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The problem

Figure: Manhattan beach wave
c©Eino Mustonen

(https://en.wikipedia.org/wiki/File:Manhattan beach wave.JPG)
CC BY-SA 3.0
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The problem (waves of interest)

νπ
ρair = 0

ρwater = 1

Figure: A wave with sharp crest

ρair = 0

ρwater = 1

Figure: A smooth wave with large curvature/large C1,α norm (0 < α ≤ 1)
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The problem (assumptions)

ρair = 0

ρwater = 1

θ

Fluid region Ω(t) ⊂ R2

Zero viscosity

Incompressible and irrotational

Infinite depth and interface tends to flat at infinity

Constant gravity g = 1 and surface tension coefficient σ ≥ 0
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The problem (Euler equation)

As Ω(t) ⊂ R2 ' C, we let i =
√
−1.

vt + (v · ∇)v = −∇P − i in Ω(t)

∇ · v = 0 ∇× v = 0 in Ω(t)

where v : Ω(t)→ C, P : Ω(t)→ R.

P = −σ∂sθ on ∂Ω(t)

(1, v) is tangent to the free surface (t, ∂Ω(t))

v → 0, vt → 0 as |(x , y)| → ∞

Here ∂s = arc length derivative, ∂sθ = curvature
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Special solutions: Travelling waves

Stokes waves: periodic traveling waves, infinite depth, zero surface tension, for
fixed wavelength λ solutions parameterized by height H, λ and H uniquely
determine speed c.

Stokes (1880), Toland (78), Amick-Fraenkel-Toland (82), Plotnikov (82),
Plotnikov-Toland (04), Varvaruca-Weiss (11), Constantin (12)

120◦ 120◦

c

Figure: Stokes wave of greatest height

Stokes waves are unstable: Benjamin-Feir (67), Bridges-Mielke (95),
Deconinck-Oliveras (11), Nguyen-Strauss (20), Hur-Yang (20), Chen-Su (20)

See also: Wilkening (11), Clamond-Henry (20)
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The Cauchy problem

Z(·, t) : R→ ∂Ω(t)

ρair = 0

ρwater = 1

∇ · v = 0 ∇× v = 0 =⇒ v̄ : Ω(t)→ C is holomorphic

Take divergence to the Euler equation

∆P = −|∇v|2 in Ω(t)

P = −σ∂sθ on ∂Ω(t)

Need to solve for ∂Ω(t), v |∂Ω(t)

Initial data in Riemann mapping coordinates is Z(·, 0),Zt(·, 0) where
DtZ = Zt and Dt = material derivative.
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Previous works (Local wellposedness for σ = 0)

∂t ∼ ∂1/2
α . So Zα − 1 ∈ Hs(R),Zt ∈ Hs+ 1

2 (R)

Small data local existence:
Nalimov (74), Yoshihara (82), Craig (85)

Local wellposedness:
Wu (97,99) s ≥ 4, Christodoulou-Lindblad (00), Lannes (05), Lindblad

(05), Coutand-Shkoller (07), Zhang-Zhang (08),
Castro-Córdoba-Fefferman-Gancedo-Gómez Serrano (12), Alazard-Burq-Zuily
(14), Kukavica-Tuffaha (14), Hunter-Ifrim-Tataru (16), Griffiths-Ifrim-Tataru
(17), Alazard-Burq-Zuily (18), Poyferré (19), Ai (19,20), Ai-Ifrim-Tataru
(19) C 1.25 interfaces, Wu (20)
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Previous works (Local wellposedness for σ > 0)

∂t ∼ ∂3/2
α . So Zα − 1 ∈ Hs(R),Zt ∈ Hs− 1

2 (R)

Small data local existence:
Yoshihara (83)

Local wellposedness for fixed σ > 0 (T → 0 as σ → 0)
Beyer-Gunther (98), Iguchi (01), Ambrose (03), Coutand-Shkoller (07),

Christianson-Hur-Staffilani (10), Shatah-Zeng (11), Alazard-Burq-Zuily (11),
Poyferré-Nguyen (16,17), Nguyen (17) C 2.25+ interfaces

Zero surface tension limit: (T uniform for 0 ≤ σ ≤ σ0)
Ambrose-Masmoudi (05,09), Shatah-Zeng (08), Ming-Zhang (09),

Castro-Córdoba-Fefferman-Gancedo-Gómez Serrano (12), Shao-Shih (18)

In both types of results T → 0 as κ→∞ where κ = curvature (irrespective of
the value of σ)
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Previous works

Small data long/global existence:
Wu (09,11), Germain-Masmoudi-Shatah (12,15), Ionescu-Pusateri (15),

Alazard-Delort (15), Hunter-Ifrim-Tataru (16), Ifrim-Tataru (17),
Griffiths-Ifrim-Tataru (17), Wang (17), Deng-Ionescu-Pausader-Pusateri
(17), Berti-Delort (18), Ionescu-Pusateri (18), Berti-Feola-Pusateri (18), Su
(18), Ai-Ifrim-Tataru (19), Wang (19), Wu (20)

Splash singularity:
Castro-Cordoba-Fefferman-Gancedo-Serrano (13), Coutand-Shkoller (14)

Two fluids:
Cheng-Coutand-Shkoller (08), Shatah-Zeng (11), Lannes (13)

Compressible fluids:
Tanaka and Tani (03), Lindblad (05), Jang-Masmoudi (09),

Coutand-Lindblad-Shkoller (10), Coutand-Shkoller (11,12), Jang-Masmoudi
(15), Jang-LeFloch-Masmoudi (16), Lindblad-Luo (18), Hadžić-
Shkoller-Speck (19), Disconzi-Kukavica (19), Ginsberg (19),
Miao-Shahshahani-Wu (20), Ifrim-Tataru (20), Disconzi-Ifrim-Tataru (20)
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The system

Initial data in Riemann mapping coordinates is Z(·, 0),Zt(·, 0) where
DtZ = Zt and Dt = material derivative.

The system is in the variables (Zα,Zt) satisfying

DtZα = Ztα − bαZα

DtZ t = i − i
A1

Zα
+
σ

Zα
∂α(I + H)

{
Im

(
1

Zα
∂α

Zα
|Zα|

)}
where

b = Re(I−H)

(
Zt

Zα

)
A1 = 1− Im[Zt ,H]Z tα

H = Hilbert transform

= Fourier multiplier with symbol − sgn(ξ)

Dt = ∂t + b∂α
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The Quasilinear equations for σ = 0

The quasilinear equation is(
D2

t +

(
−∂P
∂n̂

)
1

|Zα|
|∂α|

)
f = l .o.t

For f = θ or Zt .

|∂α| =
√
−∆ = iH∂α = Fourier multiplier with symbol |ξ|

Linearize around zero solution(
∂2
t + |∂α|

)
f = 0
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Taylor sign condition

The Taylor sign condition is

−∂P
∂n̂
≥ c > 0

See Taylor (50), Ebin (87), Beale-Hou-Lowengrub (93)

Wu (97) proved that for σ = 0, infinite depth

−∂P
∂n̂

=
A1

|Zα|

A1 satisfies 1 ≤ A1 ≤ 1 + ‖Ztα‖2
L2 . Hence A1 ≈ 1.

If the interface is C 1,α then 0 < c1 ≤ 1
|Zα| ≤ c2 <∞. Hence Taylor sign

condition is satisfied for C 1,α interfaces.

See also: Lannes (05), Hunter-Ifrim-Tataru (16), Su (20)
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Non C 1 interfaces

νπ
Z(·, t) : R→ ∂Ω(t)

If the interface has an angle of νπ at α = 0 then

Z(α) ∼ αν Zα(α) ∼ αν−1 1

Zα
(α) ∼ α1−ν

Taylor sign condition is only satisfied in a weak sense − ∂P
∂n̂

= A1
|Zα| ≥ 0 for

0 < ν < 1.

Hence the quasilinear equation(
D2

t +

(
−∂P
∂n̂

)
1

|Zα|
|∂α|

)
f = l .o.t (1)

around α = 0 behaves like(
∂2
t + |α|2−2ν |∂α|

)
f = l .o.t
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Heuristic energy estimate

Now (
∂2
t + |α|2−2ν |∂α|

)
f = |α|1−2ν f + other l.o.t

Multiply by ∂t f and integrate

1

2

d

dt

{
‖∂t f ‖2

L2 +
∥∥∥|α|1−ν f ∥∥∥

Ḣ
1
2

}
≈
∫

(∂t f )
(
|α|1−2ν f

)
dα + · · ·

We can harmlessly add ‖f ‖2
2 to the energy and is compatible with the energy.

As f ∈ L2 and we want |α|1−2ν f ∈ L2, we need ν ≤ 1
2
.

Note:

Smaller angles are better than bigger angles with π/2 being the threshold.

Harmonic functions have better regularity in corners of smaller angles.

This threshold of π/2 also shows up in the uniqueness of Yudovich solutions
for the 2D Euler equation on corner domains. (See Agrawal-Nahmod (2020))



16/25

Local wellposedness for σ = 0

Kinsey and Wu (14) - A priori estimates, Wu (18) - Existence and uniqueness

Allows angled crests as initial data with angles νπ with 0 < ν < 1
2
.

Weighted Hs norm and interfaces are C 2.5 a.e. Weights are powers of
1
|Zα| ≈ |α|

1−ν

Agrawal (19) lowered the regularity of the energy of Kinsey and Wu (14) to the
interface being C 2 a.e.

E(t) =

∥∥∥∥∂α 1

Zα

∥∥∥∥2

L2

+

∥∥∥∥ 1

Zα
∂α

1

Zα

∥∥∥∥2

Ḣ
1
2

+
∥∥Z tα

∥∥2

L2 +

∥∥∥∥ 1

Z 2
α

∂αZ tα

∥∥∥∥2

L2

Questions left open from Kinsey and Wu (14), Wu (18):

Are there other singularities allowed by the energy?

How does the angle change with time? What are the dynamics of the
singularities?

What happens to the particle at the corner?

In Kinsey and Wu (14), a heuristic argument given to show that the angles do
not change
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Main result 1 (Rigidity of singularities, σ = 0)

Z(α, t)

ν1π
ν2π

ρair = 0

ρwater = 1

cusp

0<ν1,ν2<1/2

Figure: A wave with angled crests and cusps

Theorem (Agrawal 18)

The existence result of Wu (18) allows interfaces with cusps. Moreover as long
as the energy remains finite we have

Interface with angled crests/cusps remain angled crested/cusped

Angles do not change nor tilt

Particles at the tip stay at the tip

v , vt ,∇v ,∇P extend continuously to the boundary and the Euler equation
holds even on the boundary

∇v = ∇P = 0 at the tip. Hence acceleration at the tip = −i
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Quasilinear equations for σ > 0

A computation shows that (proved in Agrawal 19)

−∂P
∂n̂

=
1

|Zα|
(A1 + σ|∂α|κ)

where κ = curvature, A1 ≥ 1 is lower order.

Hence Taylor sign condition fails generically if σ is large.

The general quasilinear equation (derived in Agrawal 19) is(
D2

t +

(
−∂P
∂n̂

∣∣∣∣
σ=0

)
1

|Zα|
|∂α| − σ

(
1

|Zα|
∂α

)2
1

|Zα|
|∂α|

)
f = l .o.t

for f = 1
|Zα|∂αθ or Dtθ.

Note that − ∂P
∂n̂

∣∣
σ=0

= A1
|Zα| ≥ 0

Linearize around zero solution(
∂2
t + |∂α|+ σ|∂α|3

)
f = 0
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Main result 2 (Existence, σ > 0)

Define

Eσ,1 =

∥∥∥∥∂α 1

Zα

∥∥∥∥2

L2

+

∥∥∥∥ 1

Zα
∂α

1

Zα

∥∥∥∥2

Ḣ
1
2

+

∥∥∥∥∥ σ
1
2

Z
1
2
α

∂2
α

1

Zα

∥∥∥∥∥
2

2

+ · · ·

Eσ,2 =
∥∥Z tα

∥∥2

L2 +

∥∥∥∥∥ 1

Z 2
α

∂αZ tα

∥∥∥∥∥
2

L2

+

∥∥∥∥∥ σ
1
2

Z
1
2
α

∂αZ tα

∥∥∥∥∥
2

L2

+ · · ·

Eσ = Eσ,1 + Eσ,2

Theorem (Agrawal 19)

Let σ > 0 and assume that Eσ(0) <∞ and Zα(·, 0)− 1,Z t(·, 0) ∈ L2. Then
there are constants T = T (Eσ(0)) > 0 and C = C(Eσ(0)) > 0 depending only
on Eσ(0) and a unique solution (Z(·, t),Zt(·, t)) to the capillary gravity water
wave equation in [0,T ] so that

sup
[0,T ]

Eσ(t) ≤ C(Eσ(0)) <∞
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Main result 2 (σ > 0)

Properties:

Energy is positive for all σ: No assumptions on the Taylor sign condition.
Also Eσ is an increasing function of σ.

If we fix an initial data (Zα − 1,Zt) ∈ Hs+1/2 × Hs with s ≥ 3, then for
arbitrary σ0 > 0 we have a uniform time of existence T0 (depending only on
σ0) for all 0 ≤ σ ≤ σ0.

Energy allows angled crest solutions for σ = 0. Also in this case, energy is
lower order by half spacial derivatives as compared to the energy of Kinsey
and Wu

Energy does not allow angled crest solutions for σ > 0: If σ > 0 and Eσ <∞
then the interface is C 4. However we get the estimate ‖κ‖L∞ ≤ σ−

1
3 C(Eσ)

where κ is the curvature. Hence energy allows interface with large curvature.
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Application

Z(α, t)

Z ε,σ(α, t)
ε

Figure: Waves with and without surface tension

Corollary (Agrawal 19, Agrawal 20))

Let 0 < ε ≤ 1 and
σ

ε3/2
≤ 1, then there exists T > 0 independent of ε, σ so

that the solutions (Z ε,σ,Z ε,σt ) exist in [0,T ]

If in addition ε, σ → 0 with
σ

ε3/2
→ 0, then (Z ε,σ,Z ε,σt )→ (Z ,Zt) in [0,T ]

with E∆(Z ε,Z ε,σ) + F(Z ,Z ε)→ 0.

Heuristically this says that if σ . ε
3
2 then the interface does not feel the

effect of surface tension for O(1) time.

If we put σ = ε
3
2 and ν = 1

2
− 3

2
δ we obtain ‖κε,σ‖L∞(0) ∼ σ−

1
3

+δ as σ → 0.
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Heuristic energy estimate

The quasilinear equation is(
D2

t +

(
A1

|Zα|

)
1

|Zα|
|∂α| − σ

(
1

|Zα|
∂α

)2
1

|Zα|
|∂α|

)
f = l .o.t (2)

If the interface has an angled crest of angle νπ at α = 0, then Z(α) ∼ αν and
hence 1

|Zα| ∼ |α|
1−ν near α = 0 and hence the quasilinear equation near α = 0

behaves like{
∂2
t + |α|2−2ν |∂α| +σ|α|3−3ν |∂α|3

}
f

= |α|1−2ν f + σ|α|2−3ν |∂α|2f + σ|α|1−3ν |∂α|f + σ|α|−3ν f + other l.o.t

Multiply by ∂t f and integrate

1

2

d

dt

{
‖∂t f ‖2

L2 +
∥∥∥|α|1−ν f ∥∥∥

Ḣ
1
2

+
∥∥∥σ 1

2 |α|
3
2
− 3

2
ν |∂α|f

∥∥∥
Ḣ

1
2

}
≈
∫

(∂t f )
(
|α|1−2ν f + σ|α|2−3ν |∂α|2f + σ|α|1−3ν |∂α|f + σ|α|−3ν f

)
dα
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Heuristic energy estimate

1

2

d

dt

{
‖∂t f ‖2

L2 +
∥∥∥|α|1−ν f ∥∥∥

Ḣ
1
2

+
∥∥∥σ 1

2 |α|
3
2
− 3

2
ν |∂α|f

∥∥∥
Ḣ

1
2

}
≈
∫

(∂t f )
(
|α|1−2ν f + σ|α|1−3ν |∂α|f + σ|α|−3ν f

)
dα

As we only have f ∈ L2, there is no way we can control the term
σ|α|−3ν f ∈ L2 and this is the reason why we do not allow angled crest data
if σ > 0.

If we work with the smooth interface Z ε = Z ∗ Pε where Pε is the Poisson
kernel, then this has the effect of changing |α| 7→ |−iε+ α| near α = 0.
Hence to close the energy estimate, we obtain the restriction σε−3ν . 1.

Letting ν ↑ 1
2
, we get σε−

3
2 . 1

A similar argument for σ|α|1−3ν |∂α|f ∈ L2 also yields the same restriction.
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The scaling

If g = 0 then for λ > 0 and s ∈ R, Zλ(α, t) = λ−1Z(λα, λst) with
σλ = λ2s−3σ is another solution

We are interested in the zero surface tension limit, so we want the solutions
Zλ(·, t) to exist in the same time interval [0,T ]. So put s = 0.

Hence Zλ(α, t) = λ−1Z(λα, t) and surface tension σλ = λ−3σ.

Hence ‖σ
1
3 κ‖L∞ is invariant under this scaling and so the curvature grows

like σ−
1
3 as σ → 0.
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Thank You!


