Smooth Hilbert Schemes

Gregory G. Smith

18 February 2021 arXiv:2008.08938

Algebraic Context

DREAM: Describe all ideals in a commutative ring. FOCUS: Let $R := \mathbb{Z}[x_0, x_1, \dots, x_m]$ be the standard \mathbb{Z} -graded polynomial ring. Consider a saturated homogeneous ideal I in R that is flat over \mathbb{Z} . (saturation) $I = I : \langle x_0, x_1, \dots, x_m \rangle^{\infty}$ $= \{ f \in R \mid f R_n \subseteq I \text{ for some } n \in \mathbb{N} \}$ (flatness) For all $j \in \mathbb{Z}$, the homogeneous part $(R/I)_j = (R_j/I_j)$ is a free \mathbb{Z} -module.

HILBERT POLYNOMIAL: There exists $p \in \mathbb{Q}[t]$ such that $p(j) = \operatorname{rank} (R/I)_j$ for all $j \gg 0$.

Geometric Setting

BIJECTION: Saturated homogeneous ideals in *R* correspond to subschemes in $\mathbb{P}^m = \operatorname{Proj}(R)$.

GROTHENDIECK (1961): Hilb^{*p*}(\mathbb{P}^m) parametrizes subschemes in \mathbb{P}^m with Hilbert polynomial *p*:

- each I is identified with a point in $\operatorname{Hilb}^p(\mathbb{P}^m)$,
- deformations correspond to nearby points,
- one-parameter families correspond to curves.

CHALLENGE: Describe the geometry of the projective scheme $Hilb^p(\mathbb{P}^m)$.

Combinatorial Beauty

- **MACAULAY** (1926): Hilb^{*p*}(\mathbb{P}^m) $\neq \emptyset$ if and only if there exists $\lambda := (\lambda_1, \lambda_2, ..., \lambda_r) \in \mathbb{N}^r$ such that $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r \ge 1$ and $q(t) = \sum_{i=1}^r {t+\lambda_i - i \choose \lambda_i - 1}$.
- HARTSHORNE (1966): Each nonempty $\text{Hilb}^p(\mathbb{P}^m)$ is path connected.
- **GOTZMANN** (1978): The Castelnouvo–Mumford regularity of each ideal *I* parametrized by Hilb^{*p*}(\mathbb{P}^m) is bounded above by *r*.
- **REEVES-STILLMAN** (1997): Each nonempty $Hilb^p(\mathbb{P}^m)$ has a smooth point.

Classic Examples

- *I* is generated by $m \lambda_1 + 1$ linear forms if and only if $p(t) = {t+\lambda_1-1 \choose \lambda_1-1}$, so r = 1 implies that $\operatorname{Hilb}^p(\mathbb{P}^m) = \operatorname{Gr}(\lambda_1 - 1, \mathbb{P}^m).$
- $I = \langle f \rangle$ is principal with $\deg(f) = r$ if and only if $p(t) = \sum_{i=1}^{r} {\binom{t+m-i}{m-1}}$, so $\lambda = (m^r) = (m, m, ..., m)$ implies that $\operatorname{Hilb}^p(\mathbb{P}^m) = \mathbb{P}^{{\binom{r+m}{m}}-1}$.
- When $\lambda = (2^3, 1^1)$ or p(t) = 3t + 1, Hilb^{*p*}(\mathbb{P}^3) has two irreducible components: a twisted cubic curve and a plane cubic union a point.

Monstrous Features

MUMFORD (1962): An irreducible component of $\operatorname{Hilb}^{14t-23}(\mathbb{P}^3)$ is generically nonreduced (singular at every point).

ELLIA-HIRSCHOWITZ-MEZZETTI (1992): The number of components of $\operatorname{Hilb}^{dt+1-g}(\mathbb{P}^3)$ is not bounded by a polynomial in d and g.

VAKIL (2006): Every singularity type appears in some $\operatorname{Hilb}^p(\mathbb{P}^4)$.

AIM: Classify and understand all smooth Hilbert schemes $Hilb^p(\mathbb{P}^m)$.

Complete Classification

THEOREM (Skjelnes–Smith): Hilb^p(\mathbb{P}^{m}) is smooth if and only if one of the following holds:

(1)
$$m=2 \ge \lambda_1$$

(2) $m \ge \lambda_1$ and $\lambda_r \ge 2$,
(3) $\lambda = (1)$ or $\lambda = (m^{r-2}, \lambda_{r-1}, 1)$ where $r \ge 2$
and $m \ge \lambda_{r-1} \ge 1$,
(4) $\lambda = (m^{r-s-3}, \lambda_{r-s-2}^{s+2}, 1)$ where $r-3 \ge s \ge 0$
and $m-1 \ge \lambda_{r-s-2} \ge 3$,
(5) $\lambda = (m^{r-s-5}, 2^{s+4}, 1)$ where $r-5 \ge s \ge 0$,
(6) $\lambda = (m^{r-3}, 1^3)$ where $r \ge 3$,
(7) $\lambda = (m+1)$ or $r = 0$.

Ideas of Proof

- ⇐: Work of Fogarty (1968), Staal (2020), and Ramkumar (2019) shows (1)–(7) are sufficient.
- ⇒: When $\lambda = (\lambda_1^{r-s-2}, 1^{s+2})$ or λ has at least three distinct parts with $\lambda_{r-1} = \lambda_r = 1$, an explicit monomial ideal is a singular point on Hilb^{*p*}(\mathbb{P}^m).

When $\lambda = (2^2, 1^1)$ or $\lambda = (2^3, 1^1)$, Hilb^{*p*}(\mathbb{P}^m) has two components; the gap between (4) and (5).

When $\lambda = (1^{s+4})$, a known monomial ideal corresponds to a singularity on Hilb^{*s*+4}(\mathbb{P}^m).

Residual Flags

DEFINITIONS: An inclusion $Y \subset X$ in \mathbb{P}^n is d-residual if there is a hypersurface D in \mathbb{P}^n of degree d such that $I_X = I_Y \cdot I_D$. A residual flag of type $(n_1, d_1), (n_2, d_2), \dots, (n_e, d_e)$ is a chain $\emptyset \subset X_e \subset X_{e-1} \subset \cdots \subset X_1$ such that X_i lies in some \mathbb{P}^{n_i} and $X_{i+1} \subset X_i$ is d_i -residual in \mathbb{P}^{n_i} .

EXAMPLE: A residual flag of type (3, 2), (2, 4) in \mathbb{P}^3 is a pair $X_2 \subset X_1$ where X_2 is a planar quartic curve and X_2 is a 2-residual scheme in X_1 ; $I_{X_1} := \langle f_2 \rangle \cap \langle f_1, f_4 \rangle$ where deg $(f_i) = i$.

New Parameter Space

PROPOSITION: Residual flags of type (\vec{n}, \vec{d}) are parametrized by a projective bundle over the partial flag variety of type \vec{n} , so its cohomology ring has an explicit presentation.

PARTITONS: Repackage the type of a residual flag as the partition $\lambda := (n_1^{d_1}, n_2^{d_2}, \dots, n_e^{d_e})$.

HILBERT POLYNOMIAL: For any residual flag $\emptyset \subset X_e \subset \cdots \subset X_1$ of type (\vec{n}, \vec{d}) in \mathbb{P}^m , we have $p_{X_1}(t) = \sum_{i=1}^r {t+\lambda_i - i \choose \lambda_i - 1}$ where $r := d_1 + \cdots + d_e$.

Geometric Reinterpretation

PROPOSITION: Points on all $\operatorname{Hilb}^p(\mathbb{P}^m)$ satisfying (2) and (3) are residual flags.

COROLLARY: When $\lambda_1 > \lambda_2 > \cdots > \lambda_r > 1$, Hilb^{*p*}(\mathbb{P}^m) is simply a partial flag variety.

PROPOSITION: Hilb^{*p*}(\mathbb{P}^m) satisfying (4)–(6) are birational to the product of the parameter space for residual flags and \mathbb{P}^m . A general point on such Hilb^{*p*}(\mathbb{P}^m) corresponds to the disjoint union of a residual flag and a point.