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Traveling waves

There is a long, rich history of theory of traveling waves in
free-surface fluid dynamics.

Typically, with x being the horizontal spatial coordinate, the
height of the free surface is η(x− ct). Another quantity such as the
potential on the free surface is also taken of the form φ(x− ct).
The focus on functions of x− ct implies a restriction to waves with
single-valued height.

There are contexts where single-valued height is natural, such as
pure gravity water waves. But for more general waves, such as
capillary-gravity waves, the assumption of single-valued height is
artificial.

We have two goals: (1) prove the existence of traveling waves with
multi-valued height, (2) allow for the existence of multi-valued
height in general existence theories of traveling waves.
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Crapper waves

Why do we want to prove the existence of traveling waves with
multi-valued height? Because we already know that some exist.

The Crapper waves are a family of exact traveling capillary water
waves on infinite depth, formulas for which can be written down:

q ≥ 1, q =
1 +A2

1−A2

ω(z) = 2i log

(
1 +Az

1−Az

)
, θq(a) = Re

(
ω(eia)

)
.

These satisfy the traveling wave equation (see Okamoto & Shōji)

F (θ; p, q) = e2Hθ
dHθ

da
− pe−Hθ sin(θ) + q

d

da

(
eHθ

dθ

da

)
= 0,

when the gravity parameter satisfies p = 0.

Kinnersley extended these to the case of finite depth.
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Crapper waves
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Gravity-perturbed Crapper waves

We want to show that overturning waves exist more generally than
for pure capillary water waves.

We do so by the implicit function theorem: we have an equation
for which we know solutions when p = 0, and we want to know
solutions exist for p 6= 0.

For the implicit function theorem, we mainly need to know about
the linearization, Γ, of the mapping F (linearized about a Crapper
wave θq).

Fortunately, the book of Okamoto and Shōji has a wealth of
information about the linearized operator.

Bottom line: we need Γ to be a bijection between certain spaces,
but it is not. Instead Γ is injective but not surjective. For maps
which are not injective, a Lyapunov-Schmidt decomposition is
frequently employed. We make the surjective analog of the
Lyapunov-Schmidt decomposition.
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Gravity-perturbed Crapper waves: results
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Extensions by more than gravity

Other authors subsequently perturbed Crapper waves by including
other effects.

de Boeck ’14 included nonzero constant vorticity.

Cordoba, Enciso, and Grubic ’16, ’21 include nonzero density of
the upper fluid.

Nonconstant vorticity seems likely to generate such waves as well.
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Allowing multi-valued height in a traveling wave
formulation

When studying traveling waves, we would like to formulate the
problem so as to allow multi-valued height, rather than introduce
an artificial restriction.

Some authors have done this in 2D flows by using a conformal
map, but we would like an approach which extends simply to the
3D case.

We will now detail such an approach which does not restrict to
single-valued height and does not use complex analysis, and which
is amenable to analysis and computing.

The analysis we will describe here is a global bifurcation theorem.
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Interfacial Flow

We consider two infinitely deep, horizontally periodic fluids,
separated by a sharp interface.

The fluid velocities are given by the irrotational, incompressible
Euler equations:

ρi (vi,t + vi · ∇vi) = −∇pi,

div(vi) = 0,

vi = ∇φi.

The fluids have densities ρ1 and ρ2, each of which is constant.
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Surface Tension

Surface tension enters the problem through the Laplace-Young
jump condition for the pressure: [p] = τκ, where τ is the surface
tension coefficient and κ is the curvature of the interface.

The initial value problem with surface tension is known to be
well-posed (A ’03).

The initial value problem without surface tension is known to be
ill-posed (Caflisch-Orellana, Lebeau/Kamotski, Wu), except in the
water wave case (ρ2 = 0).

Hou, Lowengrub, and Shelley have introduced a numerical method
for the efficient numerical solution of the initial value problem for
the vortex sheet with surface tension. This method begins with a
formulation of the problem using geometric variables related to the
curvature.
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The HLS Formulation

The interface is (x(α, t), y(α, t)), with (x, y)t = U n̂ + V t̂.

Hou, Lowengrub, and Shelley describe the curve with its tangent
angle, θ, and arclength element, sα.

Then, sα,t = Vα − θαU.
If L(t) is the length of one period, then a normalized arclength
parameterization sets sα = L/2π.

This defines V :

Vα = θαU +
Lt
2π
.

With these choices, the curvature has become essentially linear:

κ =

(
θ

sα

)
α

=
2π

L
θα.

David Ambrose (Drexel University) Multi-Valued Height April 6, 2021 10 / 28



The Normal Velocity

The normal velocity is dictated by the fluid dynamics. This
implies that U = W · n̂, where W is the Birkhoff-Rott integral.

Using complex notation, denote the interface as z = x+ iy. The
Birkhoff-Rott integral is W = (W1,W2), given by

(W1 − iW2)(α) =
1

4πi
PV

∫
γ(α′) cot

(
1

2
(z(α)− z(α′))

)
dα′.

Here, γ is the vortex sheet strength; this is proportional to the
jump in the tangential velocity across the interface.

We have an evolution equation for γ :

γt = τ
θαα
sα

+
((V −W · t̂)γ)α

sα
.

This γt equation is in the density matched case; in the more
general case, there are several additional terms proportional to
ρ1 − ρ2.
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A Traveling Parameterized Curve

The usual traveling wave formulation is to posit that the
dependent variables are functions of x− ct, for some wave speed c.

This is fine for us at small amplitudes, but we should be able to
find large-amplitude solutions as well.

At large amplitudes, our traveling vortex sheets with surface
tension should be able to overturn, i.e., we would like to allow for
waves with multi-valued height.

Instead of studying functions of x− ct, we must make a traveling
wave ansatz for a parameterized curve.

With α again corresponding to the normalized arclength
parameterization, we seek solutions for which

(x(α, t), y(α, t))t = (c, 0).
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The Traveling Wave Ansatz

We have two expressions for the velocity of the curve:

(x, y)t = (c, 0),

(x, y)t = U n̂ + V t̂.

We also have an expression for the tangential velocity:

Vα = P(θαU).

The solution of these equations is

U = −c sin(θ), V = c cos(θ).

The equation for V is redundant, from the equation for Vα above.

We still need another equation.
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Completing the Traveling Wave Ansatz

Since we have a system of evolution equations (for θ and γ), we
need a pair of equations in our traveling wave ansatz.

In addition to specifying U = −c sin(θ), we also specify
Ut = (−c sin(θ))t.

It’s easy to see that θt = 0, so this becomes Ut = 0.

Recall that U is given by

U = Re

{
eiθL

2
PV

∫ 2π

0
γ(α′) cot

(
1

2

(
z(α)− z(α′)

))
dα′
}
.

Given the equation U = −c sin(θ), this becomes, upon
differentiating with respect to t,

Ut = Re

{
eiθL

2
PV

∫ 2π

0
γt(α

′) cot

(
1

2
(z(α)− z(α′))

)
dα′
}
.
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The Final Traveling Wave Ansatz

From the above formula for Ut, we can see that if γt = 0, then
Ut = 0. (We can prove the other direction as well: if Ut = 0, then
γt = 0.)

We solve the equations U = −c sin(θ) and γt = 0, while using the
normalized arclength parameterization.

More explicitly, these equations are:

Re

{
eiθL

2
PV

∫ 2π

0
γ(α′) cot

(
1

2

(
z(α)− z(α′)

))
dα′
}

= −c sin(θ),

τθαα
sα

+

(
(V −W · t̂)γ

sα

)
α

= 0.

The quantities L, V, and z are all determined by θ, and W is
determined by θ and γ.
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Bifurcation Theory

We use an “identity plus compact” global bifurcation theorem.

The system can be rewritten as (θ, γ) +K[θ, γ] = 0, for a compact
operator K.

Two main steps in accomplishing this formulation:
I In the U = −c sin(θ) equation, write U as the Hilbert transform of
γ plus a smooth remainder.

I In the γt = 0 equation, invert the derivatives on θ. This could be
described as “inverting the curvature” to gain regularity.

After making the “identity plus compact” formulation, some
spectral information must be computed (must have odd crossing
number).
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Our global bifurcation result

Theorem

(Main Theorem) For all choices of the constants τ > 0, M > 0,
γ ∈ R, ρ1, ρ2 ≥ 0 (not both zero) and g ∈ R, there exist a countable
number of connected sets of smooth non-trivial symmetric periodic
traveling wave solutions, bifurcating from a quiescent equilibrium, for
the two-dimensional gravity-capillary vortex sheet problem. If γ̄ 6= 0 or
ρ1 6= ρ2, then each of these connected sets has at least one of the
following properties:

(a) it contains waves whose interfaces have lengths per period which
are arbitrarily long;

(b) it contains waves whose interfaces have arbitrarily large curvature;

(c) it contains waves where the jump of the tangential component of
the fluid velocity across the interface or its derivative is arbitrarily
large;

[To be continued on next slide]
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Theorem

(Main Theorem) (continued)

(d) its closure contains a wave whose interface has a point of self
intersection;

(e) it contains a sequence of waves whose interfaces converge to a flat
configuration but whose speeds contain at least two convergent
subsequences whose limits differ.

In the case that γ̄ = 0 and ρ1 = ρ2, then each connected set has at least
one of the properties (a)-(f), where (f) is the following:

(f) it contains waves which have speeds which are arbitrarily large.
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About the main theorem

We have found six possible different ways that the bifurcation
curve could end.

Typically when one proves such a result, one then attempts to
eliminate several outcomes. Eliminating an outcome could mean
proving that it does not occur, or it could also mean proving that
if it does occur, then one of the other items on the list must also
occur, making it redundant.

We have not been able to eliminate outcomes, and in fact,
numerical evidence indicates that each of outcomes (a)-(e) do
occur for some values of the parameters.

We have not observed outcome (f) numerically, but also have not
been able to eliminate it.
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Computed Solutions

For nonzero γ̄, we find that the waves always overturn, and the
bifurcation curve ends in self-intersection of the interface.
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A Close-up of the Interface
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Another Traveling Wave
A large-amplitude gravity-capillary water wave:
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A Close-up of the Interface
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About outcome (f)

This is the case ρ1 = ρ2

Numerically, we fix τ and use various values of γ̄.

The γ̄ = 0 case is the uppermost curve in the following diagram:

1 2 3 4 5 6
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0.8

1

1.2

|y|
 

c

The γ̄ = 0 curve is unbounded, but speed is bounded.
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About outcome (e)
This is the “reconnection to trivial” outcome.
For pure gravity water waves, this outcome can be eliminated.
Such an argument uses the maximum principle.
With the larger number of derivatives stemming from the presence
of surface tension, the maximum principle argument does not
work.
For certain parameter values (but always with negative gravity),
we are able to observe this behavior.
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Hydroelastic waves
Hydroelastic waves model free surface flows with elastic effects,
such as ice sheets on the ocean. We use the model of Toland and
Plotnikov, and can repeat our global bifurcation theorem.

For the crossing number, we now need to consider quartic
polynomials rather than quadratic. We are able to repeat the
global bifurcation theory.
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Extension to 3D

Our “traveling parameterized curve” philosophy does extend to
3D.

Akers and Reeger computed 3D traveling waves using a simpler
velocity than the Birkhoff-Rott integral; in the 3D case, computing
the Birkhoff-Rott integral is computationally intensive (cf.
Ambrose-Siegel-Tlupova), so they used an approximation with
Riesz transforms.

Work on analysis for the 3D problem (with the full velocity) is
ongoing (with Miles Wheeler).
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Thanks for your attention.
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