Angled crested like water waves

Siddhant Agrawal

Postdoc, MSRI

University of Massachusetts, Amherst

Water Waves and Other Interface Problems Seminar Mathematical Sciences Research Institute, Berkeley, CA March 2, 2021

1/25
1/25 1/25 1/25 1/25

The problem

Figure: Manhattan beach wave c Eino Mustonen (https://en.wikipedia.org/wiki/File:Manhattan beach wave.JPG) CC BY-SA 3.0

2/25

The problem (waves of interest)

4/25 4/25 4/25 4/25 4/25

The problem (assumptions)

- Fluid region $\Omega(t) \subset \mathbb{R}^2$
- **•** Zero viscosity
- Incompressible and irrotational
- Infinite depth and interface tends to flat at infinity
- Constant gravity $g = 1$ and surface tension coefficient $\sigma \geq 0$

The problem (Euler equation)

As $\Omega(t)\subset \mathbb{R}^2\simeq \mathbb{C}$, we let $i=\sqrt{-1}$. $v_t + (v \cdot \nabla)v = -\nabla P - i$ in $\Omega(t)$ $\nabla \cdot \mathbf{v} = 0$ $\nabla \times \mathbf{v} = 0$ in $\Omega(t)$ where $v : \Omega(t) \to \mathbb{C}$, $P : \Omega(t) \to \mathbb{R}$. $P = -\sigma \partial_s \theta$ on $\partial \Omega(t)$

> $(1, v)$ is tangent to the free surface $(t, \partial \Omega(t))$ $v \to 0$, $v_t \to 0$ as $|(x, y)| \to \infty$

> > 4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 여야 - 5/25

Here ∂_s = arc length derivative, $\partial_s \theta$ = curvature

Special solutions: Travelling waves

Stokes waves: periodic traveling waves, infinite depth, zero surface tension, for fixed wavelength λ solutions parameterized by height H, λ and H uniquely determine speed c.

Stokes (1880), Toland (78), Amick-Fraenkel-Toland (82), Plotnikov (82), Plotnikov-Toland (04), Varvaruca-Weiss (11), Constantin (12)

Figure: Stokes wave of greatest height

Stokes waves are unstable: Benjamin-Feir (67), Bridges-Mielke (95), Deconinck-Oliveras (11), Nguyen-Strauss (20), Hur-Yang (20), Chen-Su (20) See also: Wilkening (11), Clamond-Henry (20)

The Cauchy problem

- $\bullet \nabla \cdot v = 0 \quad \nabla \times v = 0 \implies \overline{v} : \Omega(t) \to \mathbb{C}$ is holomorphic
- Take divergence to the Euler equation

$$
\begin{aligned}\n\Delta P &= -|\nabla \mathbf{v}|^2 &\text{in } \Omega(t) \\
P &= -\sigma \partial_s \theta &\text{on } \partial \Omega(t)\n\end{aligned}
$$

- Need to solve for $\partial \Omega(t)$, $v|_{\partial \Omega(t)}$
- Initial data in Riemann mapping coordinates is $Z(\cdot, 0), Z_t(\cdot, 0)$ where $D_t Z = Z_t$ and D_t = material derivative.

Previous works (Local wellposedness for $\sigma = 0$)

$$
\partial_t \sim \partial_{\alpha}^{1/2}
$$
. So $Z_{\alpha} - 1 \in H^s(\mathbb{R})$, $Z_t \in H^{s + \frac{1}{2}}(\mathbb{R})$

- Small data local existence: Nalimov (74), Yoshihara (82), Craig (85)
- **•** Local wellposedness:

Wu (97,99) $s > 4$, Christodoulou-Lindblad (00), Lannes (05), Lindblad (05), Coutand-Shkoller (07), Zhang-Zhang (08), Castro-Córdoba-Fefferman-Gancedo-Gómez Serrano (12), Alazard-Burq-Zuily (14), Kukavica-Tuffaha (14), Hunter-Ifrim-Tataru (16), Griffiths-Ifrim-Tataru (17), Alazard-Burg-Zuily (18), Poyferré (19), Ai (19,20), Ai-Ifrim-Tataru (19) $C^{1.25}$ interfaces, Wu (20)

K ロ X K @ X K 할 X X 를 X 및 및 X O Q O 8/25

Previous works (Local wellposedness for $\sigma > 0$)

$$
\partial_t \sim \partial_{\alpha}^{3/2}
$$
. So $Z_{\alpha} - 1 \in H^s(\mathbb{R})$, $Z_t \in H^{s-\frac{1}{2}}(\mathbb{R})$

Small data local existence: Yoshihara (83)

- Local wellposedness for fixed $\sigma > 0$ ($T \rightarrow 0$ as $\sigma \rightarrow 0$) Beyer-Gunther (98), Iguchi (01), Ambrose (03), Coutand-Shkoller (07), Christianson-Hur-Staffilani (10), Shatah-Zeng (11), Alazard-Burq-Zuily (11), Poyferré-Nguyen (16,17), Nguyen (17) $C^{2.25+}$ interfaces
- Zero surface tension limit: (T uniform for $0 \le \sigma \le \sigma_0$) Ambrose-Masmoudi (05,09), Shatah-Zeng (08), Ming-Zhang (09), Castro-Córdoba-Fefferman-Gancedo-Gómez Serrano (12), Shao-Shih (18)

In both types of results $T \to 0$ as $\kappa \to \infty$ where $\kappa =$ curvature (irrespective of the value of σ)

Previous works

 \bullet Small data long/global existence:

Wu (09,11), Germain-Masmoudi-Shatah (12,15), Ionescu-Pusateri (15), Alazard-Delort (15), Hunter-Ifrim-Tataru (16), Ifrim-Tataru (17), Griffiths-Ifrim-Tataru (17), Wang (17), Deng-Ionescu-Pausader-Pusateri (17), Berti-Delort (18), Ionescu-Pusateri (18), Berti-Feola-Pusateri (18), Su (18), Ai-Ifrim-Tataru (19), Wang (19), Wu (20)

• Splash singularity:

Castro-Cordoba-Fefferman-Gancedo-Serrano (13), Coutand-Shkoller (14)

a Two fluids:

Cheng-Coutand-Shkoller (08), Shatah-Zeng (11), Lannes (13)

• Compressible fluids:

Tanaka and Tani (03), Lindblad (05), Jang-Masmoudi (09), Coutand-Lindblad-Shkoller (10), Coutand-Shkoller (11,12), Jang-Masmoudi (15), Jang-LeFloch-Masmoudi (16), Lindblad-Luo (18), Hadžić-Shkoller-Speck (19), Disconzi-Kukavica (19), Ginsberg (19), Miao-Shahshahani-Wu (20), Ifrim-Tataru (20), Disconzi-Ifrim-Tataru (20)

The system

- Initial data in Riemann mapping coordinates is $Z(\cdot, 0), Z_t(\cdot, 0)$ where $D_t Z = Z_t$ and D_t = material derivative.
- The system is in the variables (Z_α, Z_t) satisfying

$$
D_t Z_\alpha = Z_{t\alpha} - b_\alpha Z_\alpha
$$

$$
D_t \overline{Z}_t = i - i \frac{A_1}{Z_\alpha} + \frac{\sigma}{Z_\alpha} \partial_\alpha (\mathbb{I} + \mathbb{H}) \left\{ Im \left(\frac{1}{Z_\alpha} \partial_\alpha \frac{Z_\alpha}{|Z_\alpha|} \right) \right\}
$$

where

$$
b = \text{Re}(\mathbb{I} - \mathbb{H})\left(\frac{Z_t}{Z_{\alpha}}\right)
$$

\n
$$
A_1 = 1 - \text{Im}[Z_t, \mathbb{H}]\overline{Z}_{t\alpha}
$$

\n
$$
\mathbb{H} = \text{Hilbert transform}
$$

\n
$$
= \text{Fourier multiplier with symbol } -\text{sgn}(\xi)
$$

\n
$$
D_t = \partial_t + b\partial_\alpha
$$

4 ロ ト 4 団 ト 4 ミ ト 4 ミ ト - ミ - の 9 (2mm 11/25)

The Quasilinear equations for $\sigma = 0$

The quasilinear equation is

$$
\left(D_t^2 + \left(-\frac{\partial P}{\partial \hat{n}}\right) \frac{1}{|Z_{\alpha}|} |\partial_{\alpha}|\right) f = l.o.t
$$

For $f = \theta$ or Z_t .

- $|\partial_\alpha|=\sqrt{-\Delta}=i\mathbb{H}\partial_\alpha=$ Fourier multiplier with symbol $|\xi|$
- Linearize around zero solution

$$
\left(\partial_t^2+|\partial_\alpha|\right)f=0
$$

4 ロ ト 4 団 ト 4 ミ ト 4 ミ ト - ミ - の 9 (2 12/25)

Taylor sign condition

• The Taylor sign condition is

$$
-\frac{\partial P}{\partial \hat{n}}\geq c>0
$$

See Taylor (50), Ebin (87), Beale-Hou-Lowengrub (93)

• Wu (97) proved that for $\sigma = 0$, infinite depth

$$
-\frac{\partial P}{\partial \hat{n}} = \frac{A_1}{|Z_{\alpha}|}
$$

 A_1 satisfies $1 \leq A_1 \leq 1 + ||Z_{t\alpha}||_{L^2}^2$. Hence $A_1 \approx 1$.

If the interface is $C^{1,\alpha}$ then $0 < c_1 \leq \frac{1}{|Z_\alpha|} \leq c_2 < \infty.$ Hence Taylor sign condition is satisfied for $C^{1,\alpha}$ interfaces.

See also: Lannes (05), Hunter-Ifrim-Tataru (16), Su (20)

Non C^1 interfaces

If the interface has an angle of $\nu\pi$ **at** $\alpha = 0$ **then**

$$
Z(\alpha) \sim \alpha^{\nu}
$$
 $Z_{\alpha}(\alpha) \sim \alpha^{\nu-1}$ $\frac{1}{Z_{\alpha}}(\alpha) \sim \alpha^{1-\nu}$

- Taylor sign condition is only satisfied in a weak sense $-\frac{\partial P}{\partial \hat{n}} = \frac{A_1}{|Z_\alpha|} \geq 0$ for $0 < \nu < 1$.
- Hence the quasilinear equation

$$
\left(D_t^2 + \left(-\frac{\partial P}{\partial \hat{n}}\right) \frac{1}{|Z_{\alpha}|} |\partial_{\alpha}|\right) f = l.o.t
$$
\n(1)

around $\alpha = 0$ behaves like

$$
\left(\partial_t^2 + |\alpha|^{2-2\nu} |\partial_\alpha|\right) f = l.o.t
$$

Heuristic energy estimate

Now

$$
\Bigl(\partial_t^2 + |\alpha|^{2-2\nu}|\partial_\alpha|\Bigr) f = |\alpha|^{1-2\nu} f + \text{other l.o.t}
$$

Multiply by $\partial_t f$ and integrate

$$
\frac{1}{2}\frac{d}{dt}\left\{\left\|\partial_{t}f\right\|^{2}_{L^{2}}+\left\||\alpha|^{1-\nu}f\right\|_{\dot{H}^{\frac{1}{2}}}\right\}\approx\int(\partial_{t}f)\left(|\alpha|^{1-2\nu}f\right)d\alpha+\cdots
$$

We can harmlessly add $\|f\|_2^2$ to the energy and is compatible with the energy. As $f \in L^2$ and we want $|\alpha|^{1-2\nu} f \in L^2$, we need $\nu \leq \frac{1}{2}$.

Note:

- Smaller angles are better than bigger angles with $\pi/2$ being the threshold.
- Harmonic functions have better regularity in corners of smaller angles.
- This threshold of $\pi/2$ also shows up in the uniqueness of Yudovich solutions for the 2D Euler equation on corner domains. (See Agrawal-Nahmod (2020))

Local wellposedness for $\sigma = 0$

Kinsey and Wu (14) - A priori estimates, Wu (18) - Existence and uniqueness

- Allows angled crests as initial data with angles $\nu\pi$ with $0 < \nu < \frac{1}{2}$.
- Weighted H^s norm and interfaces are $\mathsf{C}^{2.5}$ a.e. Weights are powers of $\frac{1}{|Z_{\alpha}|} \approx |\alpha|^{1-\nu}$

Agrawal (19) lowered the regularity of the energy of Kinsey and Wu (14) to the interface being C^2 a.e.

$$
\mathcal{E}(t) = \left\| \partial_{\alpha} \frac{1}{Z_{\alpha}} \right\|_{L^2}^2 + \left\| \frac{1}{Z_{\alpha}} \partial_{\alpha} \frac{1}{Z_{\alpha}} \right\|_{\dot{H}^{\frac{1}{2}}}^2 + \left\| \overline{Z}_{t\alpha} \right\|_{L^2}^2 + \left\| \frac{1}{Z_{\alpha}^2} \partial_{\alpha} \overline{Z}_{t\alpha} \right\|_{L^2}^2
$$

Questions left open from Kinsey and Wu (14), Wu (18):

- Are there other singularities allowed by the energy?
- How does the angle change with time? What are the dynamics of the singularities?
- What happens to the particle at the corner?

In Kinsey and Wu (14), a heuristic argument given to show that the angles do not change

Main result 1 (Rigidity of singularities, $\sigma = 0$)

Figure: A wave with angled crests and cusps

Theorem (Agrawal 18)

The existence result of Wu (18) allows interfaces with cusps. Moreover as long as the energy remains finite we have

- Interface with angled crests/cusps remain angled crested/cusped
- Angles do not change nor tilt
- Particles at the tip stay at the tip
- v, v_t , ∇v , ∇P extend continuously to the boundary and the Euler equation holds even on the boundary
- \triangledown \triangledown \triangledown \triangledown \triangledown \triangledown \triangledown \triangledown \triangledown \triangledown \triangledown \perp \triangledown \perp \triangledown \perp \perp

Quasilinear equations for $\sigma > 0$

A computation shows that (proved in Agrawal 19)

$$
-\frac{\partial P}{\partial \hat{n}} = \frac{1}{|Z_{\alpha}|} (A_1 + \sigma | \partial_{\alpha} | \kappa)
$$

where $\kappa =$ curvature, $A_1 \geq 1$ is lower order.

- Hence Taylor sign condition fails generically if σ is large.
- The general quasilinear equation (derived in Agrawal 19) is

$$
\left(D_t^2 + \left(-\frac{\partial P}{\partial \hat{n}}\bigg|_{\sigma=0}\right) \frac{1}{|Z_{\alpha}|} |\partial_{\alpha}| - \sigma \left(\frac{1}{|Z_{\alpha}|} \partial_{\alpha}\right)^2 \frac{1}{|Z_{\alpha}|} |\partial_{\alpha}|\right) f = l.o.t
$$

for
$$
f = \frac{1}{|Z_{\alpha}|} \partial_{\alpha} \theta
$$
 or $D_t \theta$.

- Note that $-\frac{\partial P}{\partial \hat{n}}\big|_{\sigma=0} = \frac{A_1}{|Z_{\alpha}|} \geq 0$
- **•** Linearize around zero solution

$$
\left(\partial_t^2 + |\partial_\alpha| + \sigma |\partial_\alpha|^3\right) f = 0
$$

18/25 18/25 18/25 18 19 18 12:00 1

Main result 2 (Existence, $\sigma > 0$)

Define

$$
\mathcal{E}_{\sigma,1} = \left\| \partial_{\alpha} \frac{1}{Z_{\alpha}} \right\|_{L^2}^2 + \left\| \frac{1}{Z_{\alpha}} \partial_{\alpha} \frac{1}{Z_{\alpha}} \right\|_{\dot{H}^{\frac{1}{2}}}^2 + \left\| \frac{\sigma^{\frac{1}{2}}}{Z_{\alpha}^{\frac{1}{2}}} \partial_{\alpha}^2 \frac{1}{Z_{\alpha}} \right\|_{2}^2 + \cdots
$$

$$
\mathcal{E}_{\sigma,2} = \left\| \overline{Z}_{\tau \alpha} \right\|_{L^2}^2 + \left\| \frac{1}{Z_{\alpha}^2} \partial_{\alpha} \overline{Z}_{\tau \alpha} \right\|_{L^2}^2 + \left\| \frac{\sigma^{\frac{1}{2}}}{Z_{\alpha}^{\frac{1}{2}}} \partial_{\alpha} \overline{Z}_{\tau \alpha} \right\|_{L^2}^2 + \cdots
$$

$$
\mathcal{E}_{\sigma} = \mathcal{E}_{\sigma,1} + \mathcal{E}_{\sigma,2}
$$

Theorem (Agrawal 19)

Let $\sigma>0$ and assume that ${\mathcal E}_{\sigma}(0)<\infty$ and $Z_\alpha(\cdot,0)-1, {\overline{Z}}_t(\cdot,0)\in L^2.$ Then there are constants $T = T(\mathcal{E}_{\sigma}(0)) > 0$ and $C = C(\mathcal{E}_{\sigma}(0)) > 0$ depending only on $\mathcal{E}_{\sigma}(0)$ and a unique solution $(Z(\cdot,t), Z_t(\cdot,t))$ to the capillary gravity water wave equation in $[0, T]$ so that

$$
\sup_{[0,T]}\mathcal{E}_{\sigma}(t)\leq C(\mathcal{E}_{\sigma}(0))<\infty
$$

Main result 2 ($\sigma > 0$)

Properties:

- **Energy is positive for all** σ **: No assumptions on the Taylor sign condition.** Also \mathcal{E}_{σ} is an increasing function of σ .
- If we fix an initial data $(Z_\alpha-1,Z_t)\in H^{s+1/2}\times H^s$ with $s\geq 3$, then for arbitrary $\sigma_0 > 0$ we have a uniform time of existence T_0 (depending only on σ ₀) for all $0 \leq \sigma \leq \sigma_0$.
- **Energy allows angled crest solutions for** $\sigma = 0$ **. Also in this case, energy is** lower order by half spacial derivatives as compared to the energy of Kinsey and Wu
- **Energy does not allow angled crest solutions for** $\sigma > 0$ **:** If $\sigma > 0$ and $\mathcal{E}_{\sigma} < \infty$ then the interface is C^4 . However we get the estimate $\|\kappa\|_{L^\infty}\leq \sigma^{-\frac{1}{3}}C(\mathcal{E}_\sigma)$ where κ is the curvature. Hence energy allows interface with large curvature.

Figure: Waves with and without surface tension

Corollary (Agrawal 19, Agrawal 20))

- Let $0 < \epsilon \leq 1$ and $\frac{\sigma}{\epsilon^{3/2}} \leq 1$, then there exists $T > 0$ independent of ϵ, σ so that the solutions $(Z^{\epsilon,\sigma}, Z^{\epsilon,\sigma}_t)$ exist in $[0, T]$
- If in addition $\epsilon, \sigma \to 0$ with $\frac{\sigma}{\epsilon^{3/2}} \to 0$, then $(Z^{\epsilon,\sigma}, Z^{\epsilon,\sigma}) \to (Z, Z_t)$ in $[0, T]$ with $\mathcal{E}_{\Delta}(Z^{\epsilon}, Z^{\epsilon,\sigma}) + \mathcal{F}(Z, Z^{\epsilon}) \rightarrow 0.$
- Heuristically this says that if $\sigma \lesssim \epsilon^{\frac 32}$ then the interface does not feel the effect of surface tension for $O(1)$ time.

• If we put
$$
\sigma = \epsilon^{\frac{3}{2}}
$$
 and $\nu = \frac{1}{2} - \frac{3}{2}\delta$ we obtain $||\kappa_{\epsilon}^{\epsilon,\sigma}||_{L^{\infty}_{\epsilon}([0])} \sim \sigma^{-\frac{1}{3}+\delta}$ as $\sigma \to 0$.

Heuristic energy estimate

The quasilinear equation is

$$
\left(D_t^2 + \left(\frac{A_1}{|Z_{\alpha}|}\right) \frac{1}{|Z_{\alpha}|} |\partial_{\alpha}| - \sigma \left(\frac{1}{|Z_{\alpha}|} \partial_{\alpha}\right)^2 \frac{1}{|Z_{\alpha}|} |\partial_{\alpha}|\right) f = l.o.t
$$
 (2)

If the interface has an angled crest of angle $\nu\pi$ at $\alpha=0$, then $Z(\alpha)\sim \alpha^\nu$ and hence $\frac{1}{|Z_{\alpha}|} \sim |\alpha|^{1-\nu}$ near $\alpha = 0$ and hence the quasilinear equation near $\alpha = 0$ behaves like

$$
\begin{aligned} &\left\{\partial_t^2 + |\alpha|^{2-2\nu} |\partial_\alpha| + \sigma |\alpha|^{3-3\nu} |\partial_\alpha|^3 \right\} f \\ &= |\alpha|^{1-2\nu} f + \sigma |\alpha|^{2-3\nu} |\partial_\alpha|^2 f + \sigma |\alpha|^{1-3\nu} |\partial_\alpha| f + \sigma |\alpha|^{-3\nu} f + \text{other l.o.t.} \end{aligned}
$$

Multiply by $\partial_t f$ and integrate

$$
\frac{1}{2}\frac{d}{dt}\left\{\|\partial_t f\|_{L^2}^2 + \left\||\alpha|^{1-\nu} f\right\|_{\dot{H}^{\frac{1}{2}}} + \left\|\sigma^{\frac{1}{2}}|\alpha|^{\frac{3}{2}-\frac{3}{2}\nu}|\partial_\alpha| f\right\|_{\dot{H}^{\frac{1}{2}}}\right\} \approx \int (\partial_t f)\left(|\alpha|^{1-2\nu} f + \sigma|\alpha|^{2-3\nu}|\partial_\alpha|^2 f + \sigma|\alpha|^{1-3\nu}|\partial_\alpha| f + \sigma|\alpha|^{-3\nu} f\right) d\alpha
$$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ _ 로 _ ⊙ Q Q 22/25

Heuristic energy estimate

$$
\frac{1}{2} \frac{d}{dt} \left\{ \left\| \partial_t f \right\|_{L^2}^2 + \left\| |\alpha|^{1-\nu} f \right\|_{\dot{H}^{\frac{1}{2}}} + \left\| \sigma^{\frac{1}{2}} |\alpha|^{\frac{3}{2} - \frac{3}{2}\nu} |\partial_\alpha| f \right\|_{\dot{H}^{\frac{1}{2}}} \right\} \approx \int (\partial_t f) \left(|\alpha|^{1-2\nu} f + \sigma |\alpha|^{1-3\nu} |\partial_\alpha| f + \sigma |\alpha|^{-3\nu} f \right) d\alpha
$$

- As we only have $f\in L^2$, there is no way we can control the term $\sigma|\alpha|^{-3\nu}f\in L^2$ and this is the reason why we do not allow angled crest data if $\sigma > 0$.
- If we work with the smooth interface $Z^{\epsilon} = Z * P_{\epsilon}$ where P_{ϵ} is the Poisson kernel, then this has the effect of changing $|\alpha| \mapsto |-i\epsilon + \alpha|$ near $\alpha = 0$. Hence to close the energy estimate, we obtain the restriction $\sigma \epsilon^{-3\nu} \leq 1$. Letting $\nu \uparrow \frac{1}{2}$, we get $\sigma \epsilon^{-\frac{3}{2}} \lesssim 1$
- A similar argument for $\sigma|\alpha|^{1-3\nu}|\partial_\alpha|f\in L^2$ also yields the same restriction.

The scaling

- If $g = 0$ then for $\lambda > 0$ and $s \in \mathbb{R}$, $Z_{\lambda}(\alpha, t) = \lambda^{-1} Z(\lambda \alpha, \lambda^s t)$ with $\sigma_{\lambda} = \lambda^{2s-3} \sigma$ is another solution
- We are interested in the zero surface tension limit, so we want the solutions $Z_{\lambda}(\cdot,t)$ to exist in the same time interval [0, T]. So put $s=0$.
- Hence $Z_{\lambda}(\alpha,t)=\lambda^{-1}Z(\lambda\alpha,t)$ and surface tension $\sigma_{\lambda}=\lambda^{-3}\sigma.$
- Hence $\|\sigma^{\frac{1}{3}}\kappa\|_{l^\infty}$ is invariant under this scaling and so the curvature grows like $\sigma^{-\frac{1}{3}}$ as $\sigma \rightarrow 0$.

4 ロ ▶ 4 @ ▶ 4 를 ▶ 4 를 ▶ - 를 - ⊙ Q Q 24/25

Thank You!

4 ロ X イラ X ミ X キ X ミ X 3 の 9 0 25/25