Angled crested like water waves

Siddhant Agrawal

Postdoc, MSRI

University of Massachusetts, Amherst

Water Waves and Other Interface Problems Seminar Mathematical Sciences Research Institute, Berkeley, CA March 2, 2021

The problem

Figure: Manhattan beach wave © Eino Mustonen (https://en.wikipedia.org/wiki/File:Manhattan_beach_wave.JPG) CC BY-SA 3.0

The problem (waves of interest)

Figure: A smooth wave with large curvature/large $C^{1, \alpha}$ norm (0 < $\alpha \leq 1$)

The problem (assumptions)

- Fluid region $\Omega(t) \subset \mathbb{R}^2$
- Zero viscosity
- Incompressible and irrotational
- Infinite depth and interface tends to flat at infinity
- Constant gravity g = 1 and surface tension coefficient $\sigma \geq 0$

The problem (Euler equation)

As
$$\Omega(t) \subset \mathbb{R}^2 \simeq \mathbb{C}$$
, we let $i = \sqrt{-1}$.
 $v_t + (v \cdot \nabla)v = -\nabla P - i$ in $\Omega(t)$
 $\nabla \cdot v = 0$ $\nabla \times v = 0$ in $\Omega(t)$

where $v: \Omega(t) \to \mathbb{C}$, $P: \Omega(t) \to \mathbb{R}$.

$$P = -\sigma \partial_s \theta \qquad \text{on } \partial \Omega(t)$$

(1, v) is tangent to the free surface $(t, \partial \Omega(t))$
 $v \to 0, v_t \to 0 \qquad \text{as } |(x, y)| \to \infty$

← → → ⊕ → → ≡ → → ≡ → へ ⊕ 5/25

Here $\partial_s = \text{arc}$ length derivative, $\partial_s \theta = \text{curvature}$

Special solutions: Travelling waves

Stokes waves: periodic traveling waves, infinite depth, zero surface tension, for fixed wavelength λ solutions parameterized by height H, λ and H uniquely determine speed c.

Stokes (1880), Toland (78), Amick-Fraenkel-Toland (82), Plotnikov (82), Plotnikov-Toland (04), Varvaruca-Weiss (11), Constantin (12)

Figure: Stokes wave of greatest height

Stokes waves are unstable: Benjamin-Feir (67), Bridges-Mielke (95), Deconinck-Oliveras (11), Nguyen-Strauss (20), Hur-Yang (20), Chen-Su (20) See also: Wilkening (11), Clamond-Henry (20)

The Cauchy problem

- $\nabla \cdot v = 0$ $\nabla \times v = 0 \implies \bar{v} : \Omega(t) \to \mathbb{C}$ is holomorphic
- Take divergence to the Euler equation

$$egin{array}{lll} \Delta P = -|
abla {f v}|^2 & ext{ in } \Omega(t) \ P = -\sigma \partial_s heta & ext{ on } \partial \Omega(t) \end{array}$$

- Need to solve for ∂Ω(t), v|_{∂Ω(t)}
- Initial data in Riemann mapping coordinates is $Z(\cdot, 0), Z_t(\cdot, 0)$ where $D_t Z = Z_t$ and D_t = material derivative.

Previous works (Local wellposedness for $\sigma = 0$)

$$\partial_t \sim \partial_{lpha}^{1/2}$$
. So $Z_{lpha} - 1 \in H^s(\mathbb{R}), Z_t \in H^{s+rac{1}{2}}(\mathbb{R})$

- Small data local existence: Nalimov (74), Yoshihara (82), Craig (85)
- Local wellposedness:

Wu (97,99) $s \ge 4$, Christodoulou-Lindblad (00), Lannes (05), Lindblad (05), Coutand-Shkoller (07), Zhang-Zhang (08), Castro-Córdoba-Fefferman-Gancedo-Gómez Serrano (12), Alazard-Burq-Zuily (14), Kukavica-Tuffaha (14), Hunter-Ifrim-Tataru (16), Griffiths-Ifrim-Tataru (17), Alazard-Burq-Zuily (18), Poyferré (19), Ai (19,20), Ai-Ifrim-Tataru (19) $C^{1.25}$ interfaces, Wu (20) Previous works (Local wellposedness for $\sigma > 0$)

$$\partial_t \sim \partial_{lpha}^{3/2}$$
. So $Z_{lpha} - 1 \in H^s(\mathbb{R}), Z_t \in H^{s-rac{1}{2}}(\mathbb{R})$

- Small data local existence: Yoshihara (83)
- Local wellposedness for fixed σ > 0 (T → 0 as σ → 0) Beyer-Gunther (98), Iguchi (01), Ambrose (03), Coutand-Shkoller (07), Christianson-Hur-Staffilani (10), Shatah-Zeng (11), Alazard-Burq-Zuily (11), Poyferré-Nguyen (16,17), Nguyen (17) C^{2.25+} interfaces
- Zero surface tension limit: (*T* uniform for 0 ≤ σ ≤ σ₀) Ambrose-Masmoudi (05,09), Shatah-Zeng (08), Ming-Zhang (09), Castro-Córdoba-Fefferman-Gancedo-Gómez Serrano (12), Shao-Shih (18)

In both types of results $T \to 0$ as $\kappa \to \infty$ where $\kappa =$ curvature (irrespective of the value of σ)

Previous works

Small data long/global existence:

Wu (09,11), Germain-Masmoudi-Shatah (12,15), Ionescu-Pusateri (15), Alazard-Delort (15), Hunter-Ifrim-Tataru (16), Ifrim-Tataru (17), Griffiths-Ifrim-Tataru (17), Wang (17), Deng-Ionescu-Pausader-Pusateri (17), Berti-Delort (18), Ionescu-Pusateri (18), Berti-Feola-Pusateri (18), Su (18), Ai-Ifrim-Tataru (19), Wang (19), Wu (20)

Splash singularity:

Castro-Cordoba-Fefferman-Gancedo-Serrano (13), Coutand-Shkoller (14)

Two fluids:

Cheng-Coutand-Shkoller (08), Shatah-Zeng (11), Lannes (13)

Compressible fluids:

Tanaka and Tani (03), Lindblad (05), Jang-Masmoudi (09), Coutand-Lindblad-Shkoller (10), Coutand-Shkoller (11,12), Jang-Masmoudi (15), Jang-LeFloch-Masmoudi (16), Lindblad-Luo (18), Hadžić-Shkoller-Speck (19), Disconzi-Kukavica (19), Ginsberg (19), Miao-Shahshahani-Wu (20), Ifrim-Tataru (20), Disconzi-Ifrim-Tataru (20)

The system

- Initial data in Riemann mapping coordinates is $Z(\cdot, 0), Z_t(\cdot, 0)$ where $D_t Z = Z_t$ and D_t = material derivative.
- The system is in the variables (Z_{α}, Z_t) satisfying

$$D_{t}Z_{\alpha} = Z_{t\alpha} - b_{\alpha}Z_{\alpha}$$
$$D_{t}\overline{Z}_{t} = i - i\frac{A_{1}}{Z_{\alpha}} + \frac{\sigma}{Z_{\alpha}}\partial_{\alpha}(\mathbb{I} + \mathbb{H})\left\{ \operatorname{Im}\left(\frac{1}{Z_{\alpha}}\partial_{\alpha}\frac{Z_{\alpha}}{|Z_{\alpha}|}\right)\right\}$$

where

$$b = \operatorname{Re}(\mathbb{I} - \mathbb{H})\left(\frac{Z_t}{Z_\alpha}\right)$$

$$A_1 = 1 - \operatorname{Im}[Z_t, \mathbb{H}]\overline{Z}_{t\alpha}$$

$$\mathbb{H} = \operatorname{Hilbert \ transform}$$

$$= \operatorname{Fourier \ multiplier \ with \ symbol \ - sgn(\xi)}$$

$$D_t = \partial_t + b\partial_\alpha$$

The Quasilinear equations for $\sigma = 0$

The quasilinear equation is

$$\left(D_t^2 + \left(-\frac{\partial P}{\partial \hat{n}}\right)\frac{1}{|Z_{\alpha}|}|\partial_{\alpha}|\right)f = I.o.t$$

For $f = \theta$ or Z_t .

• $|\partial_{\alpha}| = \sqrt{-\Delta} = i \mathbb{H} \partial_{\alpha} =$ Fourier multiplier with symbol $|\xi|$

• Linearize around zero solution

$$\left(\partial_t^2 + |\partial_\alpha|\right)f = 0$$

Taylor sign condition

• The Taylor sign condition is

$$-rac{\partial P}{\partial \hat{n}} \geq c > 0$$

See Taylor (50), Ebin (87), Beale-Hou-Lowengrub (93)

• Wu (97) proved that for $\sigma = 0$, infinite depth

$$-\frac{\partial P}{\partial \hat{n}} = \frac{A_1}{|Z_{\alpha}|}$$

 A_1 satisfies $1 \leq A_1 \leq 1 + \|Z_{t\alpha}\|_{L^2}^2$. Hence $A_1 \approx 1$.

• If the interface is $C^{1,\alpha}$ then $0 < c_1 \leq \frac{1}{|Z_{\alpha}|} \leq c_2 < \infty$. Hence Taylor sign condition is satisfied for $C^{1,\alpha}$ interfaces.

See also: Lannes (05), Hunter-Ifrim-Tataru (16), Su (20)

Non C^1 interfaces

• If the interface has an angle of $\nu\pi$ at $\alpha = 0$ then

$$Z(\alpha) \sim \alpha^{
u} \qquad Z_{\alpha}(\alpha) \sim \alpha^{
u-1} \qquad \frac{1}{Z_{\alpha}}(\alpha) \sim \alpha^{1-
u}$$

- Taylor sign condition is only satisfied in a weak sense $-\frac{\partial P}{\partial \hat{n}} = \frac{A_1}{|Z_{\alpha}|} \ge 0$ for $0 < \nu < 1$.
- Hence the quasilinear equation

$$\left(D_t^2 + \left(-\frac{\partial P}{\partial \hat{n}}\right)\frac{1}{|Z_{\alpha}|}|\partial_{\alpha}|\right)f = l.o.t$$
(1)

around $\alpha = 0$ behaves like

$$\left(\partial_t^2 + |\alpha|^{2-2\nu} |\partial_\alpha|\right) f = l.o.t$$

Heuristic energy estimate

Now

$$\Big(\partial_t^2+|lpha|^{2-2
u}|\partial_lpha|\Big)f=|lpha|^{1-2
u}f+{
m other}\ {
m l.o.t}$$

Multiply by $\partial_t f$ and integrate

$$\frac{1}{2}\frac{d}{dt}\left\{\left\|\partial_{t}f\right\|_{L^{2}}^{2}+\left\|\left|\alpha\right|^{1-\nu}f\right\|_{\dot{H}^{\frac{1}{2}}}\right\}\approx\int(\partial_{t}f)\left(\left|\alpha\right|^{1-2\nu}f\right)d\alpha+\cdots$$

- $\bullet\,$ We can harmlessly add $\|f\|_2^2$ to the energy and is compatible with the energy.
- As $f \in L^2$ and we want $|\alpha|^{1-2\nu} f \in L^2$, we need $\nu \leq \frac{1}{2}$.

Note:

- Smaller angles are better than bigger angles with $\pi/2$ being the threshold.
- Harmonic functions have better regularity in corners of smaller angles.
- This threshold of $\pi/2$ also shows up in the uniqueness of Yudovich solutions for the 2D Euler equation on corner domains. (See Agrawal-Nahmod (2020))

Local wellposedness for $\sigma = 0$

Kinsey and Wu (14) - A priori estimates, Wu (18) - Existence and uniqueness

- Allows angled crests as initial data with angles $\nu \pi$ with $0 < \nu < \frac{1}{2}$.
- Weighted H^s norm and interfaces are $C^{2.5}$ a.e. Weights are powers of $\frac{1}{|Z_{\alpha}|} \approx |\alpha|^{1-\nu}$

Agrawal (19) lowered the regularity of the energy of Kinsey and Wu (14) to the interface being C^2 a.e.

$$\mathcal{E}(t) = \left\| \partial_{lpha} rac{1}{Z_{lpha}}
ight\|_{L^2}^2 + \left\| rac{1}{Z_{lpha}} \partial_{lpha} rac{1}{Z_{lpha}}
ight\|_{\dot{H}^{rac{1}{2}}}^2 + \left\| ar{Z}_{tlpha}
ight\|_{L^2}^2 + \left\| rac{1}{Z_{lpha}^2} \partial_{lpha} ar{Z}_{tlpha}
ight\|_{L^2}^2$$

Questions left open from Kinsey and Wu (14), Wu (18):

- Are there other singularities allowed by the energy?
- How does the angle change with time? What are the dynamics of the singularities?
- What happens to the particle at the corner?

In Kinsey and Wu (14), a heuristic argument given to show that the angles do not change

Main result 1 (Rigidity of singularities, $\sigma = 0$)

Figure: A wave with angled crests and cusps

Theorem (Agrawal 18)

The existence result of Wu (18) allows interfaces with cusps. Moreover as long as the energy remains finite we have

- Interface with angled crests/cusps remain angled crested/cusped
- Angles do not change nor tilt
- Particles at the tip stay at the tip
- $v, v_t, \nabla v, \nabla P$ extend continuously to the boundary and the Euler equation holds even on the boundary
- $\nabla v = \nabla P = 0$ at the tip. Hence acceleration at the tip = -i

Quasilinear equations for $\sigma > 0$

• A computation shows that (proved in Agrawal 19)

$$-rac{\partial P}{\partial \hat{n}} = rac{1}{|Z_lpha|}(A_1+\sigma|\partial_lpha|\kappa)$$

where $\kappa = \text{curvature}$, $A_1 \ge 1$ is lower order.

- Hence Taylor sign condition fails generically if σ is large.
- The general quasilinear equation (derived in Agrawal 19) is

$$\left(D_t^2 + \left(-\frac{\partial P}{\partial \hat{n}}\bigg|_{\sigma=0}\right)\frac{1}{|Z_{\alpha}|}|\partial_{\alpha}| - \sigma\left(\frac{1}{|Z_{\alpha}|}\partial_{\alpha}\right)^2\frac{1}{|Z_{\alpha}|}|\partial_{\alpha}|\right)f = l.o.t$$

for
$$f = \frac{1}{|Z_{\alpha}|} \partial_{\alpha} \theta$$
 or $D_t \theta$.

- Note that $-\frac{\partial P}{\partial \hat{n}}\Big|_{\sigma=0} = \frac{A_1}{|Z_{\alpha}|} \ge 0$
- Linearize around zero solution

$$\left(\partial_t^2 + |\partial_{\alpha}| + \sigma |\partial_{\alpha}|^3\right) f = 0$$

Main result 2 (Existence, $\sigma > 0$)

Define

$$\mathcal{E}_{\sigma,1} = \left\| \partial_{\alpha} \frac{1}{Z_{\alpha}} \right\|_{L^{2}}^{2} + \left\| \frac{1}{Z_{\alpha}} \partial_{\alpha} \frac{1}{Z_{\alpha}} \right\|_{\dot{H}^{\frac{1}{2}}}^{2} + \left\| \frac{\sigma^{\frac{1}{2}}}{Z_{\alpha}^{\frac{1}{2}}} \partial_{\alpha}^{2} \frac{1}{Z_{\alpha}} \right\|_{2}^{2} + \cdots$$
$$\mathcal{E}_{\sigma,2} = \left\| \overline{Z}_{t\alpha} \right\|_{L^{2}}^{2} + \left\| \frac{1}{Z_{\alpha}^{2}} \partial_{\alpha} \overline{Z}_{t\alpha} \right\|_{L^{2}}^{2} + \left\| \frac{\sigma^{\frac{1}{2}}}{Z_{\alpha}^{\frac{1}{2}}} \partial_{\alpha} \overline{Z}_{t\alpha} \right\|_{L^{2}}^{2} + \cdots$$
$$\mathcal{E}_{\sigma} = \mathcal{E}_{\sigma,1} + \mathcal{E}_{\sigma,2}$$

Theorem (Agrawal 19)

Let $\sigma > 0$ and assume that $\mathcal{E}_{\sigma}(0) < \infty$ and $Z_{\alpha}(\cdot, 0) - 1$, $\overline{Z}_{t}(\cdot, 0) \in L^{2}$. Then there are constants $T = T(\mathcal{E}_{\sigma}(0)) > 0$ and $C = C(\mathcal{E}_{\sigma}(0)) > 0$ depending only on $\mathcal{E}_{\sigma}(0)$ and a unique solution ($Z(\cdot, t), Z_{t}(\cdot, t)$) to the capillary gravity water wave equation in [0, T] so that

$$\sup_{\scriptscriptstyle [0,T]} \mathcal{E}_{\sigma}(t) \leq C(\mathcal{E}_{\sigma}(0)) < \infty$$

Main result 2 ($\sigma > 0$)

Properties:

- Energy is positive for all σ : No assumptions on the Taylor sign condition. Also \mathcal{E}_{σ} is an increasing function of σ .
- If we fix an initial data (Z_α − 1, Z_t) ∈ H^{s+1/2} × H^s with s ≥ 3, then for arbitrary σ₀ > 0 we have a uniform time of existence T₀ (depending only on σ₀) for all 0 ≤ σ ≤ σ₀.
- Energy allows angled crest solutions for $\sigma = 0$. Also in this case, energy is lower order by half spacial derivatives as compared to the energy of Kinsey and Wu
- Energy does not allow angled crest solutions for $\sigma > 0$: If $\sigma > 0$ and $\mathcal{E}_{\sigma} < \infty$ then the interface is C^4 . However we get the estimate $\|\kappa\|_{L^{\infty}} \leq \sigma^{-\frac{1}{3}} C(\mathcal{E}_{\sigma})$ where κ is the curvature. Hence energy allows interface with large curvature.

Figure: Waves with and without surface tension

Corollary (Agrawal 19, Agrawal 20))

- Let 0 < ε ≤ 1 and σ/(ε^{3/2}) ≤ 1, then there exists T > 0 independent of ε, σ so that the solutions (Z^{ε,σ}, Z^{ε,σ}) exist in [0, T]
- If in addition $\epsilon, \sigma \to 0$ with $\frac{\sigma}{\epsilon^{3/2}} \to 0$, then $(Z^{\epsilon,\sigma}, Z_t^{\epsilon,\sigma}) \to (Z, Z_t)$ in [0, T]with $\mathcal{E}_{\Delta}(Z^{\epsilon}, Z^{\epsilon,\sigma}) + \mathcal{F}(Z, Z^{\epsilon}) \to 0$.
- Heuristically this says that if $\sigma \lesssim \epsilon^{\frac{3}{2}}$ then the interface does not feel the effect of surface tension for O(1) time.

• If we put
$$\sigma = \epsilon^{\frac{3}{2}}$$
 and $\nu = \frac{1}{2} - \frac{3}{2}\delta$ we obtain $\|\kappa^{\epsilon,\sigma}\|_{L^{\infty}}(0) \sim \sigma^{-\frac{1}{3}+\delta}$ as $\sigma \to 0$.

Heuristic energy estimate

The quasilinear equation is

$$\left(D_t^2 + \left(\frac{A_1}{|Z_{\alpha}|}\right)\frac{1}{|Z_{\alpha}|}|\partial_{\alpha}| - \sigma\left(\frac{1}{|Z_{\alpha}|}\partial_{\alpha}\right)^2\frac{1}{|Z_{\alpha}|}|\partial_{\alpha}|\right)f = l.o.t$$
(2)

If the interface has an angled crest of angle $\nu\pi$ at $\alpha = 0$, then $Z(\alpha) \sim \alpha^{\nu}$ and hence $\frac{1}{|Z_{\alpha}|} \sim |\alpha|^{1-\nu}$ near $\alpha = 0$ and hence the quasilinear equation near $\alpha = 0$ behaves like

$$\begin{split} \Big\{\partial_t^2 + |\alpha|^{2-2\nu} |\partial_\alpha| + \sigma |\alpha|^{3-3\nu} |\partial_\alpha|^3 \Big\} f \\ &= |\alpha|^{1-2\nu} f + \sigma |\alpha|^{2-3\nu} |\partial_\alpha|^2 f + \sigma |\alpha|^{1-3\nu} |\partial_\alpha| f + \sigma |\alpha|^{-3\nu} f + \text{other I.o.t} \end{split}$$

Multiply by $\partial_t f$ and integrate

$$\frac{1}{2}\frac{d}{dt}\Big\{\left\|\partial_t f\right\|_{L^2}^2 + \left\||\alpha|^{1-\nu}f\right\|_{\dot{H}^{\frac{1}{2}}} + \left\|\sigma^{\frac{1}{2}}|\alpha|^{\frac{3}{2}-\frac{3}{2}\nu}|\partial_\alpha|f\right\|_{\dot{H}^{\frac{1}{2}}}\Big\}$$
$$\approx \int (\partial_t f)\Big(|\alpha|^{1-2\nu}f + \sigma|\alpha|^{2-3\nu}|\partial_\alpha|^2f + \sigma|\alpha|^{1-3\nu}|\partial_\alpha|f + \sigma|\alpha|^{-3\nu}f\Big)\,d\alpha$$

Heuristic energy estimate

$$\frac{1}{2}\frac{d}{dt}\left\{ \|\partial_t f\|_{L^2}^2 + \left\| |\alpha|^{1-\nu} f \right\|_{\dot{H}^{\frac{1}{2}}} + \left\| \sigma^{\frac{1}{2}} |\alpha|^{\frac{3}{2}-\frac{3}{2}\nu} |\partial_\alpha| f \right\|_{\dot{H}^{\frac{1}{2}}} \right\} \\ \approx \int (\partial_t f) \left(|\alpha|^{1-2\nu} f + \sigma |\alpha|^{1-3\nu} |\partial_\alpha| f + \sigma |\alpha|^{-3\nu} f \right) d\alpha$$

- As we only have $f \in L^2$, there is no way we can control the term $\sigma |\alpha|^{-3\nu} f \in L^2$ and this is the reason why we do not allow angled crest data if $\sigma > 0$.
- If we work with the smooth interface $Z^{\epsilon} = Z * P_{\epsilon}$ where P_{ϵ} is the Poisson kernel, then this has the effect of changing $|\alpha| \mapsto |-i\epsilon + \alpha|$ near $\alpha = 0$. Hence to close the energy estimate, we obtain the restriction $\sigma \epsilon^{-3\nu} \lesssim 1$. Letting $\nu \uparrow \frac{1}{2}$, we get $\sigma \epsilon^{-\frac{3}{2}} \lesssim 1$
- A similar argument for $\sigma |\alpha|^{1-3\nu} |\partial_{\alpha}| f \in L^2$ also yields the same restriction.

The scaling

- If g = 0 then for $\lambda > 0$ and $s \in \mathbb{R}$, $Z_{\lambda}(\alpha, t) = \lambda^{-1}Z(\lambda \alpha, \lambda^{s}t)$ with $\sigma_{\lambda} = \lambda^{2s-3}\sigma$ is another solution
- We are interested in the zero surface tension limit, so we want the solutions $Z_{\lambda}(\cdot, t)$ to exist in the same time interval [0, T]. So put s = 0.
- Hence $Z_{\lambda}(\alpha, t) = \lambda^{-1} Z(\lambda \alpha, t)$ and surface tension $\sigma_{\lambda} = \lambda^{-3} \sigma$.
- Hence $\|\sigma^{\frac{1}{3}}\kappa\|_{L^{\infty}}$ is invariant under this scaling and so the curvature grows like $\sigma^{-\frac{1}{3}}$ as $\sigma \to 0$.

・ ロ ト ・ 回 ト ・ 三 ト ・ 三 ・ つ へ C² 24/25

Thank You!

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の (25/25