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The problem

Figure: Manhattan beach wave
(@© Eino Mustonen

(https://en.wikipedia.org/wiki/File:Manhattan_beach_wave.JPG)
CC BY-SA 3.0
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The problem (waves of interest)

Pwater = 1

Figure: A wave with sharp crest

Pwater — 1

Figure: A smooth wave with large curvature/large C1*® norm (0 < a < 1)
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The problem (assumptions)

Pwater = 1

Fluid region Q(t) C R?

Zero viscosity

°
°

@ Incompressible and irrotational

o Infinite depth and interface tends to flat at infinity
°

Constant gravity g = 1 and surface tension coefficient o > 0
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The problem (Euler equation)

As Q(t) CR? ~C, we let i = /—1.

vi+ (v -V)v=-VP—i in Q(t)
V.v=0 Vxv=0 in Q(t)

where v : Q(t) = C, P:Q(t) = R.

P =—00.0 on 99Q(t)
(1, v) is tangent to the free surface (t, 9(t))
v—>0,v: -0 as |(x,y)| = o0

Here 0s = arc length derivative, 0560 = curvature
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Special solutions: Travelling waves

Stokes waves: periodic traveling waves, infinite depth, zero surface tension, for
fixed wavelength A\ solutions parameterized by height H, A\ and H uniquely
determine speed c.

Stokes (1880), Toland (78), Amick-Fraenkel-Toland (82), Plotnikov (82),
Plotnikov-Toland (04), Varvaruca-Weiss (11), Constantin (12)

SN
120° 120°
Figure: Stokes wave of greatest height
Stokes waves are unstable: Benjamin-Feir (67), Bridges-Mielke (95),
Deconinck-Oliveras (11), Nguyen-Strauss (20), Hur-Yang (20), Chen-Su (20)

See also: Wilkening (11), Clamond-Henry (20)
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The Cauchy problem

Pair = 0
Z(-,t) : R — 09(t)

Pwater — 1

e V.v=0 Vxv=0 = v:Q(t) — Cis holomorphic
@ Take divergence to the Euler equation
AP = —|Vv|? in Q(t)
P=—00.0 on 9Q(t)
o Need to solve for 9Q(t), v|an(

@ Initial data in Riemann mapping coordinates is Z(-,0), Z:(-,0) where
D:Z = Z; and D; = material derivative.
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Previous works (Local wellposedness for o = 0)

B ~ 03/%. So Zo — 1 € H*(R), Z: € H*"3(R)
o Small data local existence:
Nalimov (74), Yoshihara (82), Craig (85)

@ Local wellposedness:

Wu (97,99) s > 4, Christodoulou-Lindblad (00), Lannes (05), Lindblad
(05), Coutand-Shkoller (07), Zhang-Zhang (08),
Castro-Cérdoba-Fefferman-Gancedo-Gémez Serrano (12), Alazard-Burg-Zuily
(14), Kukavica-Tuffaha (14), Hunter-Ifrim-Tataru (16), Griffiths-Ifrim-Tataru
(17), Alazard-Burg-Zuily (18), Poyferré (19), Ai (19,20), Ai-lfrim-Tataru
(19) C"? interfaces, Wu (20)
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Previous works (Local wellposedness for o > 0)

0y ~ 02/%. So Z, — 1€ H*(R), Z: € H*"%(R)

@ Small data local existence:
Yoshihara (83)

@ Local wellposedness for fixed 0 >0 (T — 0 as 0 — 0)

Beyer-Gunther (98), Iguchi (01), Ambrose (03), Coutand-Shkoller (07),
Christianson-Hur-Staffilani (10), Shatah-Zeng (11), Alazard-Burg-Zuily (11),
Poyferré-Nguyen (16,17), Nguyen (17) C**7 interfaces

@ Zero surface tension limit: (T uniform for 0 < o < ay)

Ambrose-Masmoudi (05,09), Shatah-Zeng (08), Ming-Zhang (09),

Castro-Cérdoba-Fefferman-Gancedo-Gémez Serrano (12), Shao-Shih (18)

In both types of results T — 0 as kK — 0o where k = curvature (irrespective of
the value of o)
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Previous works

@ Small data long/global existence:

Wu (09,11), Germain-Masmoudi-Shatah (12,15), lonescu-Pusateri (15),
Alazard-Delort (15), Hunter-Ifrim-Tataru (16), Ifrim-Tataru (17),
Griffiths-Ifrim-Tataru (17), Wang (17), Deng-lonescu-Pausader-Pusateri
(17), Berti-Delort (18), lonescu-Pusateri (18), Berti-Feola-Pusateri (18), Su
(18), Ai-Ifrim-Tataru (19), Wang (19), Wu (20)

@ Splash singularity:

Castro-Cordoba-Fefferman-Gancedo-Serrano (13), Coutand-Shkoller (14)
@ Two fluids:

Cheng-Coutand-Shkoller (08), Shatah-Zeng (11), Lannes (13)

o Compressible fluids:

Tanaka and Tani (03), Lindblad (05), Jang-Masmoudi (09),
Coutand-Lindblad-Shkoller (10), Coutand-Shkoller (11,12), Jang-Masmoudi
(15), Jang-LeFloch-Masmoudi (16), Lindblad-Luo (18), HadZié¢-
Shkoller-Speck (19), Disconzi-Kukavica (19), Ginsberg (19),
Miao-Shahshahani-Wu (20), Ifrim-Tataru (20), Disconzi-Ifrim-Tataru (20)
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The system

o Initial data in Riemann mapping coordinates is Z(-,0), Z:(-,0) where
D:Z = Z; and D; = material derivative.

@ The system is in the variables (Z,, Z;) satisfying

DtZa = Zta - baZa

- . LA o . 1, Z
DtZt =1 — IZ +Zd(y(H+H){|m<Z()(Y‘ZU(|>}

where

b = Re(I — H) <%)

Al =1-— Im[Zt7H]Zta
H = Hilbert transform

flry

= Fourier multiplier with symbol — sgn(¢)
Dt = 3t + baa
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The Quasilinear equations for o = 0

The quasilinear equation is
oP\ 1
DI+ —%% ) = 10a| ) f = Lot
(0 + (=55 ) gont ) = 1o
For f =0 or Z;.

@ |0a| = V—A = iH0, = Fourier multiplier with symbol [¢|

@ Linearize around zero solution

(a,_?+ \aa\)f:o
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Taylor sign condition

@ The Taylor sign condition is

oP
_ >
8ﬁ‘c>0

See Taylor (50), Ebin (87), Beale-Hou-Lowengrub (93)
@ Wu (97) proved that for o = 0, infinite depth

_oP _ A
oh  |Za]

Ap satisfies 1 < A; <1+ ||Zm||i2. Hence A; ~ 1.
o If the interface is C%® then 0 < ¢ < ﬁ < ¢ < 0. Hence Taylor sign
condition is satisfied for C1'® interfaces.

See also: Lannes (05), Hunter-Ifrim-Tataru (16), Su (20)
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Non C1l interfaces

Z(-,t) : R — 9Q(t)

o If the interface has an angle of v7 at @ = 0 then

Z(a) ~a” Zo(a) ~ a7t Zi(oz) ~a'™?
orP _ A1
h = 1Zal

O<rv<l.
@ Hence the quasilinear equation

P 1
(01 (=55 ) 1) = o

around « = 0 behaves like

(af + |a\2*2"|aa|)f = Lot

(1)
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Heuristic energy estimate
Now
(6? + |0z\2_2”|8a|>f = |a|'"*f + other lo.t
Multiply by 0:f and integrate

1d _y
EE{HWII% + H|O¢|1 f

‘/.',%} ~ /(5tf)(|a|1’2”f) da+ -

@ We can harmlessly add Hf||§ to the energy and is compatible with the energy.

o As f € [? and we want |a|'"*f € L?, we need v < 3.

Note:
@ Smaller angles are better than bigger angles with 7/2 being the threshold.
@ Harmonic functions have better regularity in corners of smaller angles.

@ This threshold of /2 also shows up in the uniqueness of Yudovich solutions
for the 2D Euler equation on corner domains. (See Agrawal-Nahmod (2020))
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Local wellposedness for 0 =0

Kinsey and Wu (14) - A priori estimates, Wu (18) - Existence and uniqueness

o Allows angled crests as initial data with angles v with 0 < v < %

o Weighted H* norm and interfaces are C*° a.e. Weights are powers of
1-v
1z ~ el
Agrawal (19) lowered the regularity of the energy of Kinsey and Wu (14) to the
interface being C? a.e.

2

P 1 G
H% + ||ZtaHL2 + "Eaazta

1
8aZ

2
1 1

+ 78047
zz
Questions left open from Kinsey and Wu (14), Wu (18):

@ Are there other singularities allowed by the energy?

E(t) = ’

12

@ How does the angle change with time? What are the dynamics of the
singularities?

@ What happens to the particle at the corner?

In Kinsey and Wu (14), a heuristic argument given to show that the angles do
not change
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Main result 1 (Rigidity of singularities, o = 0)

cusp

0<vy,vp<1/2

Pwater = 1 Z(Ol, t)

Figu re: A wave with angled crests and cusps

Theorem (Agrawal 18)

The existence result of Wu (18) allows interfaces with cusps. Moreover as long
as the energy remains finite we have

o Interface with angled crests/cusps remain angled crested/cusped

@ Angles do not change nor tilt

@ Particles at the tip stay at the tip

e v,v:, Vv, VP extend continuously to the boundary and the Euler equation
holds even on the boundary

o Vv = VP =0 at the tip. Hence acceleration at the tip = —i
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Quasilinear equations for o > 0

@ A computation shows that (proved in Agrawal 19)

oP

7 =T |(A1+a|8 )

where xk = curvature, A; > 1 is lower order.

Hence Taylor sign condition fails generically if o is large.

The general quasilinear equation (derived in Agrawal 19) is

oP 1 1 >
D2+(,T )73(1 7(,(73&) = 10a | F=lot
<t o|,_,) 1z o\ jza% ) 12712

for f = Z |8 6 or D:6.

Note that —B—QLZO = I%\ >0

Linearize around zero solution

(af + |0a] + U|E)a|3)f
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Main result 2 (Existence, o > 0)

Define
2
1] 2 o, 1

AT SNTORY S EFEY

7 “Zolle N1 Za " Zallgt T 22 726

2 1 2

— 2 1 — o2

go’,QZHZtaHL2+ ?aazta + lduzta + -

a Z? 5

L2 1% L

50 = Co,1 + 50,2

Theorem (Agrawal 19)

Let o > 0 and assume that £,(0) < 0o and Z,(-,0) — 1, Z.(-,0) € L*. Then
there are constants T = T(£,(0)) > 0 and C = C(E,(0)) > 0 depending only
on £,(0) and a unique solution (Z(-,t), Z:(:, t)) to the capillary gravity water
wave equation in [0, T] so that

sup £, (t) < C(£,(0)) < o
[0,7]
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Main result 2 (o > 0)

Properties:

Energy is positive for all o: No assumptions on the Taylor sign condition.
Also &, is an increasing function of o.

If we fix an initial data (Z, — 1, Z;) € H*"*/? x H* with s > 3, then for
arbitrary oo > 0 we have a uniform time of existence Ty (depending only on
00) for all 0 < o < 0o.

Energy allows angled crest solutions for ¢ = 0. Also in this case, energy is
lower order by half spacial derivatives as compared to the energy of Kinsey
and Wu

Energy does not allow angled crest solutions for o > 0: If 0 > 0 and &, < c©
then the interface is C*. However we get the estimate ||x||1 < o3 C(&s)
where & is the curvature. Hence energy allows interface with large curvature.
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Application

Figu re: Waves with and without surface tension

Corollary (Agrawal 19, Agrawal 20))

Let0<e<1 and3i/2 < 1, then there exists T > 0 independent of €,0 so
€
that the solutions (Z°°, Z;°) exist in [0, T]

If in addition €, — O with 6;% 0, then (Z°°,Z5%) = (Z,Z:) in [0, T]

with Ea(Z¢,2°) + F(Z,Z°) — 0.

- . . 3 .
Heuristically this says that if o < €2 then the interface does not feel the
effect of surface tension for O(1) time.

If we put o = €2 and v = 1 — 36 we obtain [|k“7]| o (0) ~ o735 as o — 0.
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Heuristic energy estimate

The quasilinear equation is

> A\ 1 1 21 B
(DtJr (|Za‘>|za‘|8a|fa(‘z—a|8a) |Za|8a|>f/.o.t (2)

If the interface has an angled crest of angle v at o = 0, then Z(a) ~ o and

hence \Tl| ~ |a|*™" near a = 0 and hence the quasilinear equation near a = 0
o

behaves like
{6$+|a‘272ulaa| +U|a‘3731/‘aa‘3}f

= o' F + olal? 7 |0a*f + olal'|0.|f + o|a| " F 4 other Lot

Multiply by 0:f and integrate
1d
2.dt
~ /(Qtf)(|a|1*2”f+ alal?10a f + ola| T |0alf + U\a|73”f) da

v 133,
{10 o+e] o0 )

H
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Heuristic energy estimate

10113 + [l #

sl
~ /(atf) |a|172"f + O"()é‘1737l|0a|f+O.‘u|737/f-) da

s * ot~ 100] Ly }
H?2

@ As we only have f € L?, there is no way we can control the term
ola| 73 f € L? and this is the reason why we do not allow angled crest data
if o0 > 0.

o If we work with the smooth interface Z¢ = Z % P. where P. is the Poisson
kernel, then this has the effect of changing |a| — |—ie + «| near o = 0.
Hence to close the energy estimate, we obtain the restriction oe 3 < 1.
Letting v 1 % we get oe 3 <1

o A similar argument for o|a|'7%|0,|f € L? also yields the same restriction.
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The scaling

o If g =0 then for A >0 and s € R, Zy(a,t) = A7 Z(Aa, A°t) with
ox = A\* 3¢ is another solution

@ We are interested in the zero surface tension limit, so we want the solutions
Z)\(-, t) to exist in the same time interval [0, T]. So put s = 0.

e Hence Z\(a, t) = A™'Z(\a, t) and surface tension oy = A0

1 o . .
@ Hence |03 k|| is invariant under this scaling and so the curvature grows

1
3 aso — 0.

like o
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Thank You!



