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Loose End

Last time I pointed out that the natural way to express that a field
F is orderable would be quantifying over subsets of F 2

∃R ⊂ F 2 [R is a linear order compatible with + and · ]

which we can’t do in a first order sentence.

BUT..
Using the Artin–Schrier theory of ordered fields

F is orderable if and only if -1 is not a sum of squares.

This can be expressed in the theory: field axioms +
{∀x1∀x2 x21 +x22 +1 6= 0, . . . ,∀x1, . . . ,∀xn x21 +· · ·+x2n +1 6= 0, . . . }.
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Recap

Fundamental Problems for a mathematical structure M
I Understand Th(M).

I Is it decidable?
I Find an axiomatization.

I Understand the definable subsets of Mn.
I Give more natural description
I Prove they have good properties.

Lesson: Quantifiers lead to complexity
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Algebraically Closed Fields

L = {+, ·,−, 0, 1}.
The theory of algebraically closed fields (ACF) is axiomatized by:

I the field axioms;

I ∀y0∀yn−1∃x xn + yn−1x
n−1 + · · ·+ y0 = 0, n = 2, 3, . . . .

Theorem (Tarski)

ACF has quantifier elimination, i.e., for any formula φ(v1, . . . , vn)
there is a formula ψ(v1, . . . , vn) with no quantifiers such that

ACF |= ∀v [φ(v)↔ ψ(v)].
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Definable Sets

Let K be an algebraically closed field and suppose X ⊆ Kn is
definable.

By quantifier elimination X has a quantifier free definition.

What can we say without quantifiers?
Finite boolean combinations of p(x1, . . . , xn) = 0,
p ∈ K [X1, . . . ,Xn]

definable = boolean combination of varieties= constructible sets

Corollary (strong minimality)

If K is algebraically closed and X ⊂ K is definable then either X or
K \ X is finite.

Any definable subset of K is a Boolean combination of sets
p(x) = 0 which are finite unless p is constant.
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Chevalley’s Theorem

Corollary (Chevalley)

If X ⊆ Kn+m is constructible and π is the projection onto first
n-coordinates, then the image π(X ) is construcible.

x ∈ π(X )⇔ ∃y1 . . . ∃ym (x, y) ∈ X

and by quantifier elimination we can find an equivalent quantifier
free formula.

Dave Marker Model Theory II



Model Completeness

In any language L if we have structures M⊂ N , we say that N is
an elementary extension of M if for any formula φ(x1, . . . , xn) and
any a ∈Mn

M |= φ(a)⇔ N |= φ(a).

We write M≺ N .

Corollary (Model Completeness of ACF)

If K ⊂ L are algebraically closed fields, then K ≺ L.

Proof Let φ(x1, . . . , xn) be a formula and a ∈ Kn.
There is a quantifier free ψ such that ACF |= ∀x [φ(x)↔ ψ(x)]
An easy induction shows that for quantifier free ψ,

K |= ψ(a)⇔ L |= ψ(a).
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Nullstellensatz

Corollary

Let K be algebraically closed and let P ⊆ K [X1, . . . ,Xn] be a
prime ideal and g ∈ K [X] \ P. There there is x ∈ Kn such that
f (x) = 0 for f ∈ P but g(x) 6= 0.

Let f1, . . . , fm generate P.

Let L = (K [X]/P)alg.

L |= ∃x1 . . . ∃xn f1(x) = · · · = fm(x) = 0 ∧ g(x) 6= 0

Namely take x1 = X1/P, . . . xn = Xn/P.
By model completeness

L |= ∃x1 . . . ∃xn f1(x) = · · · = fm(x) = 0 ∧ g(x) 6= 0

Skip Bounds
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Bounds on the Nullstellensatz

Corollary

For any d ,m, n there is k (depending only on d ,m, n) such that in
any algebraically closed field K if f1, . . . , fm ∈ K [X1, . . . ,Xn] have
degree at most d, then f1(X) = · · · = fm(X) = 0 has a solution in
K if and only if

1 6=
m∑
i=1

gi fi

where each gi has degree at most k.
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Proof of Bounds

Write down generic polynomials F1, . . . ,Fm of degree d
i.e. Fi =

∑
|j |≤d ci ,jX

j (j a multi-index, ci ,j new variables)

For each l there is a sentence Φl saying that

1 6=
m∑
i 6=1

giFi

where each gi has degree at most l .
Let T = ACF ∪{∀x ¬

∧n
i=1 Fi (x) = 0}∪{Φl : l = 1, 2, . . . }.

T is not satisfiable. If we had a model of T , we would have a
contradiction to Hilbert’s Nullstellensatz.

By the Compactness Theorem. Some finite subset of T is not
satisfiable. But then there is a k such that if F1 = · · · = Fm = 0
has no solution, then we can find 1 using polynomials of degree at
most k .
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Completeness

Recall that a theory T is complete if for all sentences φ either
T |= φ or T |= ¬φ.

ACF is not complete
For each n, let ψn be the sentence 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n−times

= 0

Then ACF 6|= ψn and ACF 6|= ¬ψn.

For p prime let ACFp = ACF+ψp

Let ACF0 =ACF∪{¬ψn : n = 2, 3, . . . }.

Corollary

If p = 0 or p > 0 is prime, the ACFp is complete.
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Proof of Completeness

To show ACF0 is complete. Suppose K , L |= ACF0 and φ is a
sentence.
We must show K |= φ⇔ L |= φ. By quantifier elimination there is
a quantifier free sentence ψ such that ACF|= φ↔ ψ.
Quantifier free sentences can’t say much.

K |= ψ ⇔ Q |= ψ ⇔ L |= ψ

Thus
K |= φ⇔ L |= φ.

The proof for ACFp is similar using Fp instead of Q.
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Lefshitz Principle

Corollary

ACF0 axiomatizes Th(C).

Corollary

The following are equivalent:

1. φ is true in some K |= ACF0;

2. φ is true in every K |= ACF0;

3. For all sufficiently large primes p φ is true in every K |=ACFp;

4. For infinitely many p, φ is true in some K |=ACFp.

2) ⇒ 3) By the Completeness Theorem, there is a proof of φ from
ACF0. That proof uses only finitely many sentences ¬Ψn and thus
work in ACFp for large p.

4) ⇒ 1) If not that ACF0 |= ¬φ, and by the above ACFp |= ¬φ for
all sufficiently large primes.
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Ax–Grothendieck Theorem

Corollary

If f : Cn → Cn is an injective polynomial map, then f is surjective.

There are sentences Φn,d saying that if f : Kn → Kn is an injective
polynomial map where all polynomials have degree at most d from
Kn → Kn, then f is surjective.

Φn,d is true in all finite fields

Φn,d is true in Falg
p .

If there was a counterexample f it would already be a
counterexample in some Fpn .

Thus ACF0 |= Φn,d

Dave Marker Model Theory II



Decidability

Corollary

For p = 0 or p > 0 prime ACFp is decidable.

To decide if ACFp |= φ search for a proof of φ or ¬φ.

Corollary

ACF is also decidable.

To decide if ACF|= φ search for either a proof of φ from ACF or a
prime p and a proof of ¬φ from ACFp.
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Model Theoretic test for QE

Theorem
Let T be a theory. Suppose that for all quantifier free formulas
φ(x1, y1, . . . , ym), all M,N |= T, all A ⊂M,N and all
a1, . . . , am ∈ A

(*) if M |= ∃x φ(x , a1, . . . , an), then N |= ∃x φ(x , a1, . . . , an).
Then T has quantifier elimination
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QE for Algebraically Closed Fields

Let ACF be the axioms for algebraically closed fields

Theorem (Tarski)

ACF has quantifier elimination.

Suppose K , L are algebraically closed fields and A ⊂ K ∩ L is a
domain.
φ(v) is a quantifier free formula with parameters from A such that
there is b ∈ K with K |= φ(b).
φ(v) is a Boolean combination of formulas of the form p(v) = 0
where p(X ) ∈ A[X ].
Without loss of generality φ(v) is

n∧
i=1

fi (v) = 0 ∧ g(v) 6= 0

where f1, . . . , fn, g ∈ A[X ]
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QE for Algebraically Closed Fields

n∧
i=0

fi (v) = 0 ∧ g(v) 6= 0

case 1 There are no nonzero fi , in this case φ(v) is just g(v) 6= 0.
We can find c ∈ L such that g(c) 6= 0.

case 2 For some i , fi is nonzero and fi (b) = 0.
Let K0 be the algebraic closure of A in K . Then b ∈ K0

There is a field embedding σ : K0 → L fixing A and L |= φ(σ(b)).
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What is Th(R)?

We start by some giving axioms (RCF) in the language
Lor = {+, ·, <, , 0, 1} that we know are true in R.
We say that (K ,+, ·, <) is a real closed field if

I K is an ordered field;

I (sign change) If f ∈ K [X ], a < b and f (a)f (b) < 0, there is
c ∈ (a, b) such that f (c) = 0.

Sign change can be expressed by axioms φ1, φ2, . . . where φn is

∀α0 . . . ∀αn

[
∀a∀b

(
a < b ∧

(
n∑

i=0

αia
i

)(
n∑

i=0

αib
i

)
< 0

)
→

∃c a < c < b ∧
n∑

i=0

αic
i = 0.

]
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Quantifier Elimination for Real Closed Fields

Theorem (Tarski)

RCF has quantifier elimination, i.e., for any Lor -formula
φ(v1, . . . , vn), there is an Lor formula ψ(v1, . . . , vn) without
quantifiers such that

RCF |= ∀v1, . . . ,∀vn (φ(v1, . . . , vn)↔ ψ(v1, . . . , vn)).

In particular any definable set is definable by a quantifier free
formula.

The proof closely follows the proof for algebraically closed fields.

The key algebraic fact needed is that every ordered field (F , <) has
a unique real closure.
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Semialgebraic sets

What are the quantifier free definable sets in a real closed field K?
Boolean combinations of

p(x1, . . . , xn) = 0 and q(x1, . . . , xn) > 0

for p, q ∈ K [X1, . . . ,Xn].
In real algebraic geometry these are known as the semialgebraic
sets.

definable=quantifier free definable=semialgebraic

Corollary (o-minimality)

Any definable subset of R is a finite union of points and intervals.
In particular, Z is not definable in R.
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Semialgebraic sets and QE

Corollary (Tarski–Seidenberg Theorem)

The image of a semialgebraic set under a semialgebraic function is
semialgebraic.

Corollary

The closure of a semialgebraic set is semialgebriac.

We say closures of definable sets are definable.
Remarkable Fact: o-minimality captures many of the good
geometric and topological properties of semialgebraic sets.
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o-minimality

Theorem
If f : Rn → R is definable, then we can partition R into definable
sets X1 ∪ · · · ∪ Xn such that f is continuous (or even Cm) on each
Xi .

Theorem (Cell Decomposition)

If X ⊆ Rn is definable, then X can be partitioned into finitely
many disjoint cells, X = C1 ∪ · · · ∪ Cm.
In particular, X has finitely many connected components.

Dave Marker Model Theory II



Rexp

Theorem (Wilkie)

For any X ⊂ Rn definable in Rexp there is an exponential algebraic
variety V ⊂ Rn+m such that

x ∈ X ⇔ ∃y ∈ Rm(x, y) ∈ V .

V is a finite system of equations like

ex+y − yee
z

= 0

Khovanskii proved that any such V has finitely many connected
components.

Corollary

Rexp is o-minimal.
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Th(Rexp)

Wilkie’s result shows model completeness. van den Dries,
Macintyre and I showed quantifier elimination in an expanded
language adding restrictions of analytic functions and ln.

Open Questions

I Is Th(Rexp)-decidable? Macintyre–Wilkie: Yes assuming
Schanuel’s Conjecture

I Find a natural axiomatization. Find a ∀∃-axiomatization.

I What’s the right language for quantifier elimination?
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Quantifier Elimination for Qp

Recall that Zp is definable in Qp. Thus we can also define

x |y ↔ ∃z ∈ Zp xz = y . i.e., v(x) ≤ v(y).

Let Pn be a predicate for the nth-powers in Qp.
Consider the language LMac = {+, ·, 0, 1, |,Zp,P2,P3, . . . }.
Any subset of Qn

p definable using the LMac-language is already
definable in the field language.

Theorem (Macintyre)

Th(Qp) has quantifier elimination in the LMac.

Corollary

Any infinite definable subset of Qp has interior.
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Quantifier Elimination in the Pas Langugage

Consider a valued field as a three sorted structure (K , Γ, k) with
v : K× → Γ and r : O → k .

Add a angular component ac : K× → k a multiplicative
homomorphism that agrees with the residue map on the units.

For example: In K ((t)) and f =
∑∞

n=m ant
n with am 6= 0 we could

let ac(f ) = am.

angular components need not exist (but will in saturated enough
models)
adding the angular component map adds new definable sets

Theorem (Pas)

Suppose K is a henselian field with residue field k of characteristic
0. Roughly, any formula is equivalent to a boolean combination of:
i) quantifier free field formulas about K;
ii) formulas about the residue field and value group
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Ax–Kochen

Theorem
Let (K , v) and (L, v) be henselian valued fields with characteristic
zero residue fields k and l. Then K ≡ L if and only if
i) v(K ) ≡ v(L);
ii) k ≡ l .

If D is a non-principle ultrafilter on the primes∏
D

Qp ≡
∏
D

Fp((t))

Corollary

If Fp((t)) |= φ for all primes p, then Qp |= φ for all sufficiently large
primes.
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