Normal Reduction Numbers, Normal Hilbert coefficients and Elliptic ideals in normal 2-dimensional local domains

Kei-ichi WATANABE (Nihon University and Meiji University)

Joint work with T. Okuma (Yamagata Univ.), M.E. Rossi (Univ. Genova) and K. Yoshida (Nihon Univ.) , arXiv 2012.05530. and 1909.13190.

Fellowship of the Ring; Mar 19, 2021

References

[OWY1] Good ideals and **pg**-ideals in two-dimensional normal singularities, Manuscripta Math. **150** (2016), no. 3-4, 499–520.

[OWY2] Rees algebras and **pg**-ideals in a two-dimensional normal local domain, Proc. Amer. Math. Soc. **145** (2017), no. 1, 39–47.

[OWY3] A characterization of 2-dimensional rational singularities via core of ideals, J. of Algebra **499** (2018), 450–468.

[OWY4] Normal reduction numbers for normal surface singularities with application to elliptic singularities of Brieskorn type, Acta Mathematica Vietnamica **44** (2019), no. 1, 87–100.

[OWY5] The normal reduction number of two-dimensional cone-like singularities, arXiv:1909.13190, To appear in Proc. A.M.S.

[ORWY] Normal Hilbert coefficients and elliptic ideals in normal **2**-dimensional local domains, arXiv 2012.05530.

Normal Reduction Numbers $nr(I)$ **and** $\bar{r}(I)$

In this talk, our (**A**, m) is an excellent two-dimensional normal local domain containing the field $k \cong A/m$ or a graded ring $A = \bigoplus_{n \geq 0} A_n$ with $A_0 = k$ and we assume **k** is algebraically closed.

Our ideal **^I** is always an integrally closed m-primary ideal and **Q** be a minimal reduction of **I** (a parameter ideal with $I^{r+1} = QI^r$ for some $r \ge 1$). Then we define normal reduction numbers as

 $n(r) = \min\{n \mid I^{n+1} = \mathbf{Q}I^n\}, \quad \bar{r}(I) = \min\{n \mid I^{N+1} = \mathbf{Q}I^N, \forall N \ge n\}.$ $nr(A) = max\{nr(I) | I \subset A\}$ and $\overline{r}(A) = sup\{\overline{r}(I) | I \subset A\}$

Also the normal Hilbert coefficients $\bar{\mathbf{e}}_i(\mathbf{I})$ ($\mathbf{i} = \mathbf{0}, \mathbf{1}, \mathbf{2}$) are defined by

$$
\ell_A(A/\overline{I^{n+1}}) = \bar{e}_0(I) \binom{n+2}{2} - \bar{e}_1(I) \binom{n+1}{1} + \bar{e}_2(I) := P_I(n)
$$

for **ⁿ** ≫ **0**. Normal Hilbert coefficients are studied by Huneke ('87), Itoh ('88,'92), Corso-Polini-Rossi ('05), ...

Our aim is to know the behavior of these invariants for every integrally closed m **primary ideal ^I of a given ring ^A.**

Resolution of singularities, ^I = **^I^Z**

For an ideal (always m primary and integrally closed) we can choose a resolution

$$
f: X \to \text{Spec}(A)
$$
, so that $lO_X = O_X(-Z)$, and $l = H^0(X, O_X(-Z))$

where $\mathbf{Z} = \sum_{i=1}^r n_i \mathbf{E}_i$, where

$$
\mathbb{E}:=\boldsymbol{f}^{-1}(\mathfrak{m})=\bigcup_{i=1}^r\boldsymbol{E}_i.
$$

We write $I = I_Z$ in this case and we say *I* is represented on X . In other word, each valuation v_{E_i} is a Rees valuation of **I** so that for $a \in A$,

$$
a\in I \Longleftrightarrow v_{E_i}(a)\geq n_i\ (1\leq i\leq r).
$$

and for $Q \subset I$, Q is a reduction of **I** if and only if $QQ_X = IO_X$.

Dual graph and intersection matrix

We can represent curves of E by the dual graph. The following graph is a resolution of $\bm{k}[\bm{x},\bm{y},\bm{z}]/(\bm{x}^3+\bm{y^4}+\bm{z^6})$, where $[\bm{1}]$ means that the genus of $\boldsymbol{E_{0}}$ is **1** and the intersection matrix $\mathbb{M} = (\boldsymbol{E_{i}} \boldsymbol{E_{j}})_{i}^{4}$ **ⁱ**=**0** .

Example 2

\n
$$
E_0 \quad \text{[1]}
$$
\n
$$
E_1 \quad \text{[2]}
$$
\n
$$
E_2 \quad \text{[3]}
$$
\n
$$
E_3 \quad \text{[1]}
$$
\n
$$
E_2 \quad \text{[2]}
$$
\n
$$
E_3 \quad \text{[3]}
$$
\n
$$
E_4 \quad \text{[4]}
$$
\n
$$
E_5 \quad \text{[1]}
$$
\n
$$
E_2 \quad \text{[2]}
$$
\n
$$
E_3 \quad \text{[1]}
$$
\n
$$
E_4 \quad \text{[1]}
$$
\n
$$
E_5 \quad \text{[2]}
$$
\n
$$
E_6 \quad \text{[3]}
$$
\n
$$
E_7 \quad \text{[4]}
$$
\n
$$
E_8 \quad \text{[4]}
$$
\n
$$
E_9 \quad \text{[5]}
$$
\n
$$
E_1 \quad \text{[6]}
$$
\n
$$
E_2 \quad \text{[7]}
$$
\n
$$
E_3 \quad \text{[8]}
$$
\n
$$
E_4 \quad \text{[9]}
$$
\n
$$
E_5 \quad \text{[1]}
$$
\n
$$
E_6 \quad \text{[1]}
$$
\n
$$
E_7 \quad \text{[1]}
$$
\n
$$
E_8 \quad \text{[1]}
$$
\n
$$
E_9 \quad \text{[1
$$

/6 Kei-ichi WATANABE (Nihon University and MNormal Reduction Numbers, Normal Hilbert **c** Fellowship of the Ring; Mar 19, 2021 6

oac

Cohomology Groups and arithmetic genus

We denote $\ell_{\bm{A}}(\bm{H}^{\bm{1}}(\bm{X},\mathcal{F}))=\bm{h}^{\bm{1}}(\bm{X},\mathcal{F}).$ When \bm{X} is clear from the context, we write simply $h^1(\mathcal{F})$. We introduce important invariants of **A** and **I**. Since dim **A** = 2, $H^2(X,\mathcal{F}) = 0$ for every coherent \mathcal{F} . Let $f : X \to \text{Spec}(A)$ be a resolution.

Definition 2.1

1 $p_g(A) = h^1(O_X)$

- **2** (Artin) **A** is **rational** if $p_g(A) = 0$.
- **3** (S.S.T.Yau) **A** is strongly elliptic if $p_g(A) = 1$.

•
$$
q(I_z) = h^1(O_X(-Z))
$$
 and $q(nI_z) = q(I^n) = h^1(O_X(-nZ)).$

Remark 2.2

We are also interested to express these invariants by language of commutative algebra. For a parameter ideal **Q** ⊂ m**^N** for large **N**, we can write using tight \mathbf{c} losure; $\mathbf{p}_{\mathbf{g}}(\mathbf{A}) = \mathbf{\ell}_{\mathbf{A}}(\mathbf{Q}^*/\mathbf{Q})$. How about $\mathbf{q}(\mathbf{I})$? If $A = \bigoplus_{n \geq 0} A_n$ is graded, then $p_g(A) = \sum_{n \geq 0} \ell_A(\mathrm{H}^2_\mathfrak{m}(A)_n)$.

.
Kei-ichi WATANABE (Nihon University and MNormal Reduction Numbers, Normal Hilbert <mark>c Fellowship of the Ring; Mar 19, 202</mark>

Elliptic Singularity; Arithmetic genus

We say $Z \in \sum_{i=1}^{r} \mathbb{Z}E_i$ is anti-nef if $ZE_i \leq 0$ for every *i*. Since the intersection matrix (E_iE_j) is negative definite, $Z > 0$ if $Z \neq 0$ is anti-nef.

Definition 2.3

(1) We call the unique minimal anti-nef cycle the fundamental cycle of **X** and denote $\mathbb{Z}_{\mathbf{X}}$.

(2) [Wagreich] \bm{A} is called an elliptic singularity if $\bm{p_a}(\mathbb{Z}_\bm{\chi}) = \bm{1}$, where $\bm{p_a}(\bm{Z})$ is **defined by 2(** $p_a(Z)$ **− 1) =** $Z^2 + ZK_X$ **.**

The notion of elliptic singularity is very important in this talk. But we do not have algebraic method to determine elliptic singularities.

Example 2.4 (OWY4)

Let $\boldsymbol{A} = \boldsymbol{k}[\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}]/(\boldsymbol{x^a} + \boldsymbol{y^b} + \boldsymbol{z^c})$ with $\boldsymbol{2 \le a \le b \le c}$. Then

A is a rational singularity if and only if
$$
1/a + 1/b + 1/c > 1
$$
.

2 $\bar{r}(m) \leq 2$ if and only if \lfloor (**^a** − **1**)**^b a** ⌋ ≤ **2**. We can assure that either **^A** is elliptic or ¯r(**A**) ≥ **3** except the case (**a**, **^b**, **^c**) = (**3**, **4**, **6**) and (**3**, **4**, **7**).

Main Results

Let us list our main results. Before that we define;

Proposition-Definition 2.5

For every **I**, we have $q(I) \leq p_g(A)$ and we call **I** a p_g -ideal if $q(I) = p_g(A)$.

Theorem 2.6

- **1** $\bar{r}(I) = 1$ if and only if **I** is a p_g -ideal. Every ring **A** has a p_g -ideal.
- **2 A** is a rational singularity if and only if $\bar{r}(A) = 1$.
- **3** (Okuma) If **A** is an elliptic singularity, then $\bar{r}(A) = 2$.
- **4** If $A = k[[x, y, z]]/(f)$ is a homogeneous hypersurface of degree **d**, then $\bar{r}(\mathbf{A}) = nr(\mathfrak{m}) = d - 1$.
- **5** For any $n \ge 1$, there exist **A** and ideal **I** in **A** with $nr(1) = 1$ and $\bar{r}(I) = n = p_g(A) + 1.$

Question 2.7

If $\bar{r}(A) = 2$, then is **A** an elliptic singularity ?

.
Kei-ichi WATANABE (Nihon University and MNormal Reduction Numbers, Normal Hilbert d Fellowship of the Ring; Mar 19, 2021

q(**nI**) **is non-increasing**

In the following, we fix a resolution **X** such that $IO_X = O_X(-Z)$.

Lemma 3.1

We call O**X**(−**Z**) has no fixed compoments if $\mathbf{H}^0(\mathbf{X}, O_\mathbf{X}(-\mathbf{Z} - \mathbf{E}_i)) \subsetneq \mathbf{H}^0(\mathbf{X}, O_\mathbf{X}(-\mathbf{Z}))$ for every \mathbf{E}_i . If $O_\mathbf{X}(-\mathbf{Z})$ has no fixed compoments, then $h^1(O_X(-Z - Z')) \leq h^1(O_X(-Z'))$ for any cycle Z' and in $partial R_1 (O_X(-Z)) \leq p_g(A)$.

Proof.

Let **^s** be a general element of H**⁰** (**X**, O**X**(−**Z**)). Since O**X**(−**Z**) has no fixed $\mathbf{f}(\mathbf{c}) = \mathbf{c}(\mathbf{c}) = \mathbf{c}(\mathbf{c})$ **s** $\mathbf{c}(\mathbf{c}) = \mathbf{c}(\mathbf{c})$ has support finite over $\mathbf{c}(\mathbf{c}) = \mathbf{c}(\mathbf{c})$ and hence is affine. Then, taking the cohomology long exact sequence of the excat sequence

$$
0 \to O_X(-Z') \to O_X(-Z-Z') \to C \otimes O_X(-Z) \to 0
$$

 \mathbf{w} e have a surjection $\mathbf{H}^1(O_X(-Z'))$ → $\mathbf{H}^1(O_X(-Z-Z'))$ since $H^1(C \otimes O_X(-Z)) = 0$ having affine support. □

Values of q(**I**)

We showed that $0 \leq q(I) \leq p_q(A)$ and for long years we expected that for a given ring **A** and for every $0 \le q \le p_q(A)$, there is an ideal **I** of **A** with $q(I) = q$. It is only one week ago that we could prove that is not the case.

Example 3.2

Let $A = k[[x, y, z]]/(f)$ where **f** is homogeneous of degree **d**.

- **1** If $d = 4$ and $0 \le q \le 4 = p_q(A)$, $q \ne 2$, then there exists **I** such that $q(I) = q$. There is no **I** with $q(I) = 2$.
- **2** If $d = 5$ and $0 \le q \le 10 = p_g(A)$, $q \ne 5$, then there exists **I** such that $q(I) = q$. There is no **I** with $q(I) = 5$.

Proof is geometric using vanishing theorem of H**¹** . We can also make such examples for a standard graded ring of high degree whose Proj is not a hyperelliptic curve. (A smooth curve **C** is hyperelliptic if there is a **2** : **1** map from \boldsymbol{C} to \mathbb{P}^1 .)

Kei-ichi WATANABE (Nihon University and MNormal Reduction Numbers, Normal Hilbert d Fellowship of the Ring; Mar 19, 2021 11

Lipman's exact sequence

Let $Q = (a, b)$ be a minimal reduction of **I**. Since $a, b ∈ H⁰(X, O_X(-Z)),$ multiplication by (a, b) induces $O_X \to O_X(-Z)^{\oplus 2}$ and the following exact sequence due to Lipman (1969). (**a**,**b**) −**b** $\overline{\mathcal{C}}$ $\begin{pmatrix} -b \\ a \end{pmatrix}$ $\begin{array}{c} \hline \end{array}$

$$
0 \to O_X \stackrel{(a,b)}{\to} O_X(-Z)^{\oplus 2} \stackrel{(a)}{\to} O_X(-2Z) \to 0.
$$

Tensoring O**X**(−(**ⁿ** − **1**)**Z**) and taking the cohomology long exact sequence,

$$
\mathrm{H}^0(O_X(-(nZ)^{\oplus 2}) = \overline{\, \, \, \Gamma}^{\oplus 2} \xrightarrow{\alpha} \mathrm{H}^0(O_X(-(n+1)Z)) = \overline{\, \, \, \, \Gamma}^{n+1}
$$
\n
$$
\rightarrow \mathrm{H}^1(O_X(-(n-1)Z) \rightarrow \mathrm{H}^1(O_X(-nZ)^{\oplus 2}) \rightarrow \mathrm{H}^1(O_X(-)n+1)Z)) \rightarrow 0
$$

Since the image of $\alpha : \overline{I^{n}}^{22} \to \overline{I^{n+1}}$ is $\overline{QI^n}$, we have;

Corollary 3.3

1 If $q(nI) = q((n + 1)I)$ for some $n \ge 0$, then $q((n + 1)I) = q((n + 2)I) = \ldots = q(\infty I)$. Hence for $n \ge p_g(A)$, we have $q(nI) = q(\infty I).$

2 For all **n**,
$$
\ell_A(I^{n+1}/QI^n) = 2q(nI) - [q((n-1)I) + q((n+1))I].
$$

$nr(I), \bar{r}(I)$ and $q(nI)$

From Lipman's exact sequence and Lemma 3.1, we have also;

Corollary 3.4

Let **I** be an integrally closed ideal and **Q** be its minimal reduction. Then we have;

- **1** is a p_g ideal if and only if $\bar{r}(I) = 1$.
- **2** $nr(I) = min\{n | 2q(nI) = q((n-1)I) + q((n+1)I)\}$ and $\overline{r}(I) = \min\{n \mid q((n-1)I) = q(nI)\}.$
- **3** $\bar{r}(I) \leq p_g(A) + 1$ and if we have equality, then $nr(I) = 1$.

• (OWY4) If
$$
\mathbf{nr}(I) = r
$$
 for some I , then $\mathbf{p}_g(A) \geq \begin{pmatrix} r \\ 2 \end{pmatrix} + \mathbf{q}(rl)$.

p^g ideals exist abundantly.

Theorem 3.5

(OWY3) Let **^I** be an integrally closed ideal and **^f** ∈ **^I** is ^a general element. Then there exists a p_g ideal **I'** satisfying the conditions **I'** ⊂ **I** and $f \in I'$.

Kei-ichi WATANABE (Nihon University and MNormal Reduction Numbers, Normal Hilbert d Fellowship of the Ring; Mar 19, 2021 13

(4) and (5) of Main Results

Theorem 3.6 (OWY5)

Assume **A** has a resolution $f : X_0 \to \text{Spec}(A)$, where $\mathbb E$ is a single smooth curve **^F** of genus **^g** > **0** and −**^F ²** = **^d**. Let **^I** = **^I^Z** be represented on **^X** and **^E⁰** be the curve on **^X** of genus **g**. If gon(F) is minimal of degree of divisor **^D** on **^F** with $h^0(D) \geq 2$, we have

1 If $ZE_0 = 0$, then $\bar{r}(I) \leq \lfloor (2g - 2)/d \rfloor + 2$

1 If
$$
ZE_0 < 0
$$
, then $\bar{r}(I) \leq \lfloor (2g-2)/\text{gon}(F) \rfloor + 1$.

The important point of our proof is the Vanishing Thorem of Röhr ('95). The following example is very much different from the previous one.

Example 3.7 (OWY5)

Let $\bm{R} = \bm{k}[\bm{X},\bm{Y},\bm{Z}]/(\bm{X^2}+\bm{Y^{2g+2}}+\bm{Z^{2g+2}}),$ which we consider a graded ring $\mathsf{putting}\ \deg(\bm{X})=\bm{g}+\bm{1}$ and $\deg(\bm{Y})=\deg(\bm{Z})=\bm{1}.$ $\bm{A}=\bm{R^{(g)}},$ the $\bm{g}\text{-th}$ Veronese $\textsf{subring of } \bm{R} \text{ so that } \bm{A} = \bm{k}[\bm{y^g}, \bm{y^{g-1}z}, \dots, \bm{z^g}, \bm{xy^{g-1}}, \dots, \bm{xz^{g-1}}].$ Put **I** = $(y^g, y^{g-1}z, A_{≥2})$. Then we can show that $nr(I) = 1$ and $\bar{r}(I) = g + 1 = p_g(A) + 1.$

Elliptic Ideals, Strongly Elliptic Ideals

We would propose the following definition.

Definition 3.9

Let **^I** be an integrally closed m primary ideal **^I** of **^A**.

- **1** is called an **elliptic ideal** if $\bar{r}(I) = 2$.
- **2 I** is called a **strongly elliptic ideal** if $\bar{r}(I) = 2$ and $q(I) = p_g(A) 1$, or equivalently, $\bar{\mathbf{e}}_2(\mathbf{I}) = \mathbf{1}$.

The following statement is obvious from the definition.

Example 3.10

(1) If **A** is an elliptic singularity then every integrally closed ideal of **A** is either a **pg**- ideal or elliptic ideal.

(2) **A** is strongly elliptic, if and only if every integrally closed ideal **I** of **A** is either **p^g** -ideal or strongly elliptic.

(3) If $q(I) = 0$, then **I** is elliptic. Every **A** has **I** with $q(I) = 0$ since $H^1(O_X(-Z)) = 0$ if $-Z$ is sufficiently ample.

Kei-ichi WATANABE (Nihon University and MNormal Reduction Numbers, Normal Hilbert d Fellowship of the Ring; Mar 19, 2021 15/

Normal Hilbert function via Riemann-Roch Theorem

Theorem 3.11 (Kato's Riemann-Roch Theorem)

If
$$
I = I_z
$$
, then we have $\ell_A(A/I) = \frac{-Z^2 - K_X Z}{2} + [p_g(A) - q(I_z)].$

By this Theorem, we can write normal Hilbert function using **^Z**, **^KX**.

Corollary 3.12

$$
\ell_A(A/\overline{I^{n+1}}) = -Z^2 \binom{n+2}{2} - \frac{-Z^2 + ZK_X}{2} \binom{n+1}{1} + [p_g(A) - q((n+1)I)]
$$

Hence we have
$$
\mathbf{e}_0(I) = -\mathbf{Z}^2
$$
, $\bar{\mathbf{e}}_1(I) = \frac{-\mathbf{Z}^2 + K_X}{2}$, $\bar{\mathbf{e}}_2(I) = \mathbf{p}_g(A) - \mathbf{q}(\infty I)$ and

$$
\ell_A(A/I^{n+1}) = \mathbf{P}_I(n)
$$
 holds if $\mathbf{q}((n+1)I) = \mathbf{q}(\infty I)$ or $n \ge \bar{r}(I) - 1$.

In slide 6 we showed a resolution of $\bm{A} = \bm{k}[\bm{x},\bm{y},\bm{z}]/(\bm{x^3} + \bm{y^4} + \bm{z^6})$ and for $\mathfrak{m} = \mathfrak{l}_Z, Z^2 = -3$ and $\mathcal{K}_X Z = 3$. Then we have $\mathbf{1} = \ell(\mathcal{A}/\mathfrak{m}) = [\mathcal{p}_g(\mathcal{A}) - \mathcal{q}(\mathcal{I}_Z)]$ and since $p_a(A) = 2$ we have $q(I_z) = 2$. .
1999년 - 대한민국의
1999년 - 대한민국의 대한민

/16 - Kei-ichi WATANABE (Nihon University and MNormal Reduction Numbers, Normal Hilbert <mark>c Fellowship of the Ring; Mar 19, 2021</mark> 16

The case of p^g - ideals

Recall normal Rees algebra and normal associated graded ring of **I**.

$$
\overline{\mathcal{R}}(I) = \bigoplus_{n \geq 0} \overline{I^n} t^n \text{ and } \overline{G}(I) = \bigoplus_{n \geq 0} \overline{I^n} / I^{n+1} t^n
$$

Theorem 4.1 (OWY2)

The following conditions are equivalent for **I**.

- **¹ ^I** is ^a **pg**-ideal.
- **2** $\bar{r}(I) = 1$.
- **3** $\bar{e}_1(I) = e_0(I) \ell_A(A/I).$
- **4** $\bar{e}_2(I) = 0$.
- **⁵** R(**I**) is Cohen-Macauly.
- **6** $\overline{G}(I)$ is CM with $a(\overline{G}(I)) < 0$.

Characterizations of Elliptic Ideals.

Theorem 4.2

The following conditions are equivalent:

1 is an elliptic ideal. Namely, $p_g(A) > q(I) = q(\infty I)$.

2
$$
\bar{e}_1(I) = e_0(I) - \ell_A(A/I) + \bar{e}_2(I)
$$
 and $\bar{e}_2(I) > 0$.

$$
\text{or } \ell_A(A/I^{n+1}) = \bar{P}_I(n) \text{ for all } n \geq 0 \text{ and } \bar{e}_2(I) > 0.
$$

 \bar{G} is Cohen-Macaulay with $\bar{a}(\bar{G}) = 0$.

When this is the case, $\ell_{\mathbf{A}}([H_{\infty}^{2}])$ $\frac{d^2}{dt^2}(\bar{G})]_0$) = $\ell_A(I^2/QI)$ = $\bar{e}_2(I)$. If, moreover,

 $mP \subset QI$, then $R(I)$ is a Buchsbaum ring.

There are also abundant elliptic ideals in a given ring **A**.

Proposition 4.3

For any **I**, **Iⁿ** is an elliptic ideal if $n \geq \overline{r}(I) - 1$.

.
Kei-ichi WATANABE (Nihon University and MNormal Reduction Numbers, Normal Hilbert d Fellowship of the Ring; Mar 19, 2021

Characterizations of Strongly Elliptic Ideals.

Strongly elliptic ideals are characterized as follows.

Theorem 4.4

Then the following conditions are equivalent:

•
$$
\bar{r}(I) = 2
$$
 and $\ell_A(I^2/QI) = 1$; That is, I is strongly elliptic.

$$
q(I) = q(\infty I) = p_g(A) - 1.
$$

$$
\bullet \ \bar{e}_2(I)=1.
$$

$$
\bullet \quad \bar{e}_1(I) = e_0(I) - \ell_A(A/I) + 1 \text{ and } \mathrm{nr}(I) = \bar{r}(I).
$$

•
$$
\bar{G}
$$
 is Cohen-Macaulay with $a(\bar{G}) = 0$ and $\ell_A([H^2_{\mathfrak{M}}(\bar{G})]_0) = 1$.

In this case, $\bar{\mathcal{R}}$ is a Buchsbaum ring with $\ell_{\mathbf{A}}(\boldsymbol{H}^{\mathbf{2}}_{\mathbf{a}})$ $\binom{2}{\mathfrak{M}}(\bar{\mathcal{R}}) = 1.$

Elliptic ideal is strongly elliptic in some cases;

Proposition 4.5

If (**A**, m) is Gorenstein and if m is elliptic, then m is strongly elliptic.

Existence of Strongly Elliptic Ideals

For strongly elliptic ideals, we have positive answer for elliptic singularities.

Proposition 5.1

If **A** is elliptic, then for any q , $0 \leq q \leq p_g(A)$, there exists an integrally closed ideal **I** with $q(I) = q$. In particular, **A** has a strongly elliptic ideal.

But on the other hand, some **A** does not have any strongly elliptic ideals. Since $q(\infty l) = p_g(A) - 1$ if $l = l_z$ is strongly elliptic, then if we put $Y_I = \text{Proj}(\mathcal{R}_A(I))$, the normal blowing-up of *I*, then we have $h^1(O_Y) = 1$ and there is a cycle \boldsymbol{C} such that $\boldsymbol{Z}\boldsymbol{C}=\boldsymbol{0}$ and $\boldsymbol{h}^1(O_{\boldsymbol{C}})=\boldsymbol{p_g}(\boldsymbol{A})-\boldsymbol{1}.$

Example 5.2

 $\mathsf{Let}\ \boldsymbol{A}=\oplus_{n\geq 0}\mathrm{H}^{\boldsymbol{0}}(\boldsymbol{C}, O_{\boldsymbol{C}}(n\boldsymbol{D})),$ where \boldsymbol{C} is a smooth curve of genus $\boldsymbol{g}\geq 2$ and **^D** is a divisor on **^C** with deg **^D** ≥ **2^g** − **1** (or Spec(**A**) can be resolved with unique exceptional curve **^C** with −**^C ²** ≥ **2^g** − **1**). Then **^A** has no strongly elliptic ideals, since for any cycle **C** on any resolution **X** of $\mathsf{Spec}(\boldsymbol{A}),\,\boldsymbol{h^1}(O_{\boldsymbol{C}})$ is either $\boldsymbol{0}$ or $\boldsymbol{g}=\boldsymbol{p_g}(\boldsymbol{A}).$

Normal and Non-normal Strongly Elliptic Ideals

If **I** is strongly elliptic, then since $\ell_A(P/QI) = 1$ and $QI \subset I^2 \subset I^2$, either $I^2 = QI$ or I^n are integrally closed for all $n \geq 2$.

If **A** is elliptic, we can distinguish these **2** cases by certain intersection number.

Theorem 5.3

If **A** is strongly elliptic, $I = I_z$ be an elliptic ideal represented on **X** and **D** be the minimally elliptic cycle on **X**. Then **I 2** is integrally closed if and only if −**DZ** ≥ **3**.

Remark 5.4

If **I** is strongly elliptic, then $I^2 \subset \text{core}(I)$ if **I** is not normal and $mI^2 \subset \text{core}(I)$ if **I** is normal.

M. Artin, On isolated rational singularities of surfaces, American J. of

Math. **88** (1966), 129–136.

- **J.** Lipman, Rational singularities with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. **36** (1969), 195–279.
- T. Okuma, Cohomology of ideals in elliptic surface singularities, Illinois J. Math. **61** (2017), no. 3–4, 259–273.
- \blacksquare A. Röhr, A vanishing theorem for line bundles on resolutions of surface singularities, Abh. Math. Sem. Univ. Hamburg **65** (1995), 215–223.
- P. Wagreich, Elliptic singularities of surfaces, American J. of Math. **92** (1970), 419–454.
- K.-i. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity, McKay correspondence and Good ideals in 2-dimensional Rational Singularities, Manuscripta Math. **104** (2001), 275–294.
- S. S. T. Yau, On strongly Elliptic Singularities, Amer. J. of Math. **101** (1979), no .4, 855–884.

Thank you very much !

 $\begin{picture}(160,17)(-0.00,0.00) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line(1,0){10}}$ \equiv 299 .
Kei-ichi WATANABE (Nihon University and MNormal Reduction Numbers, Normal Hilbert d Fellowship of the Ring; Mar 19, 2021 24

