The relativistic Euler equations with a physical vacuum boundary

Marcelo M. Disconzi[†] Department of Mathematics, Vanderbilt University. Joint work M. Ifrim and D. Tataru.

Water Wave / Interface Problems

MSRI special semester Mathematical Problems in Fluid Dynamics, Berkeley, CA, March 2021

[†]MMD gratefully acknowledges support from a Sloan Research Fellowship provided by the Alfred P. Sloan foundation, from NSF grant # 1812826, and from a Dean's Faculty Fellowship.

Consider a fluid within a region that is not fixed but is allowed to move with the fluid motion.

Consider a fluid within a region that is not fixed but is allowed to move with the fluid motion.

Consider a fluid within a region that is not fixed but is allowed to move with the fluid motion.

Examples of this situation include a liquid drop or a star.

Consider a fluid within a region that is not fixed but is allowed to move with the fluid motion.

Examples of this situation include a liquid drop or a star.

Fluids of this type are called **free-boundary** fluids.

Consider a fluid within a region that is not fixed but is allowed to move with the fluid motion.

Examples of this situation include a liquid drop or a star.

Fluids of this type are called **free-boundary** fluids.

The study of free-boundary fluids (incompressible, compressible, inviscid, viscous, classical, relativistic,...) is a very active field of research (several authors).

In a free-boundary problem, the fluid region is not known ahead of time. Rather, it has to be determined alongside the fluid flow.

In a free-boundary problem, the fluid region is not known ahead of time. Rather, it has to be determined alongside the fluid flow.

Denoting by Ω_t the region occupied by the fluid at time t, the dynamics of the fluid is defined in the region

$$\Omega := \bigcup_{0 \le t < T} \Omega_t$$

known as the moving domain.

In a free-boundary problem, the fluid region is not known ahead of time. Rather, it has to be determined alongside the fluid flow.

Denoting by Ω_t the region occupied by the fluid at time t, the dynamics of the fluid is defined in the region

$$\Omega := \bigcup_{0 \le t < T} \Omega_t$$

known as the moving domain.

The fluid's free boundary (moving boundary, free interface,...) is

$$\Gamma := \bigcup_{0 \le t < T} \Gamma_t, \quad \Gamma_t := \partial \Omega_t.$$

In a free-boundary problem, the fluid region is not known ahead of time. Rather, it has to be determined alongside the fluid flow.

Denoting by Ω_t the region occupied by the fluid at time t, the dynamics of the fluid is defined in the region

$$\Omega := \bigcup_{0 \le t < T} \Omega_t$$

・ 同下 ・ ヨト ・ ヨト

known as the moving domain.

The fluid's free boundary (moving boundary, free interface,...) is

$$\Gamma := \bigcup_{0 \le t < T} \Gamma_t, \quad \Gamma_t := \partial \Omega_t.$$

Understanding the dynamics of Γ is essential in free-boundary problems.

The relativistic Euler equations

The relativistic Euler eqs. describe an *ideal* fluid in regimes where Einstein's theory of relativity cannot be neglected. E.g., fluids at speeds near the speed of light (relativistic plasma, accretion disks,...) or under strong gravitational fields (neutron stars,...).

The relativistic Euler equations

The relativistic Euler eqs. describe an *ideal* fluid in regimes where Einstein's theory of relativity cannot be neglected. E.g., fluids at speeds near the speed of light (relativistic plasma, accretion disks,...) or under strong gravitational fields (neutron stars,...). The **relativistic Euler equations** can be written as

$$u^{\mu}\partial_{\mu}\varrho + (p+\varrho)\partial_{\mu}u^{\mu} = 0, \tag{1a}$$

$$(p+\varrho)u^{\mu}\partial_{\mu}u^{\alpha} + \Pi^{\alpha\mu}\partial_{\mu}p = 0,$$
(1b)

$$g_{\alpha\beta}u^{\alpha}u^{\beta} = -1, \qquad (1c)$$

where: $\partial_{\mu} := \frac{\partial}{\partial x^{\mu}}$; $\{x^{\mu}\}_{\mu=0}^{3}$ are coordinates in spacetime, $t := x^{0}$, $x = (x^{1}, x^{2}, x^{3})$; Greek indices $= 0, \ldots, 3$, Latin indices $= 1, \ldots, 3$, sum convention; $\varrho = \varrho(t, x)$ is the fluid's (energy) density; u = u(t, x) is the fluid's (four-)velocity; $p = p(\varrho)$ is the fluid's pressure (equation of state); g is the Minkowski metric; Π is the projection onto the orthogonal (w.r.t. g) to u.

The relativistic Euler equations

The relativistic Euler eqs. describe an *ideal* fluid in regimes where Einstein's theory of relativity cannot be neglected. E.g., fluids at speeds near the speed of light (relativistic plasma, accretion disks,...) or under strong gravitational fields (neutron stars,...). The **relativistic Euler equations** can be written as

$$u^{\mu}\partial_{\mu}\varrho + (p+\varrho)\partial_{\mu}u^{\mu} = 0, \tag{1a}$$

$$(p+\varrho)u^{\mu}\partial_{\mu}u^{\alpha} + \Pi^{\alpha\mu}\partial_{\mu}p = 0,$$
(1b)

$$g_{\alpha\beta}u^{\alpha}u^{\beta} = -1, \qquad (1c)$$

where: $\partial_{\mu} := \frac{\partial}{\partial x^{\mu}}$; $\{x^{\mu}\}_{\mu=0}^{3}$ are coordinates in spacetime, $t := x^{0}$, $x = (x^{1}, x^{2}, x^{3})$; Greek indices $= 0, \ldots, 3$, Latin indices $= 1, \ldots, 3$, sum convention; $\varrho = \varrho(t, x)$ is the fluid's (energy) density; u = u(t, x) is the fluid's (four-)velocity; $p = p(\varrho)$ is the fluid's pressure (equation of state); g is the Minkowski metric; Π is the projection onto the orthogonal (w.r.t. g) to u.

(1c): constraint propagated by the flow.

Free-boundary: correct boundary condition on Γ is

$$p|_{\Gamma} = 0. \tag{(\star)}$$

Free-boundary: correct boundary condition on Γ is

$$p|_{\Gamma} = 0. \tag{(\star)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Since the pressure is given in terms of ϱ by an equation of state,

 $(\star) \Rightarrow \text{condition on } \varrho|_{\Gamma}$.

Free-boundary: correct boundary condition on Γ is

$$p|_{\Gamma} = 0. \tag{(\star)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Since the pressure is given in terms of ϱ by an equation of state,

 $(\star) \Rightarrow \text{condition on } \varrho|_{\Gamma}$.

Two distinct cases, depending in part on the equation of state: Liquid: $\rho \ge \text{constant} > 0$ on Γ . Gas: $\rho = 0$ on Γ .

Free-boundary: correct boundary condition on Γ is

$$p|_{\Gamma} = 0. \tag{(\star)}$$

Since the pressure is given in terms of ϱ by an equation of state,

 $(\star) \Rightarrow \text{condition on } \varrho|_{\Gamma}$.

Two distinct cases, depending in part on the equation of state:

Liquid: $\rho \geq \text{constant} > 0$ on Γ .

Gas: $\rho = 0$ on Γ .

The liquid and gas cases are very different problems.

Free-boundary: correct boundary condition on Γ is

$$p|_{\Gamma} = 0. \tag{(\star)}$$

Since the pressure is given in terms of ϱ by an equation of state,

 $(\star) \Rightarrow \text{condition on } \varrho|_{\Gamma}$.

Two distinct cases, depending in part on the equation of state:

Liquid: $\varrho \geq \text{constant} > 0 \text{ on } \Gamma$.

Gas: $\rho = 0$ on Γ . Γ is also called a vacuum boundary.

The liquid and gas cases are very different problems. Here we will consider the gas case.

Free-boundary: correct boundary condition on Γ is

$$p|_{\Gamma} = 0. \tag{(\star)}$$

(日) (同) (目) (日) (日) (0) (0)

Since the pressure is given in terms of ρ by an equation of state,

 $(\star) \Rightarrow$ condition on $\varrho|_{\Gamma}$.

Two distinct cases, depending in part on the equation of state:

Liquid: $\rho \geq \text{constant} > 0$ on Γ .

Gas: $\rho = 0$ on Γ . Γ is also called a vacuum boundary.

The liquid and gas cases are very different problems. Here we will consider the gas case. For a gas, the moving domain at time t is given by

$$\Omega_t := \{ x \in \mathbb{R}^3 \, | \, \varrho(t, x) > 0 \}.$$

Free-boundary: correct boundary condition on Γ is

$$p|_{\Gamma} = 0. \tag{(\star)}$$

Since the pressure is given in terms of ϱ by an equation of state,

 $(\star) \Rightarrow \text{condition on } \varrho|_{\Gamma}$.

Two distinct cases, depending in part on the equation of state:

Liquid: $\rho \geq \text{constant} > 0$ on Γ .

Gas: $\rho = 0$ on Γ . Γ is also called a vacuum boundary.

The liquid and gas cases are very different problems. Here we will consider the gas case. For a gas, the moving domain at time t is given by

$$\Omega_t := \{ x \in \mathbb{R}^3 \, | \, \varrho(t, x) > 0 \}.$$

(Kinematic boundary condition: u is tangent to Γ .)

The fluid's sound speed c_s is defined as

$$c_s^2 := p'(\varrho), \quad c_s^2 = c_s^2(t, x),$$

which corresponds to the speed of sound waves in the fluid (characteristics of the system).

The fluid's sound speed c_s is defined as

$$c_s^2 := p'(\varrho), \quad c_s^2 = c_s^2(t, x),$$

which corresponds to the speed of sound waves in the fluid (characteristics of the system). One also demands that (no sound in vacuum)

$$c_s^2\big|_{\Gamma} = 0.$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

The fluid's sound speed c_s is defined as

$$c_s^2 := p'(\varrho), \quad c_s^2 = c_s^2(t, x),$$

which corresponds to the speed of sound waves in the fluid (characteristics of the system). One also demands that (no sound in vacuum)

$$c_s^2\big|_{\Gamma} = 0.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

The vanishing rate of c_s^2 near Γ_t plays a crucial role.

The fluid's sound speed c_s is defined as

$$c_s^2 := p'(\varrho), \quad c_s^2 = c_s^2(t, x),$$

which corresponds to the speed of sound waves in the fluid (characteristics of the system). One also demands that (no sound in vacuum)

$$c_s^2\big|_{\Gamma} = 0.$$

The vanishing rate of c_s^2 near Γ_t plays a crucial role. Essentially, there is only one natural decay rate consistent with the time evolution:

$$c_s^2(t,x) \approx \operatorname{dist}(x,\Gamma_t),$$

known as physical (vacuum) boundary.

The fluid's sound speed c_s is defined as

$$c_s^2 := p'(\varrho), \quad c_s^2 = c_s^2(t, x),$$

which corresponds to the speed of sound waves in the fluid (characteristics of the system). One also demands that (no sound in vacuum)

$$c_s^2\big|_{\Gamma} = 0.$$

The vanishing rate of c_s^2 near Γ_t plays a crucial role. Essentially, there is only one natural decay rate consistent with the time evolution:

$$c_s^2(t,x) \approx \operatorname{dist}(x,\Gamma_t),$$

(日) (同) (目) (日) (日) (0) (0)

known as physical (vacuum) boundary. (Constraint propagated).

The fluid's sound speed c_s is defined as

$$c_s^2 := p'(\varrho), \quad c_s^2 = c_s^2(t, x),$$

which corresponds to the speed of sound waves in the fluid (characteristics of the system). One also demands that (no sound in vacuum)

$$c_s^2\big|_{\Gamma} = 0.$$

The vanishing rate of c_s^2 near Γ_t plays a crucial role. Essentially, there is only one natural decay rate consistent with the time evolution:

$$c_s^2(t,x) \approx \operatorname{dist}(x,\Gamma_t),$$

known as physical (vacuum) boundary. (Constraint propagated).

- A faster decay would cause the boundary to simply move independently and linearly with the outer particle's speed.
- A slower decay rate would lead to a very singular problem, likely causing an infinite initial acceleration of the boundary.

The physical vacuum boundary condition $c_s^2(t, x) \approx \operatorname{dist}(x, \Gamma_t)$ implies that linear waves with speed c_s reach the boundary in finite time. Thus, the motion of the boundary is strongly coupled to the wave evolution and is *not* just a self-contained evolution at leading order.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

The physical vacuum boundary condition $c_s^2(t,x) \approx \operatorname{dist}(x,\Gamma_t)$ implies that linear waves with speed c_s reach the boundary in finite time. Thus, the motion of the boundary is strongly coupled to the wave evolution and is *not* just a self-contained evolution at leading order.

The relativistic Euler equations degenerate on the boundary (not the case for a liquid).

The physical vacuum boundary condition $c_s^2(t, x) \approx \operatorname{dist}(x, \Gamma_t)$ implies that linear waves with speed c_s reach the boundary in finite time. Thus, the motion of the boundary is strongly coupled to the wave evolution and is *not* just a self-contained evolution at leading order.

The relativistic Euler equations degenerate on the boundary (not the case for a liquid).

A standard choice of equation of state for a physical vacuum is

$$p(\varrho) = \varrho^{\kappa+1}, \, \kappa > 0,$$

which we henceforth assume.

• Good nonlinear variables: diagonalize the system with respect to the material derivative $D_t := \partial_t + \frac{u^i}{u^0} \partial_i$ (choice of spacetime foliation); tailored to the characteristics.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- Good nonlinear variables: diagonalize the system with respect to the material derivative $D_t := \partial_t + \frac{u^i}{u^0} \partial_i$ (choice of spacetime foliation); tailored to the characteristics.
- Good linear variables: analysis of the linearized equations plays a main role.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- Good nonlinear variables: diagonalize the system with respect to the material derivative $D_t := \partial_t + \frac{u^i}{u^0} \partial_i$ (choice of spacetime foliation); tailored to the characteristics.
- Good linear variables: analysis of the linearized equations plays a main role.
- Derive energy estimates estimates for D_t^N (good nonlinear): satisfies linearized equation with good perturbative terms. Connect to full derivatives: elliptic estimates.

- Good nonlinear variables: diagonalize the system with respect to the material derivative $D_t := \partial_t + \frac{u^i}{u^0} \partial_i$ (choice of spacetime foliation); tailored to the characteristics.
- Good linear variables: analysis of the linearized equations plays a main role.
- Derive energy estimates estimates for D_t^N (good nonlinear): satisfies linearized equation with good perturbative terms. Connect to full derivatives: elliptic estimates.
- Regularization + time discretization to obtain solutions.

Diagonalizing the system

The rescaled velocity $v := f(\varrho)u$ satisfies

$$\frac{p+\varrho}{f}u^{\mu}\partial_{\mu}v^{i} + c_{s}^{2}g^{i\mu}\partial_{\mu}\varrho + \left(-\frac{f'}{f}(p+\varrho) + c_{s}^{2}\right)u^{i}u^{\mu}\partial_{\mu}\varrho = 0$$

Diagonalizing the system

The rescaled velocity $v := f(\varrho)u$ satisfies

$$\frac{p+\varrho}{f}u^{\mu}\partial_{\mu}v^{i} + c_{s}^{2}g^{i\mu}\partial_{\mu}\varrho + \left(-\frac{f'}{f}(p+\varrho) + c_{s}^{2}\right)u^{i}u^{\mu}\partial_{\mu}\varrho = 0$$

Diagonalizing the system

The rescaled velocity $v := f(\varrho)u$ satisfies

$$\frac{p+\varrho}{f}u^{\mu}\partial_{\mu}v^{i} + c_{s}^{2}g^{i\mu}\partial_{\mu}\varrho + \underbrace{\left(-\frac{f'}{f}(p+\varrho) + c_{s}^{2}\right)}_{=0 \text{ if } f(\varrho) = \exp\int\frac{c_{s}^{2}(\varrho)}{p(\varrho) + \varrho}} u^{i}u^{\mu}\partial_{\mu}\varrho = 0$$
Diagonalizing the system

The rescaled velocity $v := f(\varrho)u$ satisfies

$$\frac{p+\varrho}{f}u^{\mu}\partial_{\mu}v^{i} + c_{s}^{2}g^{i\mu}\partial_{\mu}\varrho + \underbrace{\left(-\frac{f'}{f}(p+\varrho) + c_{s}^{2}\right)}_{=0 \text{ if } f(\varrho) = \exp\int\frac{c_{s}^{2}(\varrho)}{p(\varrho) + \varrho}} u^{i}u^{\mu}\partial_{\mu}\varrho = 0$$

The vorticity $\omega_{\alpha\beta} := (d_{st}v)_{\alpha\beta}$ satisfies

$$v^{\mu}\partial_{\mu}\omega_{\alpha\beta} + \partial_{\alpha}v^{\mu}\omega_{\mu\beta} + \partial_{\beta}v^{\mu}\omega_{\alpha\mu} = 0, \quad v^{\mu}\omega_{\mu\alpha} = 0.$$

Diagonalizing the system

The rescaled velocity $v := f(\varrho)u$ satisfies

$$\frac{p+\varrho}{f}u^{\mu}\partial_{\mu}v^{i} + c_{s}^{2}g^{i\mu}\partial_{\mu}\varrho + \underbrace{\left(-\frac{f'}{f}(p+\varrho) + c_{s}^{2}\right)}_{=0 \text{ if } f(\varrho) = \exp\int\frac{c_{s}^{2}(\varrho)}{p(\varrho) + \varrho}} u^{i}u^{\mu}\partial_{\mu}\varrho = 0$$

The vorticity $\omega_{\alpha\beta}:=(d_{st}v)_{\alpha\beta}$ satisfies

$$v^{\mu}\partial_{\mu}\omega_{\alpha\beta} + \partial_{\alpha}v^{\mu}\omega_{\mu\beta} + \partial_{\beta}v^{\mu}\omega_{\alpha\mu} = 0, \quad v^{\mu}\omega_{\mu\alpha} = 0.$$

This change of variables also diagonalizes the ρ -equation:

$$v^{\mu}\partial_{\mu}\varrho + (p+\varrho)\left(\delta^{ij} - \frac{v^{i}v^{j}}{(v^{0})^{2}}\right)\partial_{i}v_{j} - c_{s}^{2}f^{2}v^{i}\partial_{i}\varrho = 0.$$

(Omitting O(1) coefficients throughout.)

The good variables

For
$$p(\varrho) = \varrho^{\kappa+1}$$
, $v := (1 + \varrho^{\kappa})^{1+\frac{1}{\kappa}}u$, $r := \frac{\kappa+1}{\kappa}\varrho^{\kappa}$ (sound speed²),
 $D_t r + rG^{ij}\partial_i v_j + rv^i\partial_i r = 0,$ (2a)
 $D_t v_i + \partial_i r = 0,$ (2b)

 $G^{ij} := \delta^{ij} - \frac{v^i v^j}{(v^0)^2}.$

The good variables

For
$$p(\varrho) = \varrho^{\kappa+1}$$
, $v := (1 + \varrho^{\kappa})^{1+\frac{1}{\kappa}}u$, $r := \frac{\kappa+1}{\kappa}\varrho^{\kappa}$ (sound speed²),
 $D_t r + rG^{ij}\partial_i v_j + rv^i\partial_i r = 0,$ (2a)
 $D_t v_i + \partial_i r = 0,$ (2b)

 $G^{ij} := \delta^{ij} - \frac{v^i v^j}{(v^0)^2}.$

G: Riemannian (relatd to acoustical metric).

The good variables

For
$$p(\varrho) = \varrho^{\kappa+1}$$
, $v := (1 + \varrho^{\kappa})^{1+\frac{1}{\kappa}}u$, $r := \frac{\kappa+1}{\kappa}\varrho^{\kappa}$ (sound speed²),
 $D_t r + rG^{ij}\partial_i v_j + rv^i\partial_i r = 0,$ (2a)
 $D_t v_i + \partial_i r = 0,$ (2b)

 $G^{ij} := \delta^{ij} - \frac{v^i v^j}{(v^0)^2}.$

G: Riemannian (relatd to acoustical metric).

The term $rv^i\partial_i r$ in (2a) can roughly be viewed as a perturbation; energy estimates: multiply by s and integrate

$$\int_{\Omega_t} srv^i \partial_i s \, dx = \frac{1}{2} \int_{\Omega_t} rv^i \partial_i s^2 \, dx \lesssim \|s\|_{L^2(\Omega_t)}^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Function spaces

The linearized equations admit the following energy $(r \rightsquigarrow s, v \rightsquigarrow w)$:

$$\|(s,w)\|_{\mathcal{H}}^2 := \int_{\Omega_t} r^{\frac{1-\kappa}{\kappa}} (s^2 + rG^{ij}w_jw_i) \, dx.$$

(r=definition function, $\Omega_t = \{r(t, x) > 0\}$, $r \approx \operatorname{dist}(\cdot, \partial \Omega_t)$.)

Function spaces

The linearized equations admit the following energy $(r \rightsquigarrow s, v \rightsquigarrow w)$:

$$\|(s,w)\|_{\mathcal{H}}^2 := \int_{\Omega_t} r^{\frac{1-\kappa}{\kappa}} (s^2 + rG^{ij}w_jw_i) \, dx.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(r=definition function, $\Omega_t = \{r(t, x) > 0\}$, $r \approx \operatorname{dist}(\cdot, \partial \Omega_t)$.) Higher-order norms: wave evolution $D_t^2 - r\Delta$; powers of $r\Delta$.

Function spaces

The linearized equations admit the following energy $(r \rightsquigarrow s, v \rightsquigarrow w)$:

$$\|(s,w)\|_{\mathcal{H}}^2 := \int_{\Omega_t} r^{\frac{1-\kappa}{\kappa}} (s^2 + rG^{ij}w_jw_i) \, dx.$$

(r=definition function, $\Omega_t = \{r(t, x) > 0\}$, $r \approx \operatorname{dist}(\cdot, \partial \Omega_t)$.) Higher-order norms: wave evolution $D_t^2 - r\Delta$; powers of $r\Delta$.

$$\begin{split} \|(s,w)\|_{\mathcal{H}^{2k}}^{2} &:= \sum_{|\alpha|=0}^{2k} \sum_{\substack{a=0\\|\alpha|=a \le k}}^{k} \|r^{\frac{1-\kappa}{2\kappa}+a} \partial^{\alpha}s\|_{L^{2}(\Omega_{t})}^{2} \\ &+ \sum_{|\alpha|=0}^{2k} \sum_{\substack{a=0\\|\alpha|=a \le k}}^{k} \|r^{\frac{1-\kappa}{2\kappa}+\frac{1}{2}+a} \partial^{\alpha}w\|_{L^{2}(\Omega_{t})}^{2} \\ &\sim \|r^{\frac{1-\kappa}{2\kappa}+k} \partial^{2k}s\|_{L^{2}(\Omega_{t})} + \|r^{\frac{1-\kappa}{2\kappa}+\frac{1}{2}+k} \partial^{2k}w\|_{L^{2}(\Omega_{t})}. \end{split}$$

Ignoring ${\cal O}(1)$ terms, equations

$$D_t r + r G^{ij} \partial_i v_j + r v^i \partial_i r = 0,$$

$$D_t v_i + \partial_i r = 0,$$

become

$$\begin{split} (\partial_t + v^i \partial_i)r + r \delta^{ij} \partial_i v_j + r v^i \partial_i r &= 0, \\ (\partial_t + v^j \partial_j) v_i + \partial_i r &= 0. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ignoring ${\cal O}(1)$ terms, equations

$$D_t r + r G^{ij} \partial_i v_j + r v^i \partial_i r = 0,$$

$$D_t v_i + \partial_i r = 0,$$

become

$$\begin{split} (\partial_t + v^i \partial_i)r + r \delta^{ij} \partial_i v_j + \widetilde{i \partial^j} \partial_i \widetilde{v_i} &= 0, \\ (\partial_t + v^j \partial_j) v_i + \partial_i r &= 0. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ignoring ${\cal O}(1)$ terms, equations

$$D_t r + r G^{ij} \partial_i v_j + r v^i \partial_i r = 0,$$

$$D_t v_i + \partial_i r = 0,$$

become

$$\begin{split} (\partial_t + v^i \partial_i)r + r \delta^{ij} \partial_i v_j + \widetilde{r v^j} \partial_i \widetilde{v_i} &= 0, \\ (\partial_t + v^j \partial_j) v_i + \partial_i r &= 0. \end{split}$$

The resulting equations admit the scaling law:

$$(r(t,x),v(t,x))\mapsto \left(\lambda^{-2}r(\lambda t,\lambda^2 x),\lambda^{-1}v(\lambda t,\lambda^2 x)\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ignoring O(1) terms, equations

$$D_t r + r G^{ij} \partial_i v_j + r v^i \partial_i r = 0,$$

$$D_t v_i + \partial_i r = 0,$$

become

$$\begin{split} (\partial_t + v^i \partial_i)r + r \delta^{ij} \partial_i v_j + \widetilde{r \partial^j} \partial_i \widetilde{v_i} &= 0, \\ (\partial_t + v^j \partial_j) v_i + \partial_i r &= 0. \end{split}$$

The resulting equations admit the scaling law:

$$(r(t,x),v(t,x)) \mapsto \left(\lambda^{-2}r(\lambda t,\lambda^2 x),\lambda^{-1}v(\lambda t,\lambda^2 x)\right)$$

From this we determined the critical space \mathcal{H}^{2k_0} where

$$2k_0 = 3 + 1 + \frac{1}{\kappa}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem: LWP

Define the phase space

$$\mathbf{H}^{2k} := \left\{ (r, v) \,|\, (r, v) \in \mathcal{H}^{2k} \right\}.$$

Equations

$$D_t r + r G^{ij} \partial_i v_j + r v^i \partial_i r = 0,$$

$$D_t v_i + \partial_i r = 0,$$

are locally well-posed in \mathbf{H}^{2k} for data $(\mathring{r},\mathring{v})\in\mathbf{H}^{2k}$ provided that

$$\mathring{r}(x) \approx \operatorname{dist}(x, \partial \Omega_0), \quad \Omega_0 = \{\mathring{r} > 0\},$$

 and

$$2k > 2k_0 + 1, \ 2k_0 = 3 + 1 + \frac{1}{\kappa}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

13/27

Time-dependent control norms

We introduce the following control norms:

$$\begin{split} A &:= \|\nabla r - N\|_{L^{\infty}(\Omega_{t})} + \|v\|_{\dot{C}^{\frac{1}{2}}(\Omega_{t})},\\ B &:= A + \|\nabla r\|_{\tilde{C}^{\frac{1}{2}}(\Omega_{t})} + \|\nabla v\|_{L^{\infty}(\Omega_{t})},\\ \text{where} \quad \|\nabla r\|_{\tilde{C}^{\frac{1}{2}}(\Omega_{t})} &:= \sup_{\substack{x,y \in \Omega_{t} \\ x \neq y}} \frac{|\nabla r(x) - \nabla r(y)|}{r(x)^{\frac{1}{2}} + r(y)^{\frac{1}{2}} + |x - y|^{\frac{1}{2}}}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Time-dependent control norms

We introduce the following control norms:

$$\begin{split} A &:= \|\nabla r - N\|_{L^{\infty}(\Omega_{t})} + \|v\|_{\dot{C}^{\frac{1}{2}}(\Omega_{t})},\\ B &:= A + \|\nabla r\|_{\tilde{C}^{\frac{1}{2}}(\Omega_{t})} + \|\nabla v\|_{L^{\infty}(\Omega_{t})},\\ \text{where} \quad \|\nabla r\|_{\tilde{C}^{\frac{1}{2}}(\Omega_{t})} &:= \sup_{\substack{x,y \in \Omega_{t} \\ x \neq y}} \frac{|\nabla r(x) - \nabla r(y)|}{r(x)^{\frac{1}{2}} + r(y)^{\frac{1}{2}} + |x - y|^{\frac{1}{2}}}. \end{split}$$

N: given vectorfield such that $\nabla r(x_0) = N(x_0)$; can make A small working in a small neighborhood of x_0 ($\|\nabla r\|_{L^{\infty}(\Omega_t)}$ cannot be made small).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Time-dependent control norms

We introduce the following control norms:

$$\begin{split} A &:= \|\nabla r - N\|_{L^{\infty}(\Omega_{t})} + \|v\|_{\dot{C}^{\frac{1}{2}}(\Omega_{t})},\\ B &:= A + \|\nabla r\|_{\tilde{C}^{\frac{1}{2}}(\Omega_{t})} + \|\nabla v\|_{L^{\infty}(\Omega_{t})},\\ \text{where} \quad \|\nabla r\|_{\tilde{C}^{\frac{1}{2}}(\Omega_{t})} &:= \sup_{\substack{x,y \in \Omega_{t} \\ x \neq y}} \frac{|\nabla r(x) - \nabla r(y)|}{r(x)^{\frac{1}{2}} + r(y)^{\frac{1}{2}} + |x - y|^{\frac{1}{2}}}. \end{split}$$

N: given vectorfield such that $\nabla r(x_0) = N(x_0)$; can make A small working in a small neighborhood of x_0 ($\|\nabla r\|_{L^{\infty}(\Omega_t)}$ cannot be made small).

 $\|\nabla r\|_{\tilde{C}^{\frac{1}{2}}(\Omega_t)}$: like $\dot{C}^{\frac{3}{2}}$ but weaker (only one derivative away from Γ_t).

We introduce the following control norms:

$$\begin{split} A &:= \|\nabla r - N\|_{L^{\infty}(\Omega_{t})} + \|v\|_{\dot{C}^{\frac{1}{2}}(\Omega_{t})},\\ B &:= A + \|\nabla r\|_{\tilde{C}^{\frac{1}{2}}(\Omega_{t})} + \|\nabla v\|_{L^{\infty}(\Omega_{t})},\\ \text{where} \quad \|\nabla r\|_{\tilde{C}^{\frac{1}{2}}(\Omega_{t})} &:= \sup_{\substack{x,y \in \Omega_{t} \\ x \neq y}} \frac{|\nabla r(x) - \nabla r(y)|}{r(x)^{\frac{1}{2}} + r(y)^{\frac{1}{2}} + |x - y|^{\frac{1}{2}}}. \end{split}$$

N: given vectorfield such that $\nabla r(x_0) = N(x_0)$; can make A small working in a small neighborhood of x_0 ($\|\nabla r\|_{L^{\infty}(\Omega_t)}$ cannot be made small).

$$\begin{split} \|\nabla r\|_{\tilde{C}^{\frac{1}{2}}(\Omega_{t})} &: \text{ like } \dot{C}^{\frac{3}{2}} \text{ but weaker (only one derivative away from } \Gamma_{t}). \\ A \text{ with } \mathcal{H}^{2k_{0}}, A \lesssim \|(r, v)\|_{\mathbf{H}^{2k}}, 2k > 2k_{0} = 3 + 1 + \frac{1}{\kappa}. \\ B \text{ with } \mathcal{H}^{2k_{0}+1}, B \lesssim \|(r, v)\|_{\mathbf{H}^{2k}}, 2k > 2k_{0} + 1 = 3 + 2 + \frac{1}{\kappa}. \end{split}$$

Theorem: continuation criterion

For each integer $k \ge 0$ there exists an energy functional $E^{2k} = E^{2k}(r, v)$ with the following properties:

• Coercivity: as long as A remains bounded, we have

$$E^{2k}(r,v) \approx ||(r,v)||_{\mathcal{H}^{2k}}^2.$$

• Energy estimates hold for solutions, i.e.,

$$\frac{d}{dt}E^{2k}(r,v) \lesssim_A B ||(r,v)||^2_{\mathcal{H}^{2k}}.$$

(日) (同) (三) (三) (三) (○) (○)

Therefore,

$$\|(r,v)\|_{\mathcal{H}^{2k}}^2 \lesssim e^{\int_0^t C(A)B(\tau)\,d\tau} \|(\mathring{r},\mathring{v})\|_{\mathcal{H}^{2k}}^2.$$

In particular, the \mathbf{H}^{2k} solutions can be continued as long as A remains bounded and $B \in L^1_t(\Omega)$.

- A priori estimates: Oliynyk ('17) and Ginsberg ('19).
- Local existence and uniqueness: Oliynyk ('19) and Miao, Shahshahani, and Wu ('20): "hard phase".
- First-order symmetric hyperbolic approach for local existence and uniqueness: Trakhinin ('09).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- A priori estimates: Oliynyk ('17) and Ginsberg ('19).
- Local existence and uniqueness: Oliynyk ('19) and Miao, Shahshahani, and Wu ('20): "hard phase".
- First-order symmetric hyperbolic approach for local existence and uniqueness: Trakhinin ('09).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Recently, good progress in the case of a liquid.

Previous results: gas under symmetry

- Tolman, Oppenheimer, and Volkoff, TOV eqs ('30s): modeling of a star; spherically symmetric static solutions to the Einstein-Euler system for a fluid body in vacuum; vanishing of the pressure as the correct physical condition on the boundary (gas and liquid).
- Spherically symmetric static solutions of Einstein-Euler: Lindblom ('88), Rendall and Schmidt ('91), Makino ('98).
- Spherical and axisymmetry: Makino ('16, '17): spherical symmetric solutions of Einstein-Euler with a vacuum boundary near equilibrium (TOV). Makino ('18): axisymmetry and slowly rotating (related: Heilig ('95) and Makino ('19)). Hadžić and Lin ('20): "turning point principle" for relativistic stars.

Previous results: gas under symmetry

- Tolman, Oppenheimer, and Volkoff, TOV eqs ('30s): modeling of a star; spherically symmetric static solutions to the Einstein-Euler system for a fluid body in vacuum; vanishing of the pressure as the correct physical condition on the boundary (gas and liquid).
- Spherically symmetric static solutions of Einstein-Euler: Lindblom ('88), Rendall and Schmidt ('91), Makino ('98).
- Spherical and axisymmetry: Makino ('16, '17): spherical symmetric solutions of Einstein-Euler with a vacuum boundary near equilibrium (TOV). Makino ('18): axisymmetry and slowly rotating (related: Heilig ('95) and Makino ('19)). Hadžić and Lin ('20): "turning point principle" for relativistic stars.

Much can be said under symmetry assumptions (including considering coupling to Einstein's equations).

• Existence and uniqueness for a gas not satisfying the physical boundary condition: Rendall ('92), Makino and Ukai ('95), LeFloch and Ukai ('09), Brauer and Karp ('14). (Unnatural regularity near the boundary; no acceleration on the boundary).

(日) (型) (目) (日) (1000)

• Frame-formalism approach: Friedrich ('98).

• Existence and uniqueness for a gas not satisfying the physical boundary condition: Rendall ('92), Makino and Ukai ('95), LeFloch and Ukai ('09), Brauer and Karp ('14). (Unnatural regularity near the boundary; no acceleration on the boundary).

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

• Frame-formalism approach: Friedrich ('98).

A few results have been obtained if one violates the physical vacuum condition.

- A priori estimates: Jang, LeFloch, and Masmoudi ('16), and Hadžić, Shkoller, and Speck ('19). (Results all in Lagrangian coordinates; we work entirely in Eulerian coordinates.)
- Local existence and uniqueness in 1 + 1 dimensions: Oliynyk ('12) (Geometry plays no role, main difficulties are absent).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

$$D_t s + \frac{1}{\kappa} G^{ij} \partial_i r w_j + r G^{ij} \partial_i w_j + r v^i \partial_i s = error,$$

$$D_t w_i + \partial_i s = error,$$
(3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

admits the energy $\|(s,w)\|_{\mathcal{H}}^2 := \int_{\Omega_t} r^{\frac{1-\kappa}{\kappa}} (s^2 + rG^{ij}w_jw_i) \, dx.$

$$D_t s + \frac{1}{\kappa} G^{ij} \partial_i r w_j + r G^{ij} \partial_i w_j + r v^i \partial_i s = error,$$

$$D_t w_i + \partial_i s = error,$$

(3)

admits the energy $||(s,w)||_{\mathcal{H}}^2 := \int_{\Omega_t} r^{\frac{1-\kappa}{\kappa}} (s^2 + rG^{ij}w_jw_i) dx.$ The term $\frac{1}{\kappa} G^{ij}\partial_i rw_j$ is not an error.

$$D_t s + \frac{1}{\kappa} G^{ij} \partial_i r w_j + r G^{ij} \partial_i w_j + r v^i \partial_i s = error,$$

$$D_t w_i + \partial_i s = error,$$
(3)

(日) (同) (目) (日) (日) (0) (0)

admits the energy $||(s,w)||_{\mathcal{H}}^2 := \int_{\Omega_t} r^{\frac{1-\kappa}{\kappa}} (s^2 + rG^{ij}w_jw_i) dx.$ The term $\frac{1}{\kappa}G^{ij}\partial_i rw_j$ is not an error.

Want to differentiate (3); bad terms when differentiating the weights r.

$$D_t s + \frac{1}{\kappa} G^{ij} \partial_i r w_j + r G^{ij} \partial_i w_j + r v^i \partial_i s = error,$$

$$D_t w_i + \partial_i s = error,$$
(3)

admits the energy $||(s,w)||_{\mathcal{H}}^2 := \int_{\Omega_t} r^{\frac{1-\kappa}{\kappa}} (s^2 + rG^{ij}w_jw_i) dx.$ The term $\frac{1}{\kappa} G^{ij} \partial_i rw_j$ is not an error.

Want to differentiate (3); bad terms when differentiating the weights r. Not the case if differentiating w.r.t. D_t because $D_t r \sim r \partial(r, v)$.

The good linearized variables

From the above, want to work with $(D_t^{\ell}r, D_t^{\ell}v)$: solve the linearized equations with good perturbative terms?

From the above, want to work with $(D_t^{\ell}r, D_t^{\ell}v)$: solve the linearized equations with good perturbative terms? Not quite: D_t does not generate an exact symmetry of the equation like ∂ .

The good linearized variables

From the above, want to work with $(D_t^{\ell}r, D_t^{\ell}v)$: solve the linearized equations with good perturbative terms? Not quite: D_t does not generate an exact symmetry of the equation like ∂ .

Correction terms: define (modified for small N; $r_0 = r, v_0 = v$):

$$(w_N)_i := D_t^N v_i,$$

$$s_N := D_t^N r - \frac{1}{\kappa} G^{ij} \partial_i r D_t^{N-1} v_j.$$

The good linearized variables

From the above, want to work with $(D_t^{\ell}r, D_t^{\ell}v)$: solve the linearized equations with good perturbative terms? Not quite: D_t does not generate an exact symmetry of the equation like ∂ .

Correction terms: define (modified for small N; $r_0 = r, v_0 = v$):

$$(w_N)_i := D_t^N v_i,$$

$$s_N := D_t^N r - \frac{1}{\kappa} G^{ij} \partial_i r D_t^{N-1} v_j.$$

 (s_N, w_N) are good approximations for solutions of the linearized equation.

Control of the energy:
$$E^{2k}(r, v) := \sum_{N=0}^{k} ||(s_{2N}, w_{2N})||_{\mathcal{H}}.$$

(日) (同) (三) (三) (三) (○) (○)

Full control of (r, v): use the equations to get $D_t^{2N}r \sim r^N \partial^{2N}r$, $D_t^{2N}v \sim r^N \partial^{2N}v$. (Recall the \mathcal{H}^{2k} norm).

Second-order transition operators

To establish $D_t^{2N}(r,v) \sim r^N \partial^{2N}(r,v)$ we use elliptic estimates for:

$$L_1 s := G^{ij} \left(r \partial_i \partial_j + \frac{1}{\kappa} \partial_i r \partial_j s \right),$$
$$(L_2 w)_i := G^{ml} \left(\partial_i (r \partial_m w_l) + \frac{1}{\kappa} \partial_m r \partial_i w_l \right),$$

 $\label{eq:solution} \text{for which} \quad s_{2N} = L_1 s_{2N-2} + F_{2N}, \quad w_{2N} = (L_2 w_{2N-2})_i + (G_{2N})_i.$

Second-order transition operators

To establish $D_t^{2N}(r,v) \sim r^N \partial^{2N}(r,v)$ we use elliptic estimates for:

$$L_1 s := G^{ij} \left(r \partial_i \partial_j + \frac{1}{\kappa} \partial_i r \partial_j s \right),$$
$$(L_2 w)_i := G^{ml} \left(\partial_i (r \partial_m w_l) + \frac{1}{\kappa} \partial_m r \partial_i w_l \right),$$

for which $s_{2N} = L_1 s_{2N-2} + F_{2N}$, $w_{2N} = (L_2 w_{2N-2})_i + (G_{2N})_i$.

Come from wave evolution: $D_t^2 r \sim L_1 r$, $D_t^2 v \sim L_2 v$.

Second-order transition operators

To establish $D_t^{2N}(r,v) \sim r^N \partial^{2N}(r,v)$ we use elliptic estimates for:

$$L_1 s := G^{ij} \left(r \partial_i \partial_j + \frac{1}{\kappa} \partial_i r \partial_j s \right),$$
$$(L_2 w)_i := G^{ml} \left(\partial_i (r \partial_m w_l) + \frac{1}{\kappa} \partial_m r \partial_i w_l \right),$$

for which $s_{2N} = L_1 s_{2N-2} + F_{2N}$, $w_{2N} = (L_2 w_{2N-2})_i + (G_{2N})_i$.

Come from wave evolution: $D_t^2 r \sim L_1 r$, $D_t^2 v \sim L_2 v$. Elliptic estimates (also ω):

$$\|(s_{2N-2}, w_{2N-2})\|_{\mathcal{H}^{2k-2N+2}} \lesssim \|(s_{2N}, w_{2N})\|_{H^{2k-2N}} + \varepsilon \|(r, v)\|_{\mathcal{H}^{2k}}.$$
Second-order transition operators

To establish $D_t^{2N}(r,v) \sim r^N \partial^{2N}(r,v)$ we use elliptic estimates for:

$$L_1 s := G^{ij} \left(r \partial_i \partial_j + \frac{1}{\kappa} \partial_i r \partial_j s \right),$$
$$(L_2 w)_i := G^{ml} \left(\partial_i (r \partial_m w_l) + \frac{1}{\kappa} \partial_m r \partial_i w_l \right),$$

for which $s_{2N} = L_1 s_{2N-2} + F_{2N}$, $w_{2N} = (L_2 w_{2N-2})_i + (G_{2N})_i$.

Come from wave evolution: $D_t^2 r \sim L_1 r$, $D_t^2 v \sim L_2 v$. Elliptic estimates (also ω):

 $\|(s_{2N-2}, w_{2N-2})\|_{\mathcal{H}^{2k-2N+2}} \lesssim \|(s_{2N}, w_{2N})\|_{H^{2k-2N}} + \varepsilon \|(r, v)\|_{\mathcal{H}^{2k}}.$

 $F, G \text{ are perturbative: } \|(F_{2N}, G_{2N})\|_{\mathcal{H}^{2k-2N}} \lesssim O(A)\|(r, v)\|_{\mathcal{H}^{2k}}.$

Second-order transition operators

To establish $D_t^{2N}(r,v) \sim r^N \partial^{2N}(r,v)$ we use elliptic estimates for:

$$L_1 s := G^{ij} \left(r \partial_i \partial_j + \frac{1}{\kappa} \partial_i r \partial_j s \right),$$
$$(L_2 w)_i := G^{ml} \left(\partial_i (r \partial_m w_l) + \frac{1}{\kappa} \partial_m r \partial_i w_l \right),$$

for which $s_{2N} = L_1 s_{2N-2} + F_{2N}$, $w_{2N} = (L_2 w_{2N-2})_i + (G_{2N})_i$.

Come from wave evolution: $D_t^2 r \sim L_1 r$, $D_t^2 v \sim L_2 v$. Elliptic estimates (also ω):

$$\|(s_{2N-2}, w_{2N-2})\|_{\mathcal{H}^{2k-2N+2}} \lesssim \|(s_{2N}, w_{2N})\|_{H^{2k-2N}} + \varepsilon \|(r, v)\|_{\mathcal{H}^{2k}}.$$

 $F,G \text{ are perturbative: } \|(F_{2N},G_{2N})\|_{\mathcal{H}^{2k-2N}} \lesssim O(A)\|(r,v)\|_{\mathcal{H}^{2k}}.$

This gives coercivity of the energy: $E^{2k}(r,v) \gtrsim ||(r,v)||_{\mathcal{H}^{2k}}^2$.

To establish

$$\frac{d}{dt}E^{2k}(r,v) \lesssim_A B ||(r,v)||^2_{\mathcal{H}^{2k}}$$

We use that the (s_{2N}, w_{2N}) satisfy the linearized equation with good perturbative terms.

To establish

$$\frac{d}{dt}E^{2k}(r,v) \lesssim_A B ||(r,v)||^2_{\mathcal{H}^{2k}}$$

We use that the (s_{2N}, w_{2N}) satisfy the linearized equation with good perturbative terms. Good means that the pertrubative terms can be interpolated with a single factor of B to be controlled by

 $B\|(r,v)\|_{\mathcal{H}^{2k}}^2.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

We construct solutions with a time discretization given by the following steps:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Regularization.
- Transport (iterate the boundary).
- Newton's method.

We construct solutions with a time discretization given by the following steps:

- Regularization.
- Transport (iterate the boundary).
- Newton's method.

Taken separately, each of these steps is unbounded. Taken together, there is an extra cancellation that comes to rescue (direct analogue of similar cancellation for the linearized equation).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We construct solutions with a time discretization given by the following steps:

- Regularization.
- Transport (iterate the boundary).
- Newton's method.

Taken separately, each of these steps is unbounded. Taken together, there is an extra cancellation that comes to rescue (direct analogue of similar cancellation for the linearized equation).

To control the iteration, we need to translate our energy estimates to purely spatial estimates at a fixed time. We do so by reinterpreting the operators D_t^N as differential operators at fixed time obtained by reiterating the equations.

Consider the following distance functional (inspired by the linearized eqs.):

$$\mathcal{D}_{\mathcal{H}}((r_1, v_1), (r_2, v_2)) := \int_{\Omega_t} (r_1 + r_2)^{\frac{1-\kappa}{\kappa}} ((r_1 - r_2)^2 + (r_1 + r_2)|v_1 - v_2|^2) \, dx.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Consider the following distance functional (inspired by the linearized eqs.):

$$\mathcal{D}_{\mathcal{H}}((r_1, v_1), (r_2, v_2)) := \int_{\Omega_t} (r_1 + r_2)^{\frac{1-\kappa}{\kappa}} ((r_1 - r_2)^2 + (r_1 + r_2)|v_1 - v_2|^2) \, dx.$$

Features:

•
$$\mathcal{D}_{\mathcal{H}}((r_1, v_1), (r_2, v_2)) = 0$$
 iff $(r_1, v_1) = (r_2, v_2)$.

Consider the following distance functional (inspired by the linearized eqs.):

$$\mathcal{D}_{\mathcal{H}}((r_1, v_1), (r_2, v_2)) := \int_{\Omega_t} (r_1 + r_2)^{\frac{1-\kappa}{\kappa}} ((r_1 - r_2)^2 + (r_1 + r_2)|v_1 - v_2|^2) \, dx.$$

・ロト ・ 日 ・ モ ・ ト ・ 日 ・ うへつ

Features:

- $\mathcal{D}_{\mathcal{H}}((r_1, v_1), (r_2, v_2)) = 0$ iff $(r_1, v_1) = (r_2, v_2)$.
- $\mathcal{D}_{\mathcal{H}}((r_1, v_1), (r_2, v_2))$ is propagated by the flow $(\mathcal{D}_{\mathcal{H}} \approx \tilde{\mathcal{D}}_{\mathcal{H}})$.

Consider the following distance functional (inspired by the linearized eqs.):

$$\mathcal{D}_{\mathcal{H}}((r_1, v_1), (r_2, v_2)) := \int_{\Omega_t} (r_1 + r_2)^{\frac{1-\kappa}{\kappa}} ((r_1 - r_2)^2 + (r_1 + r_2)|v_1 - v_2|^2) \, dx.$$

Features:

- $\mathcal{D}_{\mathcal{H}}((r_1, v_1), (r_2, v_2)) = 0$ iff $(r_1, v_1) = (r_2, v_2)$.
- $\mathcal{D}_{\mathcal{H}}((r_1, v_1), (r_2, v_2))$ is propagated by the flow $(\mathcal{D}_{\mathcal{H}} \approx \tilde{\mathcal{D}}_{\mathcal{H}})$.
- $\int_{\Gamma_t} |r_1 + r_2|^{\frac{1}{\kappa} + 2} d\sigma \lesssim \mathcal{D}_{\mathcal{H}}((r_1, v_1), (r_2, v_2)).$

Some natural follow-up questions are the following:

- Inclusion of entropy.
- Expanding relativistic gas (Jang, Hadžić, Rickard,...).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

- Non-relativistic limit.
- Other models (MHD, gravity, viscosity,...).

— Thank you for your attention —

<□ > < @ > < E > < E > E のQ @