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The compressible Euler equations

Variables: v = gas velocity, ρ = gas density.

System in R1+d, d ≥ 1:{
ρt +∇(ρv) = 0 (conservation of mass)

ρ(vt + (v · ∇)v) +∇p = 0 (conservation of momentum)

Cauchy data:
ρ(t = 0) = ρ0, v(t = 0) = v0

Constitutive law
p = p(ρ).

Standard model:
p(ρ) = ρκ+1, κ > 0

M. Ifrim (University of Wiscosnin) Compressible Euler February 16th, 2021 2 / 23



The structure of the equations

Material derivative:
Dt = ∂t + v · ∇

With this notation the system is rewritten as{
Dtρ+ ρ∇v = 0

ρDtv +∇p = 0.

a) Wave equation for ρ,∇ · v:

D2
t ρ− ρ∇(ρ−1p′(ρ)∇ρ) = ρ[(∇ · v)2 − Tr(∇v)2]

Propagation speed (sound speed):

c2
s = p′(ρ)

b) Transport equation for the vorticity ω = curl v

Dtω = − ω · ∇v − (∇v)Tω
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Vacuum states

Vacuum state: ρ = 0

Gas domain Ω(t) ⊂ Rd

Free boundary: Γ(t) = ∂Ω(t)

Fluid vs. gas:

Fluid: ρ 6→ 0 on Γ.

Gas: ρ→ 0 on Γ.

Acceleration of particles on free boundary: a = −∇c2
s.

Physical vacuum:
c2
s(x) ≈ d(x,Γ)

Stable evolution mode

Nontrivial dynamics for the free boundary
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The well-posedness question

Lagrangian setting: Parametrize by initial particle position.
Particles are fixed, geometry is changing.

Earlier work: Existence and uniqueness in high regularity spaces.

Coutand-Lindblad-Skholler

Jang-Masmoudi

Coutand-Skholler

Eulerian setting: Use euclidean coordinates. Particles are moving,
geometry is fixed.

Our objectives:

1 Redevelop theory fully in Eulerian setting.

2 Obtain sharp results in terms of regularity.

3 Provide a complete theory, including difference bounds, continuous
dependence.

4 Framework that applies to the relativistic case.
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The good variables

Recall:
p(ρ) = ρκ+1, c2s = (κ+ 1)ρκ

New variable

r =
κ+ 1

κ
ρκ ⇒ c2

s = κr

Equation for good variables (r, v):{
Dtr + κr∇v = 0

Dtv +∇r = 0.

Conserved energy:

E =

∫
r

1−κ
κ

(
r2 +

κ+ 1

2
rv2

)
dx
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Sobolev spaces

Energy space H:

‖(s, w)‖2H =

∫
r

1−κ
κ
(
|s|2 + κr|w|2

)
dx

Acoustic metric:

ds2 =
1

r
dx2

Higher Sobolev spaces H2k:

‖(s, w)‖2H2k =

|β|−α≤k∑
|β|≤2k

‖rα∂β(s, w)‖2H

Noninteger case defined by interpolation.

State space H2k: “infinite dimensional manifold”

H2k = {(r, v) | (r, v) ∈ H2k, |∇r| > 0 on Γ}
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Scaling and control norms:

(r(t, x), v(t, x))→ (λ−2r(λt, λ2x), λ−1v(λt, λ2x)).

Scaling based counting for order of factors in multilinear expressions:
1 r and v have degree −1, respectively −1

2 .
2 ∇ has order 1 and Dt has order 1

2 .

Critical Sobolev space H2k0 :

2k0 = d+ 1 +
1

κ

Control parameters:

A = ‖∇r −N‖L∞ + ‖v‖
Ċ

1
2

(bounded by H2k0+)

B = ‖∇r‖
C̃0, 12

+ ‖∇v‖L∞ (bounded by H2k0+1+)

where the C̃0, 1
2 norm is given by

‖f‖
C̃0, 12

= sup
x,y∈Ωt

|f(x)− f(y)|
r(x)

1
2 + r(y)

1
2 + |x− y|

1
2

.
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Main results I

Theorem (Uniqueness)

For every Lipschitz initial data (r0, v0) satisfying the nondegeneracy
condition |∇r0| > 0 on Γ0, the solution (r, v) is unique in the class

v ∈ C1
x, ∇r ∈ C̃0, 1

2
x .

Theorem (Well-posedness)

The (r, v) system is locally well-posed in the space H2k for k ∈ R with

2k > 2k0 + 1.

Full Hadamard+ quasilinear well-posedness:

Existence of solutions (r, v) ∈ C[0, T ;H2k].
Uniqueness of solutions in a larger class, see the uniqueness
Theorem above.
Weak Lipschitz dependence on the initial data, relative to a new,
nonlinear distance functional.
Continuous dependence of the solutions on the initial data in H2k.
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Main results II

Theorem (Energy estimates)

For each integer k ≥ 0 there exists an energy functional E2k such that:

E2k(r, v) ≈ ‖(r, v)‖2H2k (coercivity)

d

dt
E2k(r, v) .A B‖(r, v)‖2H2k (growth bound)

Gronwall (also for noninteger k by interpolation):

‖(r, v)(t)‖2H2k . e
∫ T
0 C(A)B(s) ds‖(r, v)(t)(0)‖2H2k .

Theorem (Continuation)

Let 2k > 2k0 + 1. Then the H2k solutions can be continued for as long
as A remains bounded and B ∈ L1

t .

Same scale as standard continuation results in boundaryless case !
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The linearized equation

Linearized variables (s, w){
Dts+ w · ∇r + κ(s∇ · v + r∇ · w) = 0

Dtw + (w · ∇)v +∇s = 0.

Proposition

Assume that A is bounded and B ∈ L1
t . Then the linearized equation is

well-posed in H, and the following energy estimate holds:∣∣∣∣ ddt‖(s, w)‖2H
∣∣∣∣ . ‖∇v‖L∞‖(s, w)‖2H

No boundary conditions are imposed or needed on Γ !

State space H is time dependent.

Equation is imposed in the sense of distributions.

Proof is by energy estimates and duality.
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The second order transition operators

Interpret evolution as second order in time:

D2
t s ≈ L1s, L1s = κr∆s+∇r · ∇s

L1 is coercive, self-adjoint in first component of H.

D2
tw ≈ L2w, L2w = κ∇(r∇ · w) +∇(∇r · w).

L2 is self-adjoint in second component of H.

At leading order only depends on ∇ · w.

Add matching curl operator:

L3 = κr−
1
κ div r1+ 1

k curl = κ div r curl +∇r curl

Commuting, L2L3 = L3L2 = 0.

L2 + L3 is self-adjoint, coercive in second component of H.
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Difference bounds I

Main challenge: Compare states (r1, v1), (r2, v2) on different domains !

a) Nondegenerate distance functional DH((r1, v1), (r2, v2)):

DH =

∫
Ω

(r1+r2)
1
κ
−1
(
(r1 − r2)2 + (r1 + r2)(v1 − v2)2

)
dx, Ω = Ω1∩Ω2

Good at measuring distance

Not so good for propagation !

b) Degenerate distance functional:

D̃H :=

∫
Ω

(r1 + r2)
1
κ
−1
(
a(r1, r2)(r1 − r2)2 + κb(r1, r2)(v1 − v2)2

)
dx,

Not so good at [directly] measuring distance

Good for propagation !
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Difference bounds II

Proposition (Equivalence)

Assume that A = A1 +A2 is small. Then

DH((r1, v1), (r2, v2)) ≈A D̃H((r1, v1), (r2, v2)).

Proposition (Growth)

Assume that A = A1 +A2 is small. Then

d

dt
D̃H((r1, v1), (r2, v2)) . (B1 +B2)DH((r1, v1), (r2, v2)).

Proof uses delicate boundary layer analysis.

Combining the two and using Gronwall’s inequality, we obtain

DH((r1, v1)(t), (r2, v2)(t)) . C(A)eC(A)
∫ t
0 B(s)dsDH((r1, v1)(0), (r2, v2)(0))
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Energy estimates I

H2k energy E2k with two components:

E2k(r, v) = E2k
wave(r, v) + E2k

transport(r, v)

a) The wave energy is constructed using iterated material derivatives

(r2k, v2k) = (D2k
t r,D

2k
t v)

These are used to construct Alihnac style good variables

(s2k, w2k) = (r2k −∇r · w2k−1, v2k), k ≥∗ 0

viewed as multilinear expressions in (r, v) at fixed time.

E2k
wave(r, v) =

k∑
j=0

‖(s2k, w2k)‖2H

b) The transport energy is defined in terms of the vorticity

E2k
transport(r, v) = ‖ω‖2

H2k−1,k+ 1
κ
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The energy properties

Theorem

The energy functional E2k in H2k has the following two properties:
a) Norm equivalence (coercivity):

E2k(r, v) ≈A ‖(r, v)‖2H2k .

b) Energy estimate:

d

dt
E2k(r, v) .A B‖(r, v)‖2H2k .

Choice of energy functional is not unique, particularly for the
transport component.

By finite speed of propagation, the scale invariant parameter A
can be always assumed to be small.
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Energy estimates: the good variables

a) Coercivity is based on recurrence type relations

s2j = L1s2j−2 + f2j , w2j = L2w2j−2 + g2j ,

where f2j and g2j are balanced multilinear expressions of the same
order, and are estimated perturbatively using interpolation inequalities.

b) Growth bounds are based on the linearized equation

LinearizedEuler(s2k, w2k) = (F2k, G2k)

where F2k and G2k are also balanced multilinear expressions of the
same order, estimated perturbatively using interpolation inequalities.

Balanced = Products of at least two multilinear expressions with
positive orders.
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Existence of solutions: time discretization

Time-step ε > 0. Given initial data (r0, v0) ∈ H2k we produce a
discrete approximate solution (r(jε), v(jε)), with the following
properties:
a) Norm bound:

E2k(r((j + 1)ε), v((j + 1)ε)) ≤ (1 + Cε)E2k(r((jε), v(jε)).

b) Approximate solution:{
r((j + 1)ε)− r(jε) + ε [v(jε)∇r(jε) + κr(jε)∇ · v(jε)] = O(ε2)

v((j + 1)ε)− v(jε) + ε [(v(jε) · ∇)v(jε) +∇r(jε)] = O(ε2)

It suffices to do this at high regularity.

It suffices to carry out a single iteration.

Constant C depends only on H2k norm of k-th iterate.
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Existence of solutions: The one iteration

Idea I: Newton method [loses 2 derivatives]

r1 = r0 − ε [v0∇r0 + κr0∇ · v0]

v1 = v0 − ε [(v0 · ∇)v0 +∇r0]

Idea II: Transport + Newton method [loses 1 derivative]

x1 = x0 + εv0(x0)

r1(x1) = [r0 − εκr0∇ · v0] (x0)

v1(x1) = [v0 − ε∇r0] (x0)

Idea III: Regularization+ Transport + Newton method [no loss !]
Precede the above with a regularization step,

(r0, v0)→ (r, v)

Then apply the previous idea with (r0, v0) replaced by (r, v).
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Existence: the regularization step

Proposition

Given (r0, v0) ∈ H2k with size M , there exists a regularization (r, v)
with the following properties:

i) (r − r0, v − v0) = O(ε2), (small error)

ii) E2k(r, v) ≤ (1 + C(M)ε)E2k(r0, v0) (energy bound)

iii) ‖(r, v)‖H2k+2 . ε−1M, (parabolic regularization scale).

Difficulties:

Regularization must be adapted to acoustic metric.

The domain has to change in the regularization.

Regularization must also be adapted to the energy.
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Rough solutions as limit of smooth solutions

Frequency envelope based approach:
i) Start with a rough data (r0, v0) ∈ H2k

r0 , and frequency envelope ch.
ii) Consider the regularized initial data (rh0 , v

h
0 ), with estimates

‖(rh0 , vh0 )‖H2k .A ‖(r0, v0)‖H2k . (uniform bound)

‖(rh0 , vh0 )‖
H2k+2j
h

. 22hjch, j > 0. (higher regularity)

D((rh+1
0 , vh+1

0 ), (rh0 , v
h
0 )) . 2−2hkch (low frequency difference bound)

iii) Use energy and difference bounds to propagate these estimates to
the associated solutions (rh, vh).

iv) Prove that the limit (r, v) exists in a weaker topology, e.g. C1× Ċ
1
2 .

v) Show convergence in the strong topology,

‖(rh, vh)−Ψh(r, v)‖2H2k . c2
≥h :=

∑
j≥h

c2
j
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Continuous dependence on data in H2k

a) Start with a sequence of data (rj0, vj0)→ (r0, v0) in H2k; their
associated frequency envelopes cj , c can be chosen so that cj → c in L2.

b) The corresponding regularized data (rhj0, v
h
j0)→ (rh0 , v

h
0 ) in all higher

topologies, and so will the corresponding solutions (rhj , v
h
j )→ (rh, vh).

c) The H2k “distance” between (rhj , v
h
j ) and (rj , vj) is estimated by

cj,≥h → c≥h so we can make it small uniformly in j.

d) Letting h→∞, we see that the regularized solutions (rhj , v
h
j )

converge to (rj , vj) uniformly.

For an overview of the use of frequency envelopes in the study of local
well-posedness applied in a simpler quasilinear setting, see our recent
notes on the arxiv.
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Thank you !
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