mathsf{O}(q)) \Rightarrow$$

X_G carries a G-invariant Riemannian metric (Killing metric).

(4) (E) (A) (E) (A)

 $X_G := \{q - dimensional negative definite subspaces of <math>\mathbb{R}^d\}.$

Remark

We have

$$X_{\mathsf{G}} \cong \mathsf{G}/\mathsf{PS}(\mathsf{O}(p) \times \mathsf{O}(q)) \Rightarrow$$

X_G carries a G-invariant Riemannian metric (Killing metric).

Fact

X_G is non positively curved (Cartan-Hadamard manifold)

・ 同 ト ・ ヨ ト ・ ヨ ト …

 $X_G := \{q - dimensional negative definite subspaces of <math>\mathbb{R}^d\}.$

Remark

We have

$$X_{\mathsf{G}} \cong \mathsf{G}/\mathsf{PS}(\mathsf{O}(p) \times \mathsf{O}(q)) \Rightarrow$$

X_G carries a G-invariant Riemannian metric (Killing metric).

Fact

 X_G is non positively curved (Cartan-Hadamard manifold), but flats!

・ 同 ト ・ ヨ ト ・ ヨ ト …

3. The symmetric spaces

Define

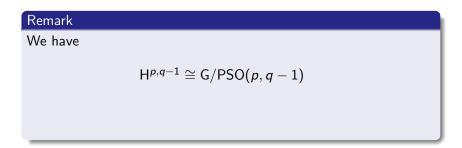
 $\mathsf{H}^{p,q-1} := \{ \text{negative definite lines in } \mathbb{R}^d \} \subset \mathsf{P}(\mathbb{R}^d).$

▶ < 문 ► < E ►</p>

3. The symmetric spaces

Define

$$\mathsf{H}^{p,q-1} := \{ \text{negative definite lines in } \mathbb{R}^d \} \subset \mathsf{P}(\mathbb{R}^d).$$

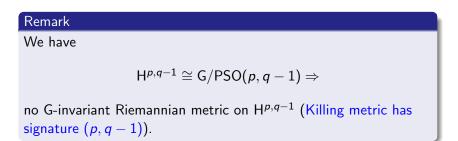


> < 문 > < 문 >

æ

Define

$$\mathsf{H}^{p,q-1} := \{ \text{negative definite lines in } \mathbb{R}^d \} \subset \mathsf{P}(\mathbb{R}^d).$$



• • = • • = •

э

Define

$$\mathsf{H}^{p,q-1} := \{ \text{negative definite lines in } \mathbb{R}^d \} \subset \mathsf{P}(\mathbb{R}^d).$$

RemarkWe have $H^{p,q-1} \cong G/PSO(p,q-1) \Rightarrow$ no G-invariant Riemannian metric on $H^{p,q-1}$ (Killing metric has
signature (p,q-1)).

Fact

H^{p,q-1} has constant negative curvature (pseudo-Riemannian hyperbolic space).

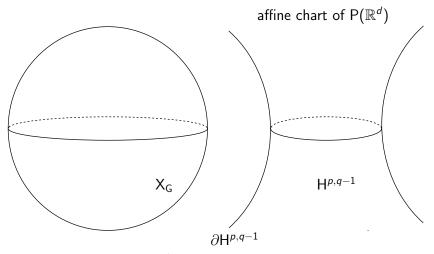
Define

$$\mathsf{H}^{p,q-1} := \{ \text{negative definite lines in } \mathbb{R}^d \} \subset \mathsf{P}(\mathbb{R}^d).$$

RemarkWe have $H^{p,q-1} \cong G/PSO(p,q-1) \Rightarrow$ no G-invariant Riemannian metric on $H^{p,q-1}$ (Killing metric has
signature (p,q-1)).

Fact

- H^{p,q-1} has constant negative curvature (pseudo-Riemannian hyperbolic space).
- Killing metric is proportional to $\langle \cdot, \cdot \rangle_{p,q}$.



Natural boundary of $H^{p,q-1}$: space of isotropic lines.

Fact

 $o \in \mathsf{H}^{p,q-1}$

L. Carvajales Anosov representations and counting

▲御▶ ▲ 国▶ ▲ 国▶ -

æ

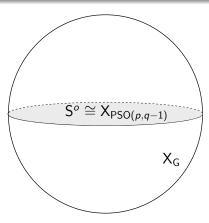
Fact

 $o \in \mathsf{H}^{p,q-1} \rightsquigarrow \mathsf{S}^o \subset \mathsf{X}_\mathsf{G} \text{ totally geodesic, isometric to } \mathsf{X}_{\mathsf{PSO}(p,q-1)}.$

• • = • • = •

Fact

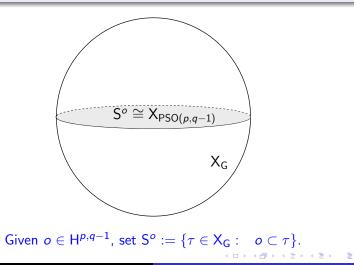
 $o \in \mathsf{H}^{p,q-1} \rightsquigarrow \mathsf{S}^o \subset \mathsf{X}_\mathsf{G} \text{ totally geodesic, isometric to } \mathsf{X}_{\mathsf{PSO}(p,q-1)}.$



A B M A B M

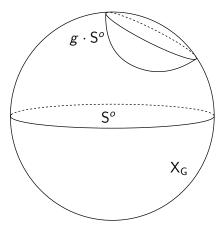
Fact

 $o\in \mathsf{H}^{p,q-1}\rightsquigarrow \mathsf{S}^o\subset\mathsf{X}_\mathsf{G} \text{ totally geodesic, isometric to }\mathsf{X}_{\mathsf{PSO}(p,q-1)}.$

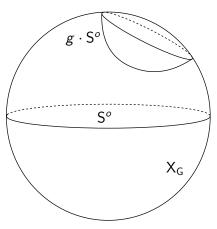


Let $\Xi < G$ discrete and take $g \in \Xi$.

Let $\Xi < G$ discrete and take $g \in \Xi$.

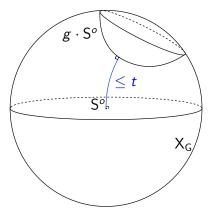


Let $\Xi < G$ discrete and take $g \in \Xi$.

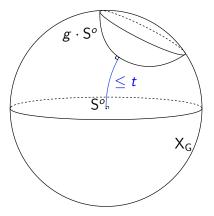


Compute

$$d_{\mathsf{X}_{\mathsf{G}}}(\mathsf{S}^o, g \cdot \mathsf{S}^o) := \inf\{d_{\mathsf{X}_{\mathsf{G}}}(\tau, g \cdot \tau') : \quad \tau, \tau' \in \mathsf{S}^o\}$$

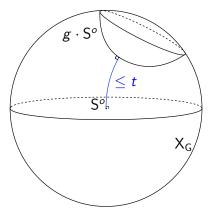


Problem



Problem

For $o \in \mathsf{H}^{p,q-1}$



Problem

For $o \in \mathsf{H}^{p,q-1}$, understand the asymptotic behaviour as $t o \infty$ of

$$\#\{g\in \Xi: \quad d_{\mathsf{X}_{\mathsf{G}}}(\mathsf{S}^o,g\cdot\mathsf{S}^o)\leq t\}.$$

Problem

As
$$t \to \infty$$
, $\#\{g \in \Xi : d_{X_G}(S^o, g \cdot S^o) \le t\} \sim ?$.

æ

個 とくきとくきと

Problem

As
$$t \to \infty$$
, $\#\{g \in \Xi : d_{X_G}(S^o, g \cdot S^o) \le t\} \sim ?$.

Difficulties/Challenges

▲御▶ ▲ 国▶ ▲ 国▶ -

э

As
$$t \to \infty$$
, $\#\{g \in \Xi : d_{X_G}(S^o, g \cdot S^o) \le t\} \sim ?$.

Difficulties/Challenges

Finiteness of the counting function.

→ < Ξ → <</p>

As
$$t \to \infty$$
, $\#\{g \in \Xi : d_{X_G}(S^o, g \cdot S^o) \le t\} \sim ?$.

Difficulties/Challenges

Finiteness of the counting function. Study the exponential rate: (in)dependence on o.

As
$$t \to \infty$$
, $\#\{g \in \Xi : d_{X_G}(S^o, g \cdot S^o) \le t\} \sim ?$.

Difficulties/Challenges

- Finiteness of the counting function. Study the exponential rate: (in)dependence on o.
- Find a "suitable flow" to study this problem.

As
$$t \to \infty$$
, $\#\{g \in \Xi : d_{X_G}(S^o, g \cdot S^o) \le t\} \sim ?$.

Difficulties/Challenges

- Finiteness of the counting function. Study the exponential rate: (in)dependence on o.
- Find a "suitable flow" to study this problem.

■ Geometric meaning in H^{p,q-1}?

As
$$t \to \infty$$
, $\#\{g \in \Xi : d_{X_G}(S^o, g \cdot S^o) \le t\} \sim ?$.

Difficulties/Challenges

- Finiteness of the counting function. Study the exponential rate: (in)dependence on o.
- Find a "suitable flow" to study this problem.

■ Geometric meaning in H^{p,q-1}?

Give some answers for $\Xi < G$ projective Anosov (P_{{ α_1}}-Anosov).

Known results:

Problem

As $t \to \infty$, $\#\{g \in \Xi : d_{X_G}(S^o, g \cdot S^o) \le t\} \sim ?$.

э

何 ト イヨ ト イヨ ト

Known results:

Problem

As $t \to \infty$, $\#\{g \in \Xi : d_{X_G}(S^o, g \cdot S^o) \le t\} \sim$?.

Parkkonen-Paulin: negatively curved setting.

* E > * E >

Known results:

Problem

As $t \to \infty$, $\#\{g \in \Xi : d_{X_G}(S^o, g \cdot S^o) \le t\} \sim$?.

Parkkonen-Paulin: negatively curved setting.

Here: X_G contains flats!

Projective Anosov representation

Projective Anosov representation: $\rho : \Gamma \to G$

• Γ word hyperbolic group (let $\partial \Gamma$ be the Gromov boundary).

Projective Anosov representation: $\rho: \Gamma \to G$

- Γ word hyperbolic group (let $\partial \Gamma$ be the Gromov boundary).
- There exists a continuous equivariant map

$$\xi_{\rho}: \partial \Gamma \to \partial \mathsf{H}^{p,q-1}$$

Projective Anosov representation: $\rho : \Gamma \to G$

- Γ word hyperbolic group (let $\partial \Gamma$ be the Gromov boundary).
- There exists a continuous equivariant map

$$\xi_{\rho}: \partial \Gamma \to \partial \mathsf{H}^{p,q-1}$$

which is transverse

Projective Anosov representation: $\rho: \Gamma \to G$

- Γ word hyperbolic group (let $\partial \Gamma$ be the Gromov boundary).
- There exists a continuous equivariant map

 $\xi_{\rho}: \partial \Gamma \to \partial \mathsf{H}^{p,q-1}$

which is *transverse*: for every $x \neq y$ one has

 $\xi_{\rho}(x) \notin \xi_{\rho}(y)^{\perp_{\rho,q}}.$

Projective Anosov representation: $\rho: \Gamma \to G$

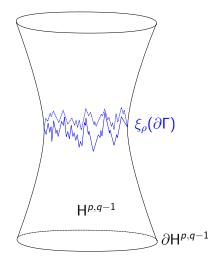
- Γ word hyperbolic group (let $\partial \Gamma$ be the Gromov boundary).
- There exists a continuous equivariant map

 $\xi_{\rho}: \partial \Gamma \to \partial \mathsf{H}^{p,q-1}$

which is *transverse*: for every $x \neq y$ one has

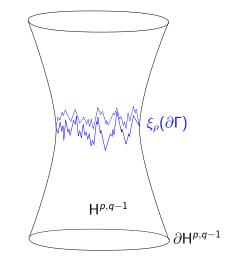
 $\xi_{\rho}(x) \notin \xi_{\rho}(y)^{\perp_{\rho,q}}.$

Uniform "contraction/dilation" property.



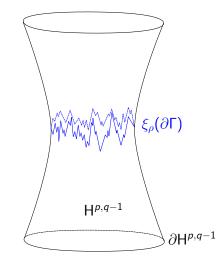
æ

• • = • • = •

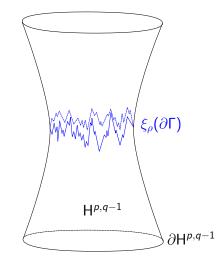


Labourie, Guichard-Wienhard

∍⊳



Labourie, Guichard-Wienhard: (stable class of) quasi-isometric embeddings.

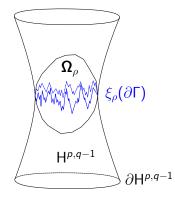


Labourie, Guichard-Wienhard: (stable class of) quasi-isometric embeddings. Higher rank analogue of convex co-compact representations.

$$\Omega_{
ho} := \{ o \in \mathsf{H}^{p,q-1} : o \notin \xi_{
ho}(x)^{\perp_{
ho,q}} \text{ for all } x \in \partial \Gamma \}.$$

æ

$$\mathbf{\Omega}_{
ho}:=\{o\in\mathsf{H}^{
ho,q-1}:\ \ o
otin\xi_{
ho}(x)^{\perp_{
ho,q}} ext{ for all } x\in\partial\Gamma\}.$$

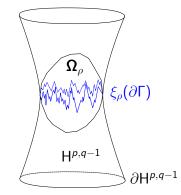


æ

.⊒ .⊳.

< ∃ >

$$\Omega_{
ho}:=\{o\in\mathsf{H}^{p,q-1}:\ \ o
otin\xi_{
ho}(x)^{\perp_{p,q}} ext{ for all } x\in\partial\Gamma\}.$$



Example

 $\mathsf{H}^{p,q-1}$ -convex co-compact subgroups of G satisfy $\mathbf{\Omega}_{\rho} \neq \emptyset$ (c.f. Danciger-Guéritaud-Kassel).

Let $\rho: \Gamma \to G$ be projective Anosov and

$$\mathbf{\Omega}_{
ho} := \{ o \in \mathsf{H}^{p,q-1} : o \notin \xi_{
ho}(x)^{\perp_{p,q}} \text{ for all } x \in \partial \Gamma \}.$$

Theorem

.

Let $\rho:\Gamma\to \mathsf{G}$ be projective Anosov and

 $\mathbf{\Omega}_{
ho} := \{ o \in \mathsf{H}^{p,q-1} : \quad o \notin \xi_{
ho}(x)^{\perp_{p,q}} \text{ for all } x \in \partial \Gamma \}.$

Theorem

There exists a constant $h_{\rho} > 0$ with the following property

A B M A B M

3

Let $\rho: \mathsf{\Gamma} \to \mathsf{G}$ be projective Anosov and

 $\mathbf{\Omega}_{
ho} := \{ o \in \mathsf{H}^{p,q-1} : o \notin \xi_{
ho}(x)^{\perp_{p,q}} \text{ for all } x \in \partial \Gamma \}.$

Theorem

There exists a constant $h_{\rho} > 0$ with the following property: take $o \in \mathbf{\Omega}_{\rho}$

A B M A B M

Let $\rho:\Gamma\to \mathsf{G}$ be projective Anosov and

$$\mathbf{\Omega}_{
ho} := \{ o \in \mathsf{H}^{p,q-1} : o \notin \xi_{
ho}(x)^{\perp_{p,q}} \text{ for all } x \in \partial \Gamma \}.$$

Theorem

There exists a constant $h_{\rho} > 0$ with the following property: take $o \in \mathbf{\Omega}_{\rho}$. Then there exists a constant $c = c_{\rho,o} > 0$ such that, as $t \to \infty$,

$$\#\{\gamma \in \mathsf{\Gamma}: \quad d_{\mathsf{X}_{\mathsf{G}}}(\mathsf{S}^{o}, \rho\gamma \cdot \mathsf{S}^{o}) \leq t\} \sim \mathsf{c} e^{h_{\rho} t}.$$

Let $\rho:\Gamma\to \mathsf{G}$ be projective Anosov and

$$\mathbf{\Omega}_{
ho} := \{ o \in \mathsf{H}^{p,q-1} : o \notin \xi_{
ho}(x)^{\perp_{p,q}} \text{ for all } x \in \partial \Gamma \}.$$

Theorem

There exists a constant $h_{\rho} > 0$ with the following property: take $o \in \mathbf{\Omega}_{\rho}$. Then there exists a constant $c = c_{\rho,o} > 0$ such that, as $t \to \infty$,

$$\#\{\gamma \in \mathsf{\Gamma}: \quad d_{\mathsf{X}_{\mathsf{G}}}(\mathsf{S}^{o}, \rho\gamma \cdot \mathsf{S}^{o}) \leq t\} \sim \mathsf{c} e^{h_{\rho} t}.$$

Approach: study the ergodic theory of a suitable flow.

Let $\rho:\Gamma\to \mathsf{G}$ be projective Anosov and

$$\mathbf{\Omega}_{
ho} := \{ o \in \mathsf{H}^{p,q-1} : o \notin \xi_{
ho}(x)^{\perp_{p,q}} \text{ for all } x \in \partial \Gamma \}.$$

Theorem

There exists a constant $h_{\rho} > 0$ with the following property: take $o \in \mathbf{\Omega}_{\rho}$. Then there exists a constant $c = c_{\rho,o} > 0$ such that, as $t \to \infty$,

$$\#\{\gamma \in \mathsf{\Gamma}: \quad d_{\mathsf{X}_{\mathsf{G}}}(\mathsf{S}^{o}, \rho\gamma \cdot \mathsf{S}^{o}) \leq t\} \sim \mathsf{c} e^{h_{\rho} t}.$$

Approach: study the ergodic theory of a suitable flow. To find this flow: Lie theoretic interpretation of $d_{X_G}(S^o, \rho\gamma \cdot S^o)$

Let $\rho:\Gamma\to \mathsf{G}$ be projective Anosov and

$$\mathbf{\Omega}_{
ho} := \{ o \in \mathsf{H}^{p,q-1} : o \notin \xi_{
ho}(x)^{\perp_{p,q}} \text{ for all } x \in \partial \Gamma \}.$$

Theorem

There exists a constant $h_{\rho} > 0$ with the following property: take $o \in \mathbf{\Omega}_{\rho}$. Then there exists a constant $c = c_{\rho,o} > 0$ such that, as $t \to \infty$,

$$\#\{\gamma \in \mathsf{\Gamma}: \quad d_{\mathsf{X}_{\mathsf{G}}}(\mathsf{S}^{o}, \rho\gamma \cdot \mathsf{S}^{o}) \leq t\} \sim \mathsf{c} e^{h_{\rho} t}.$$

Approach: study the ergodic theory of a suitable flow. To find this flow: Lie theoretic interpretation of $d_{X_G}(S^o, \rho\gamma \cdot S^o) \rightsquigarrow$ useful to look at $H^{p,q-1}$ (obtain geometric interpretation in $H^{p,q-1}$).

Let $\rho:\Gamma\to \mathsf{G}$ be projective Anosov and

 $\mathbf{\Omega}_{
ho} := \{ o \in \mathsf{H}^{p,q-1} : o \notin \xi_{
ho}(x)^{\perp_{p,q}} \text{ for all } x \in \partial \Gamma \}.$

Theorem

There exists a constant $h_{\rho} > 0$ with the following property: take $o \in \mathbf{\Omega}_{\rho}$. Then there exists a constant $c = c_{\rho,o} > 0$ such that, as $t \to \infty$,

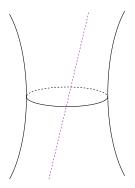
$$\#\{\gamma \in \mathsf{\Gamma}: \quad d_{\mathsf{X}_{\mathsf{G}}}(\mathsf{S}^{o}, \rho\gamma \cdot \mathsf{S}^{o}) \leq t\} \sim \mathsf{c} e^{h_{\rho} t}.$$

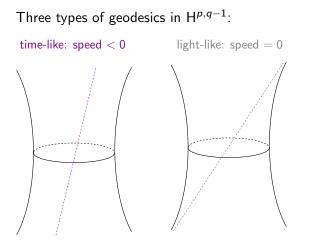
Approach: study the ergodic theory of a suitable flow. To find this flow: Lie theoretic interpretation of $d_{X_G}(S^o, \rho\gamma \cdot S^o) \rightsquigarrow$ useful to look at $H^{p,q-1}$ (obtain geometric interpretation in $H^{p,q-1}$). Recall: $H^{p,q-1}$ carries a G-invariant metric of signature (p, q - 1).

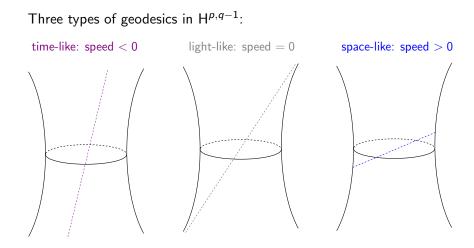
Three types of geodesics in $H^{p,q-1}$:

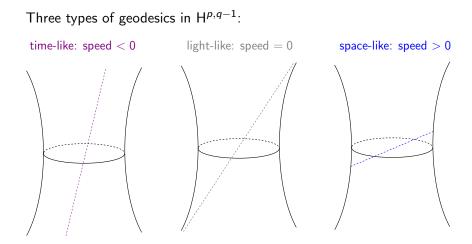
Three types of geodesics in $H^{p,q-1}$:

time-like: speed < 0









For space-like: can define a length.

Fix $o \in \mathsf{H}^{p,q-1}$.

▶ < 문 ► < E ►</p>

Fix $o \in \mathsf{H}^{p,q-1}$. Let

$$\mathscr{C}_o^+ := \{ o' \in \mathsf{H}^{p,q-1} : [o,o'] \text{ is space-like} \}.$$

A B M A B M

Fix $o \in \mathsf{H}^{p,q-1}$. Let

$$\mathscr{C}_o^+ := \{ o' \in \mathsf{H}^{p,q-1} : [o,o'] \text{ is space-like} \}.$$

For $o' \in \mathscr{C}_o^+$,

 $\ell_{o,o'} :=$ length of the geodesic segment [o, o'].

• E • • E • ...

Fix $o \in \mathsf{H}^{p,q-1}$. Let

$$\mathscr{C}_o^+ := \{ o' \in \mathsf{H}^{p,q-1} : [o,o'] \text{ is space-like} \}.$$

For $o' \in \mathscr{C}_o^+$,

 $\ell_{o,o'} :=$ length of the geodesic segment [o, o'].

Proposition

Let $g \in G$ such that $g \cdot o \in \mathscr{C}_o^+$.

A B M A B M

Fix $o \in \mathsf{H}^{p,q-1}$. Let

$$\mathscr{C}_o^+ := \{ o' \in \mathsf{H}^{p,q-1} : [o,o'] \text{ is space-like} \}.$$

For $o' \in \mathscr{C}_o^+$,

 $\ell_{o,o'} :=$ length of the geodesic segment [o, o'].

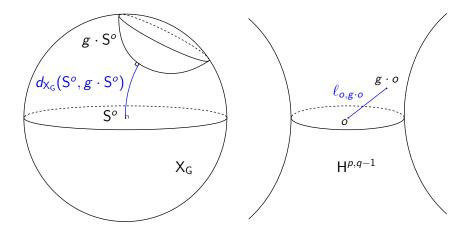
Proposition

Let $g \in G$ such that $g \cdot o \in \mathscr{C}_o^+$. Then one has

 $d_{X_G}(\mathsf{S}^o,g\cdot\mathsf{S}^o)=\ell_{o,g\cdot o}.$

A B M A B M

If
$$g \cdot o \in \mathscr{C}_o^+ \Rightarrow d_{X_G}(S^o, g \cdot S^o) = \ell_{o,g \cdot o}$$
.



Fix $\rho : \Gamma \to G$ projective Anosov and $o \in \mathbf{\Omega}_{\rho}$.

4 3 4 3 4 3 4

Fix $\rho : \Gamma \to G$ projective Anosov and $o \in \mathbf{\Omega}_{\rho}$.

Proposition

For every $\gamma \in \Gamma$ large enough one has

$$\rho\gamma \cdot o \in \mathscr{C}_o^+.$$

• = • •

Fix $\rho : \Gamma \to G$ projective Anosov and $o \in \mathbf{\Omega}_{\rho}$.

Proposition

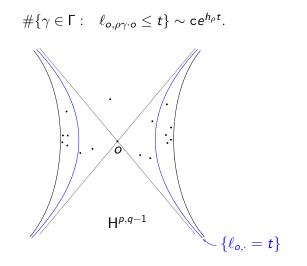
For every $\gamma \in \Gamma$ large enough one has

 $\rho\gamma \cdot o \in \mathscr{C}_o^+.$

The theorem now becomes

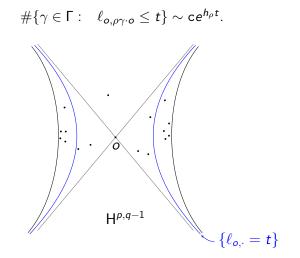
$$\#\{\gamma \in \Gamma : \ \ell_{o,\rho\gamma \cdot o} \leq t\} \sim c e^{h_{\rho}t}.$$

∃ → ∢

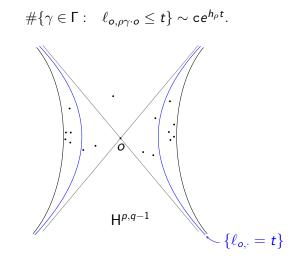


< ∃ >

3)) B



Glorieux-Monclair



Glorieux-Monclair: study the exponential growth rate of this counting function ("pseudo-Riemannian Hausdorff dimension of the limit set").

Concrete way of computing $d_{X_G}(S^o, g \cdot S^o) = \ell_{o,g \cdot o}$:

글 🖌 🔺 글 🛌

Concrete way of computing $d_{X_G}(S^o, g \cdot S^o) = \ell_{o,g \cdot o}$:

$$\ell_{o,g\cdot o} = \frac{1}{2}\lambda_1(\sigma^o(g)g^{-1}).$$

글 🖌 🔺 글 🛌

Concrete way of computing $d_{X_G}(S^o, g \cdot S^o) = \ell_{o,g \cdot o}$:

$$\ell_{o,g \cdot o} = \frac{1}{2} \lambda_1(\sigma^o(g)g^{-1}).$$

Here

• $\lambda_1(\cdot) = \text{logarithm of spectral radius.}$

< ∃ →

Concrete way of computing $d_{X_G}(S^o, g \cdot S^o) = \ell_{o,g \cdot o}$:

$$\ell_{o,g\cdot o} = \frac{1}{2}\lambda_1(\sigma^o(g)g^{-1}).$$

Here

- $\lambda_1(\cdot) =$ logarithm of spectral radius.
- $\sigma^{o}: G \to G$ involution such that $Fix(\sigma^{o}) = Stab_{G}(o) = H^{o}$ (σ^{o} is explicit).

Concrete way of computing $d_{X_G}(S^o, g \cdot S^o) = \ell_{o,g \cdot o}$:

$$\ell_{o,g\cdot o} = \frac{1}{2}\lambda_1(\sigma^o(g)g^{-1}).$$

Here

 λ₁(·) =logarithm of spectral radius.
 σ^o: G → G involution such that Fix(σ^o) = Stab_G(o) = H^o (σ^o is explicit).

Proof of equality goes as follows:

Concrete way of computing $d_{X_G}(S^o, g \cdot S^o) = \ell_{o,g \cdot o}$:

$$\ell_{o,g\cdot o} = \frac{1}{2}\lambda_1(\sigma^o(g)g^{-1}).$$

Here

 λ₁(·) =logarithm of spectral radius.
 σ^o: G → G involution such that Fix(σ^o) = Stab_G(o) = H^o (σ^o is explicit).

Proof of equality goes as follows:

• Show that $g \cdot o \in \mathscr{C}_o^+ \Leftrightarrow g \in \mathsf{H}^o \exp(\mathfrak{b}^+)\mathsf{H}^o$

Concrete way of computing $d_{X_G}(S^o, g \cdot S^o) = \ell_{o,g \cdot o}$:

$$\ell_{o,g\cdot o} = \frac{1}{2}\lambda_1(\sigma^o(g)g^{-1}).$$

Here

 λ₁(·) =logarithm of spectral radius.
 σ^o: G → G involution such that Fix(σ^o) = Stab_G(o) = H^o (σ^o is explicit).

Proof of equality goes as follows:

Show that g ⋅ o ∈ C⁺_o ⇔ g ∈ H^o exp(b⁺)H^o, where b⁺ is a (pre fixed) space-like geodesic ray starting at o.

Concrete way of computing $d_{X_G}(S^o, g \cdot S^o) = \ell_{o,g \cdot o}$:

$$\ell_{o,g\cdot o} = \frac{1}{2}\lambda_1(\sigma^o(g)g^{-1}).$$

Here

 λ₁(·) =logarithm of spectral radius.
 σ^o: G → G involution such that Fix(σ^o) = Stab_G(o) = H^o (σ^o is explicit).

Proof of equality goes as follows:

- Show that g ⋅ o ∈ C⁺_o ⇔ g ∈ H^o exp(b⁺)H^o, where b⁺ is a (pre fixed) space-like geodesic ray starting at o.
- Show that b^+ -coordinate coincides with $\ell_{o,g \cdot o}$.

Concrete way of computing $d_{X_G}(S^o, g \cdot S^o) = \ell_{o,g \cdot o}$:

$$\ell_{o,g\cdot o} = \frac{1}{2}\lambda_1(\sigma^o(g)g^{-1}).$$

Here

 λ₁(·) =logarithm of spectral radius.
 σ^o : G → G involution such that Fix(σ^o) = Stab_G(o) = H^o (σ^o is explicit).

Proof of equality goes as follows:

- Show that g ⋅ o ∈ C⁺_o ⇔ g ∈ H^o exp(b⁺)H^o, where b⁺ is a (pre fixed) space-like geodesic ray starting at o.
- Show that b^+ -coordinate coincides with $\ell_{o,g \cdot o}$.
- Compute the b^+ -coordinate using the formula above.

Want to prove

$$\#\{\gamma \in \mathsf{\Gamma}: \quad \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1}) \leq t\} \sim \mathsf{c} e^{h_\rho t}.$$

L. Carvajales Anosov representations and counting

æ

「日本・日本・日本・

Want to prove

$$\#\{\gamma \in \mathsf{\Gamma}: \quad \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1}) \leq t\} \sim \mathsf{c} e^{h_\rho t}.$$

Structure of the proof:

æ

- ₹ 🖬 🕨

Want to prove

$$\#\{\gamma\in \mathsf{\Gamma}: \ \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\leq t\}\sim \mathsf{c}e^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

Want to prove

$$\#\{\gamma\in \mathsf{\Gamma}: \quad rac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\leq t\}\sim \mathsf{c} \mathsf{e}^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Want to prove

$$\#\{\gamma \in \Gamma: \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1}) \leq t\} \sim ce^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Cross-ratio: "measures" the relative position between attractors and repellors in $P(\mathbb{R}^d)$ of $\rho\gamma^{-1}$ and $\sigma^o(\rho\gamma)$.

Want to prove

$$\#\{\gamma \in \Gamma: \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1}) \le t\} \sim ce^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Cross-ratio: "measures" the relative position between attractors and repellors in $P(\mathbb{R}^d)$ of $\rho\gamma^{-1}$ and $\sigma^o(\rho\gamma)$. Explicit formula.

Want to prove

$$\#\{\gamma\in \mathsf{\Gamma}: \ \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\leq t\}\sim \mathsf{c}e^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Cross-ratio: "measures" the relative position between attractors and repellors in $P(\mathbb{R}^d)$ of $\rho\gamma^{-1}$ and $\sigma^o(\rho\gamma)$. Explicit formula.

• "Geometric quantity": $\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})$.

Want to prove

$$\#\{\gamma\in \mathsf{\Gamma}: \ \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\leq t\}\sim \mathsf{c}e^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Cross-ratio: "measures" the relative position between attractors and repellors in $P(\mathbb{R}^d)$ of $\rho\gamma^{-1}$ and $\sigma^o(\rho\gamma)$. Explicit formula.

- "Geometric quantity": $\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})$.
- "Dynamical quantity": $\overline{\lambda}_1(\rho\gamma)$.

Want to prove

$$\#\{\gamma\in \mathsf{\Gamma}: \ \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\leq t\}\sim \mathsf{c}e^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Cross-ratio: "measures" the relative position between attractors and repellors in $P(\mathbb{R}^d)$ of $\rho\gamma^{-1}$ and $\sigma^o(\rho\gamma)$. Explicit formula.

- "Geometric quantity": $\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})$.
- "Dynamical quantity": $\lambda_1(\rho\gamma)$.
- Link between the geometric and dynamical quantities: cross-ratio.

Want to prove

$$\#\{\gamma\in \mathsf{\Gamma}: \quad \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\leq t\}\sim \mathsf{c}e^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Bridgeman-Canary-Labourie-Sambarino: geodesic flow of ρ

 $\phi_t:\mathsf{U}\Gamma\to\mathsf{U}\Gamma$

Want to prove

$$\#\{\gamma\in \mathsf{\Gamma}: \quad \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\leq t\}\sim \mathsf{c}e^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Bridgeman-Canary-Labourie-Sambarino: geodesic flow of ρ

 $\phi_t:\mathsf{U}\Gamma\to\mathsf{U}\Gamma$

• UF compact quotient of an $\mathbb{R}\text{-principal}$ bundle over $\partial^2 \Gamma,$ under some proper action of $\Gamma.$

Want to prove

$$\#\{\gamma\in \mathsf{\Gamma}: \quad \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\leq t\}\sim \mathsf{c}e^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Bridgeman-Canary-Labourie-Sambarino: geodesic flow of ρ

 $\phi_t:\mathsf{U}\Gamma\to\mathsf{U}\Gamma$

- UF compact quotient of an $\mathbb{R}\text{-principal}$ bundle over $\partial^2 \Gamma,$ under some proper action of $\Gamma.$
- ϕ_t =action on the fibers.

Want to prove

$$\#\{\gamma\in \mathsf{\Gamma}: \quad \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\leq t\}\sim \mathsf{c}e^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Bridgeman-Canary-Labourie-Sambarino: geodesic flow of ρ

 $\phi_t:\mathsf{U}\Gamma\to\mathsf{U}\Gamma$

- UF compact quotient of an $\mathbb{R}\text{-principal}$ bundle over $\partial^2 \Gamma,$ under some proper action of $\Gamma.$
- ϕ_t =action on the fibers.
- Periodic orbits: $[\gamma] \in [\Gamma]$

Want to prove

$$\#\{\gamma\in \mathsf{\Gamma}: \quad \frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\leq t\}\sim \mathsf{c}e^{h_\rho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Bridgeman-Canary-Labourie-Sambarino: geodesic flow of ρ

 $\phi_t:\mathsf{U}\Gamma\to\mathsf{U}\Gamma$

- UF compact quotient of an $\mathbb R$ -principal bundle over $\partial^2 \Gamma,$ under some proper action of $\Gamma.$
- ϕ_t =action on the fibers.
- Periodic orbits: $[\gamma] \in [\Gamma]$, corresponding period $\lambda_1(\rho\gamma)$.

< 同 > < 国 > < 国 >

Want to prove

$$\#\{\gamma\in \mathsf{\Gamma}: \quad rac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\leq t\}\sim \mathsf{c}e^{h_
ho t}.$$

Structure of the proof:

 Benoist: precise estimate of eigenvalues of products of proximal matrices

$$\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})\sim\lambda_1(\rho\gamma)+$$
 "cross-ratio".

Bridgeman-Canary-Labourie-Sambarino: geodesic flow of ρ

 $\phi_t:\mathsf{U}\Gamma\to\mathsf{U}\Gamma$

- UF compact quotient of an $\mathbb R$ -principal bundle over $\partial^2 \Gamma,$ under some proper action of $\Gamma.$
- ϕ_t =action on the fibers.
- Periodic orbits: $[\gamma] \in [\Gamma]$, corresponding period $\lambda_1(\rho\gamma)$.
- Metric Anosov property + thermodynamical formalism.

• E • • E •

Apply Roblin/Sambarino's outline:

문 문

Apply Roblin/Sambarino's outline: Flow ϕ_t : UF \circlearrowleft with periods $\lambda_1(\rho\gamma)$

Apply Roblin/Sambarino's outline: Flow ϕ_t : UF \circlearrowleft with periods $\lambda_1(\rho\gamma)$ + Markov coding

★ ∃ ► < ∃ ►</p>

Apply Roblin/Sambarino's outline: Flow ϕ_t : UF \circlearrowleft with periods $\lambda_1(\rho\gamma)$ + Markov coding + Bowen, Parry-Pollicott:

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_{1}(
ho\gamma)\leq t}\delta_{\gamma_{-}}\otimes\delta_{\gamma_{+}}\to\tilde{m}$$

on $C^*_c(\partial^2\Gamma)$, as $t \to \infty$.

★ ∃ ► < ∃ ►</p>

Apply Roblin/Sambarino's outline: Flow $\phi_t : U\Gamma \circlearrowleft$ with periods $\lambda_1(\rho\gamma) + Markov \ coding + Bowen$, Parry-Pollicott:

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_{1}(
ho\gamma)\leq t}\delta_{\gamma_{-}}\otimes\delta_{\gamma_{+}}\to\tilde{m}$$

on $C_c^*(\partial^2 \Gamma)$, as $t \to \infty$. Here:

• h_{ρ} =topological entropy of ϕ_t ($h_{\rho} \in (0, \infty)$).

★ ∃ ► < ∃ ►</p>

Apply Roblin/Sambarino's outline: Flow $\phi_t : U\Gamma \circlearrowleft$ with periods $\lambda_1(\rho\gamma) + Markov \ coding + Bowen$, Parry-Pollicott:

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_{1}(
ho\gamma)\leq t}\delta_{\gamma_{-}}\otimes\delta_{\gamma_{+}}
ightarrow \tilde{m}$$

on $C_c^*(\partial^2 \Gamma)$, as $t \to \infty$. Here:

- h_{ρ} =topological entropy of ϕ_t ($h_{\rho} \in (0, \infty)$).
- $\tilde{m} = \Gamma$ -invariant measure on $\partial^2 \Gamma$ (lift of the measure of maximal entropy of ϕ_t).

Apply Roblin/Sambarino's outline: Flow $\phi_t : U\Gamma \circlearrowleft$ with periods $\lambda_1(\rho\gamma) + Markov \ coding + Bowen$, Parry-Pollicott:

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_{1}(
ho\gamma)\leq t}\delta_{\gamma_{-}}\otimes\delta_{\gamma_{+}}\to\tilde{m}$$

on
$$C^*_c(\partial^2 \Gamma)$$
, as $t \to \infty$.
Here:

- h_{ρ} =topological entropy of ϕ_t ($h_{\rho} \in (0, \infty)$).
- $\tilde{m} = \Gamma$ -invariant measure on $\partial^2 \Gamma$ (lift of the measure of maximal entropy of ϕ_t).
- $\delta_{\gamma_{\pm}} = \text{Dirac mass at attractor/repellor of } \gamma \text{ in } \partial \Gamma.$

Apply Roblin/Sambarino's outline: Flow $\phi_t : U\Gamma \circlearrowleft$ with periods $\lambda_1(\rho\gamma) + Markov \operatorname{coding} + Bowen$, Parry-Pollicott:

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_{1}(
ho\gamma)\leq t}\delta_{\gamma_{-}}\otimes\delta_{\gamma_{+}}\to\tilde{m}$$

on
$$C^*_c(\partial^2 \Gamma)$$
, as $t \to \infty$.
Here:

- h_{ρ} =topological entropy of ϕ_t ($h_{\rho} \in (0, \infty)$).
- $\tilde{m} = \Gamma$ -invariant measure on $\partial^2 \Gamma$ (lift of the measure of maximal entropy of ϕ_t).

•
$$\delta_{\gamma_{\pm}} = \text{Dirac}$$
 mass at attractor/repellor of γ in $\partial \Gamma$.

Purely dynamical result.

Apply Roblin/Sambarino's outline: Flow $\phi_t : U\Gamma \circlearrowleft$ with periods $\lambda_1(\rho\gamma) + Markov \operatorname{coding} + Bowen$, Parry-Pollicott:

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_{1}(\rho\gamma)\leq t}\delta_{\gamma_{-}}\otimes\delta_{\gamma_{+}}\to\tilde{m}$$

on $C_c^*(\partial^2 \Gamma)$, as $t \to \infty$. Here:

- h_{ρ} =topological entropy of ϕ_t ($h_{\rho} \in (0, \infty)$).
- $\tilde{m} = \Gamma$ -invariant measure on $\partial^2 \Gamma$ (lift of the measure of maximal entropy of ϕ_t).

•
$$\delta_{\gamma_{\pm}} = \text{Dirac mass at attractor/repellor of } \gamma \text{ in } \partial \Gamma.$$

Purely dynamical result. Challenge: try to use this result + Benoist's estimate to obtain our geometric theorem (use Patterson-Sullivan theory).

$$\tilde{c}e^{-h_{\rho}t}\sum_{\gamma:\lambda_1(\rho\gamma)\leq t}\delta_{\gamma_-}\otimes\delta_{\gamma_+}\to \tilde{m}.$$

▲□ ▶ ▲ □ ▶ ▲ □

æ

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_1(\rho\gamma)\leq t}\delta_{\gamma_-}\otimes\delta_{\gamma_+}\to \tilde{m}.$$

Margulis, Patterson, Sullivan (c.f. also Ledrappier)

A B M A B M

э

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_1(\rho\gamma)\leq t}\delta_{\gamma_-}\otimes\delta_{\gamma_+}\to \tilde{m}.$$

$$\tilde{m} = e^{-h_{\rho}[\cdot,\cdot]} \mu \otimes \mu$$

where:

()

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_1(\rho\gamma)\leq t}\delta_{\gamma_-}\otimes\delta_{\gamma_+}\to \tilde{m}.$$

$$\tilde{m} = e^{-h_{\rho}[\cdot,\cdot]} \mu \otimes \mu$$

where:

• μ finite measure on $\partial \Gamma$ such that $\gamma_* \mu \sim \mu$ for all $\gamma \in \Gamma$.

∃ ► < ∃ ►</p>

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_1(\rho\gamma)\leq t}\delta_{\gamma_-}\otimes\delta_{\gamma_+}\to \tilde{m}.$$

$$\tilde{m} = e^{-h_{\rho}[\cdot,\cdot]}\mu \otimes \mu$$

where:

- μ finite measure on $\partial \Gamma$ such that $\gamma_* \mu \sim \mu$ for all $\gamma \in \Gamma$.
- $[\cdot, \cdot] : \partial^2 \Gamma \to \mathbb{R}$ is a continuous function (determined by μ).

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_1(\rho\gamma)\leq t}\delta_{\gamma_-}\otimes\delta_{\gamma_+}\to \tilde{m}.$$

$$\tilde{m} = e^{-h_{\rho}[\cdot,\cdot]}\mu \otimes \mu$$

where:

• μ finite measure on $\partial \Gamma$ such that $\gamma_* \mu \sim \mu$ for all $\gamma \in \Gamma$.

• $[\cdot, \cdot] : \partial^2 \Gamma \to \mathbb{R}$ is a continuous function (determined by μ).

Geometric step: find an explicit μ for which $[\cdot, \cdot] =$ "cross-ratio".

$$\tilde{c}e^{-h_{
ho}t}\sum_{\gamma:\lambda_1(\rho\gamma)\leq t}\delta_{\gamma_-}\otimes\delta_{\gamma_+}\to \tilde{m}=e^{-h_{
ho}[\cdot,\cdot]}\mu\otimes\mu.$$

More precisely:

æ

문 🕨 🗶 문

$$\tilde{\mathsf{c}} e^{-h_{\rho}t} \sum_{\gamma:\lambda_1(\rho\gamma) \leq t} \delta_{\gamma_-} \otimes \delta_{\gamma_+} \to \tilde{m} = e^{-h_{\rho}[\cdot,\cdot]} \mu \otimes \mu.$$

 \blacksquare Find an explicit μ such that

 $[\gamma_-, \gamma_+] =$ cross-ratio given by Benoist's estimate.

$$\tilde{\mathsf{c}} e^{-h_{\rho}t} \sum_{\gamma:\lambda_1(\rho\gamma)\leq t} \delta_{\gamma_-}\otimes \delta_{\gamma_+} \to \tilde{m} = e^{-h_{\rho}[\cdot,\cdot]}\mu\otimes \mu.$$

Find an explicit μ such that

 $[\gamma_{-}, \gamma_{+}] =$ cross-ratio given by Benoist's estimate.

• Replace $\lambda_1(\rho\gamma)$ by $\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})$ in the above sum by "erasing" the factor $e^{-h_\rho[\cdot,\cdot]}$

$$\tilde{\mathsf{c}} e^{-h_{\rho}t} \sum_{\gamma:\lambda_1(\rho\gamma)\leq t} \delta_{\gamma_-}\otimes \delta_{\gamma_+} \to \tilde{m} = e^{-h_{\rho}[\cdot,\cdot]}\mu\otimes \mu.$$

Find an explicit μ such that

 $[\gamma_-, \gamma_+] =$ cross-ratio given by Benoist's estimate.

Replace λ₁(ργ) by ½λ₁(σ^o(ργ)ργ⁻¹) in the above sum by "erasing" the factor e^{-h_ρ[·,·]} → obtain

$$\tilde{c}e^{-h_{\rho}t}\sum_{\gamma:\frac{1}{2}\lambda_{1}(\sigma^{o}(\rho\gamma)\rho\gamma^{-1})\leq t}\delta_{\gamma_{-}}\otimes\delta_{\gamma_{+}}\rightarrow\mu\otimes\mu$$

on $C^*(\partial\Gamma \times \partial\Gamma)$, as $t \to \infty$.

$$\tilde{\mathsf{c}} e^{-h_{\rho}t} \sum_{\gamma:\lambda_1(\rho\gamma) \leq t} \delta_{\gamma_-} \otimes \delta_{\gamma_+} \to \tilde{m} = e^{-h_{\rho}[\cdot,\cdot]} \mu \otimes \mu.$$

Find an explicit μ such that

 $[\gamma_-, \gamma_+] =$ cross-ratio given by Benoist's estimate.

■ Replace $\lambda_1(\rho\gamma)$ by $\frac{1}{2}\lambda_1(\sigma^o(\rho\gamma)\rho\gamma^{-1})$ in the above sum by "erasing" the factor $e^{-h_\rho[\cdot,\cdot]} \rightarrow obtain$

$$\tilde{c}e^{-h_{\rho}t}\sum_{\gamma:\frac{1}{2}\lambda_{1}(\sigma^{\circ}(\rho\gamma)\rho\gamma^{-1})\leq t}\delta_{\gamma_{-}}\otimes\delta_{\gamma_{+}}\rightarrow\mu\otimes\mu$$

on $C^*(\partial\Gamma \times \partial\Gamma)$, as $t \to \infty$.

• Evaluate on $1 \in C(\partial \Gamma \times \partial \Gamma)$ ($c := \tilde{c}^{-1} \| \mu \otimes \mu \|$).

Gracias! Thanks!

æ