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The compressible Euler equations

Variables: v = gas velocity, p = gas density.

System in R4, d > 1:

pt+ V(pv) =0 (conservation of mass)
plve+ (v-V)v)+Vp=0 (conservation of momentum)

Cauchy data:
Constitutive law

Standard model:
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The structure of the equations

Material derivative:
D=0 +v-V
With this notation the system is rewritten as
Dip+pVv =0
pDyv 4+ Vp = 0.
a) Wave equation for p, V - v:
Dip—pV(p~ ' (p)Vp) = p[(V - v)* = Tr(Vv)?]
Propagation speed (sound speed):

2 =p(p)

b) Transport equation for the vorticity w = curl v

Dw = — w- Vv — (Vo)Tw
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Vacuum states

Vacuum state: p =0

Gas domain Q(t) C R?

Free boundary: T'(t) = 99(t)
Fluid vs. gas:

e Fluid: pA0onT.
@ Gas: p—>0onT.

Acceleration of particles on free boundary: a = —Vc2.

Physical vacuum:
ci(m) ~d(z,T)
@ Stable evolution mode

@ Nontrivial dynamics for the free boundary
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The well-posedness question

Lagrangian setting: Parametrize by initial particle position.
Particles are fixed, geometry is changing.

Earlier work: Existence and uniqueness in high regularity spaces.
e Coutand-Lindblad-Skholler
e Jang-Masmoudi
e Coutand-Skholler

Eulerian setting: Use euclidean coordinates. Particles are moving,
geometry is fixed.

Our objectives:
@ Redevelop theory fully in Eulerian setting.
© Obtain sharp results in terms of regularity.

© Provide a complete theory, including difference bounds, continuous
dependence.

@ Framework that applies to the relativistic case.
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The good variables

Recall:

New variable

K+ 1

K = g
KR

Equation for good variables (7, v):

Dyr+ krVo =0
Dw+Vr=0.

Conserved energy:

—k 1
E:/rln (r2+/€; rv2> dx
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Sobolev spaces

Energy space H:

1-k
(o)l = [ 75 (sl + rluf?) do

Acoustic metric:

1
ds? = = dx?
r
Higher Sobolev spaces H2*:
|B|—a<k
(s, w)Fe = D r0%(s,w) 3,
|BI<2k

o Noninteger case defined by interpolation.

State space H?*: “infinite dimensional manifold”

H? = {(r,v)| (r,v) € H*, |Vr|>0on T}
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Scaling and control norms:

(r(t,x),v(t,z)) = (A" 2r(\t, A2z), Ao (A, A%2)).
Scaling based counting for order of factors in multilinear expressions:
@ r and v have degree —1, respectively —%.
© V has order 1 and D; has order %

Critical Sobolev space H?*o: .
2kg =d+1+4+ —
K

Control parameters:
A=|Vr=N|g=+|vl,;  (bounded by H2koT)
B = |Vrllgoy +¥ell=  (bounded by H24+1)

where the C%3 norm is given by

oy = sup — @ =W

T,y T(x)% + r(y)% + |z — y]%
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Main results 1

Theorem (Uniqueness)

For every Lipschitz initial data (ro,vo) satisfying the nondegeneracy
condition |Vrg| > 0 on Ty, the solution (r,v) is unique in the class

~0,%
v el Vr e C2.

Theorem (Well-posedness)

v

The (r,v) system is locally well-posed in the space H** for k € R with
2k > 2ky + 1.

Full Hadamard+ quasilinear well-posedness:
e Existence of solutions (r,v) € C[0, T; H?¥].
@ Uniqueness of solutions in a larger class, see the uniqueness
Theorem above.
@ Weak Lipschitz dependence on the initial data, relative to a new,
nonlinear distance functional.
e Continuous dependence of the solutions on the initial data in H2".
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Main results I1

Theorem (Energy estimates)

For each integer k > 0 there exists an energy functional E** such that:

E**(r,0) ~ ||(r,v) [ (coercivity)

%E%(T,v) <a B||(r,v)||3{2k (growth bound)

Gronwall (also for noninteger k by interpolation):

1(r,0)(0) 326 S elo CABEL) (1 0) (1) (0) 32

Theorem (Continuation)

Let 2k > 2ko + 1. Then the H** solutions can be continued for as long
as A remains bounded and B € Lj.

Same scale as standard continuation results in boundaryless case !
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The linearized equation

Linearized variables (s, w)

Dis+w-Vr+k(sV-v+7rV-w)=0
Dyw + (w-V)v+ Vs =0.

Proposition

Assume that A is bounded and B € L}. Then the linearized equation is
well-posed in H, and the following energy estimate holds:

S IIVollzell(s, w) 13

d
el

@ No boundary conditions are imposed or needed on I" !
@ State space H is time dependent.
e Equation is imposed in the sense of distributions.

@ Proof is by energy estimates and duality.
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The second order transition operators

Interpret evolution as second order in time:
Dfs ~ Lis, Lis=krAs+Vr-Vs
@ [ is coercive, self-adjoint in first component of .

D?w =~ Lyw, Low = kV(rV -w)+ V(Vr-w).

@ [ is self-adjoint in second component of H.
o At leading order only depends on V - w.
Add matching curl operator:

_1 . 1 .
Ls = kr—x div r't% curl = k div reurl + Vrcurl

o Commuting, LolLg = L3Lo = 0.

@ Lo + Lg is self-adjoint, coercive in second component of .
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Difference bounds I

Main challenge: Compare states (r1,v1), (72, v2) on different domains !
a) Nondegenerate distance functional Dy ((r1,v1), (r2,ve)):

Dy, :/ (rtra) ™ ((ry — 72)? + (11 4 r2) (0 — w)?) dz, Q= Ny
Q

@ Good at measuring distance

@ Not so good for propagation !
b) Degenerate distance functional:

Dy = /Q(h +r2) w7 (a(r1, 7o) (1 — 12)% + Kb(r1, 7o) (v1 — v2)?) da,

e Not so good at [directly] measuring distance

@ Good for propagation !
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Difference bounds I1

Proposition (Equivalence)

Assume that A = Ay + Ay is small. Then

Dyy((r1,v1), (r2,v2)) 4 Dyy((r1,v1), (r2, v2)).

v

Proposition (Growth)

Assume that A = A1 + Ay is small. Then

d

Eﬁy((n,m), (r2,v2)) S (B1+ B2)Dy((r1,v1), (r2, v2)).

\

@ Proof uses delicate boundary layer analysis.

Combining the two and using Gronwall’s inequality, we obtain

Dag((r1,v1) (1), (ra, v2)(£)) S C(A)CA o BEMS Dy (4, 01)(0), (ra, v2)(0))
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Energy estimates 1

H?* energy E?* with two components:

E2k (T7 U) Ei’fwe (T 1)) + Etransport (’l“, 1))

a) The wave energy is constructed using iterated material derivatives
(ro, vax) = (D}*r, DF*v)
These are used to construct Alihnac style good variables
(2K, wak) = (rog — V7 - war—1,v9%),  k>"0

viewed as multilinear expressions in (r,v) at fixed time.

Egzlfwe ZH 82k7w2k ||7-l

b) The transport energy is deﬁned in terms of the vorticity

Et’/‘ansport (’I", U) HUJHH% Lk+L 1
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The energy properties

The energy functional E** in H?* has the following two properties:
a) Norm equivalence (coercivity):

E*(r,v) 2 ||(r, v) 321

b) Energy estimate:

d
= B (r,0) Sa BIr,v)l3.

@ Choice of energy functional is not unique, particularly for the
transport component.

e By finite speed of propagation, the scale invariant parameter A
can be always assumed to be small.
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Energy estimates: the good variables

a) Coercivity is based on recurrence type relations
so; = L1sgj—2 + fa5, waj = Lowaj_o + g5,

where fy; and go; are balanced multilinear expressions of the same
order, and are estimated perturbatively using interpolation inequalities.

b) Growth bounds are based on the linearized equation
Linearized Euler(so, war) = (Fay, Gok)

where Fy, and G are also balanced multilinear expressions of the
same order, estimated perturbatively using interpolation inequalities.

Balanced = Products of at least two multilinear expressions with
positive orders.
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Existence of solutions: time discretization

Time-step € > 0. Given initial data (rg,vg) € H?2* we produce a

discrete approximate solution (r(je),v(je)), with the following
properties:

a) Norm bound:

E?(r((j + 1)e),v((j + 1)e)) < (1+ Ce)E* (r((je), v(je))-

b) Approximate solution:

+ e[w(je)Vr(je) + kr(je)V - v(je)] = O(€?)
v((j + 1)e) — v(je) + €[(v(je) - V)v(je) + Vr(je)] = O(e?)

o It suffices to do this at high regularity.
o It suffices to carry out a single iteration.

e Constant C' depends only on H?* norm of k-th iterate.
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Existence of solutions: The one iteration

Idea I: Newton method [loses 2 derivatives]

r1 =10 — €[voVro + KkroV - vg]
vy = vy — €[(vg - V)vg + Vro]

Idea II: Transport + Newton method [loses 1 derivative]

r1 = 2o+ EU()(IL'())
ri(z1) = [ro — ekroV - vgl (x0)

vi(z1) = [vo — €Vro] (7o)

Idea III: Regularization+ Transport + Newton method [no loss !]
Precede the above with a regularization step,

(ro,vo) — (r,v)

Then apply the previous idea with (rg,vg) replaced by (r,v).
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Existence: the regularization step

Given (ro,vo) € H?* with size M, there exists a reqularization (r,v)
with the following properties:

i) (r—ro,v—1vg) = O(e?),

(small error)

i) E*(r,v) < (14 C(M)e)E?*(rg, vp) (energy bound)

ii1) || (r,v) ||l y2eee S €M,

(parabolic regularization scale).
Difficulties:

o Regularization must be adapted to acoustic metric.

@ The domain has to change in the regularization.

@ Regularization must also be adapted to the energy.
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Rough solutions as limit of smooth solutions

Frequency envelope based approach:
i) Start with a rough data (rg,vg) € H%(’f, and frequency envelope cj,.
ii) Consider the regularized initial data (rf,v{), with estimates

H(rg,vg)Hsz < ||(ro,vo) || gx2x - (uniform bound)

||(T6L7 vé”)llek+zj N 2%hicy,, j>0. (higher regularity)
h
D((ﬁ?“a vé‘“), (7”3, vé‘)) S 2 2hke, (low frequency difference bound)

iii) Use energy and difference bounds to propagate these estimates to
the associated solutions (r, v").

iv) Prove that the limit (r,v) exists in a weaker topology, e.g. C! x Cx.
v) Show convergence in the strong topology,

1", 0") =W (o) [ S =)
i>h
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Continuous dependence on data in H?

a) Start with a sequence of data (rjo,vjo) — (10, v0) in H2¥; their
associated frequency envelopes c;, ¢ can be chosen so that ¢; — ¢ in L?.

b) The corresponding regularized data (7“;-10, U;'Lo) — (B, %) in all higher
topologies, and so will the corresponding solutions (7“?, v;“”) — (rP,oh).

c¢) The H?* “distance” between (r?,v;?) and (r;,v;) is estimated by

¢j>h — C>p 50 we can make it small uniformly in j.

d) Letting h — oo, we see that the regularized solutions (r7,v")

RN
converge to (r;,v;) uniformly.

For an overview of the use of frequency envelopes in the study of local
well-posedness applied in a simpler quasilinear setting, see our recent
notes on the arxiv.
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Thank you !
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