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Free-boundary fluids

Consider a fluid within a region that is not fixed but is allowed to move
with the fluid motion.

Ω(t)Ω(0)

Examples of this situation include a liquid drop or a star.

Fluids of this type are called free-boundary fluids.

The study of free-boundary fluids (incompresible, compressible, inviscid,
viscous, classical, relativistic,...) is a very active field of research (several
authors).
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The fluid region and the free-boundary

In a free-boundary problem, the fluid region is not known ahead of time.
Rather, it has to be determined alongside the fluid flow.

Denoting by Ωt the region occupied
by the fluid at time t, the dynamics
of the fluid is defined in the region

Ω :=
⋃

0≤t<T
Ωt

known as the moving domain. Ω0

t

Ω0

Ωt1

Ωt2

The fluid’s free boundary (moving boundary, free interface,...) is

Γ :=
⋃

0≤t<T
Γt, Γt := ∂Ωt.

Understanding the dynamics of Γ is essential in free-boundary problems.
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The relativistic Euler equations

The relativistic Euler eqs. describe an ideal fluid in regimes where
Einstein’s theory of relativity cannot be neglected. E.g., fluids at speeds
near the speed of light (relativistic plasma, accretion disks,...) or under
strong gravitational fields (neutron stars,...).

The relativistic Euler
equations can be written as

uµ∂µ%+ (p+ %)∂µu
µ = 0, (1a)

(p+ %)uµ∂µu
α + Παµ∂µp = 0, (1b)

gαβu
αuβ = −1, (1c)

where: ∂µ := ∂
∂xµ ; {xµ}3µ=0 are coordinates in spacetime, t := x0,

x = (x1, x2, x3); Greek indices = 0, . . . , 3, Latin indices = 1, . . . , 3, sum
convention; % = %(t, x) is the fluid’s (energy) density; u = u(t, x) is the
fluid’s (four-)velocity; p = p(%) is the fluid’s pressure (equation of state); g
is the Minkowski metric; Π is the projection onto the orthogonal (w.r.t. g)
to u.
(1c): constraint propagated by the flow.
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The relativistic free-boundary Euler eqs: liquid vs. gas

Free-boundary: correct boundary condition on Γ is

p|Γ = 0. (?)

Since the pressure is given in terms of % by an equation of state,

(?)⇒ condition on %|Γ .

Two distinct cases, depending in part on the equation of state:

Liquid: % ≥ constant > 0 on Γ.

Gas: % = 0 on Γ.

The liquid and gas cases are very different problems. Here we will consider
the gas case. For a gas, the moving domain at time t is given by

Ωt := {x ∈ R3 | %(t, x) > 0}.

(Kinematic boundary condition: u is tangent to Γ.)
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Physical vacuum boundary

The fluid’s sound speed cs is defined as

c2
s := p′(%), c2

s = c2
s(t, x),

which corresponds to the speed of sound waves in the fluid (characteristics
of the system).

One also demands that (no sound in vacuum)

c2
s

∣∣
Γ

= 0.

The vanishing rate of c2
s near Γt plays a crucial role. Essentially, there is

only one natural decay rate consistent with the time evolution:

c2
s(t, x) ≈ dist(x,Γt),

known as physical (vacuum) boundary. (Constraint propagated).

A faster decay would cause the boundary to simply move
independently and linearly with the outer particle’s speed.

A slower decay rate would lead to a very singular problem, likely
causing an infinite initial acceleration of the boundary.
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Features of the physical vacuum boundary problem

The physical vacuum boundary condition c2
s(t, x) ≈ dist(x,Γt) implies that

linear waves with speed cs reach the boundary in finite time. Thus, the
motion of the boundary is strongly coupled to the wave evolution and is
not just a self-contained evolution at leading order.

The relativistic Euler equations degenerate on the boundary (not the case
for a liquid).

A standard choice of equation of state for a physical vacuum is

p(%) = %κ+1, κ > 0,

which we henceforth assume.
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General strategy

The key steps for tackling the problem are:

Good nonlinear variables: diagonalize the system with respect to the
material derivative Dt := ∂t + ui

u0
∂i (choice of spacetime foliation);

tailored to the characteristics.

Good linear variables: analysis of the linearized equations plays a main
role.

Derive energy estimates estimates for DN
t (good nonlinear): satisfies

linearized equation with good perturbative terms. Connect to full
derivatives: elliptic estimates.

Regularization + time discretization to obtain solutions.
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Diagonalizing the system

The rescaled velocity v := f(%)u satisfies

p+ %

f
uµ∂µv

i + c2
sg
iµ∂µ%+

(
−f
′

f
(p+ %) + c2

s

)
uiuµ∂µ% = 0

The vorticity ωαβ := (dstv)αβ satisfies

vµ∂µωαβ + ∂αv
µωµβ + ∂βv

µωαµ = 0, vµωµα = 0.

This change of variables also diagonalizes the %-equation:

vµ∂µ%+ (p+ %)

(
δij − vivj

(v0)2

)
∂ivj − c2

sf
2vi∂i% = 0.

(Omitting O(1) coefficients throughout.)
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The good variables

For p(%) = %κ+1, v := (1 + %κ)1+ 1
κu, r := κ+1

κ %κ (sound speed2),

Dtr + rGij∂ivj + rvi∂ir = 0, (2a)

Dtvi + ∂ir = 0, (2b)

Gij := δij − vivj

(v0)2
.

G: Riemannian (relatd to acoustical metric).

The term rvi∂ir in (2a) can roughly be viewed as a perturbation; energy
estimates: multiply by s and integrate∫

Ωt

srvi∂is dx =
1

2

∫
Ωt

rvi∂is
2 dx . ‖s‖2L2(Ωt)

.
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Function spaces

The linearized equations admit the following energy (r ; s, v ; w):

‖(s, w)‖2H :=

∫
Ωt

r
1−κ
κ (s2 + rGijwjwi) dx.

(r=definition function, Ωt = {r(t, x) > 0}, r ≈ dist(·, ∂Ωt).)

Higher-order norms: wave evolution D2
t − r∆; powers of r∆.

‖(s, w)‖2H2k :=

2k∑
|α|=0

k∑
a=0

|α|−a≤k

‖r
1−κ
2κ

+a∂αs‖2L2(Ωt)

+
2k∑
|α|=0

k∑
a=0

|α|−a≤k

‖r
1−κ
2κ

+ 1
2

+a∂αw‖2L2(Ωt)

∼ ‖r
1−κ
2κ

+k∂2ks‖L2(Ωt) + ‖r
1−κ
2κ

+ 1
2

+k∂2kw‖L2(Ωt).
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Scaling analysis

Ignoring O(1) terms, equations

Dtr + rGij∂ivj + rvi∂ir = 0,

Dtvi + ∂ir = 0,

become

(∂t + vi∂i)r + rδij∂ivj + rvi∂ir = 0,

(∂t + vj∂j)vi + ∂ir = 0.

The resulting equations admit the scaling law:

(r(t, x), v(t, x)) 7→
(
λ−2r(λt, λ2x), λ−1v(λt, λ2x)

)
.

From this we determined the critical space H2k0 where

2k0 = 3 + 1 +
1

κ
.
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Theorem: LWP

Define the phase space

H2k :=
{

(r, v) | (r, v) ∈ H2k
}
.

Equations

Dtr + rGij∂ivj + rvi∂ir = 0,

Dtvi + ∂ir = 0,

are locally well-posed in H2k for data (̊r, v̊) ∈ H2k provided that

r̊(x) ≈ dist(x, ∂Ω0), Ω0 = {̊r > 0},

and

2k > 2k0 + 1, 2k0 = 3 + 1 +
1

κ
.
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Time-dependent control norms

We introduce the following control norms:

A := ‖∇r −N‖L∞(Ωt) + ‖v‖
Ċ

1
2 (Ωt)

,

B := A+ ‖∇r‖
C̃

1
2 (Ωt)

+ ‖∇v‖L∞(Ωt),

where ‖∇r‖
C̃

1
2 (Ωt)

:= sup
x,y∈Ωt
x 6=y

|∇r(x)−∇r(y)|
r(x)

1
2 + r(y)

1
2 + |x− y|

1
2

.

N : given vectorfield such that ∇r(x0) = N(x0); can make A small working
in a small neighborhood of x0 (‖∇r‖L∞(Ωt) cannot be made small).

‖∇r‖
C̃

1
2 (Ωt)

: like Ċ
3
2 but weaker (only one derivative away from Γt).

A with H2k0 , A . ‖(r, v)‖H2k , 2k > 2k0 = 3 + 1 + 1
κ .

B with H2k0+1, B . ‖(r, v)‖H2k , 2k > 2k0 + 1 = 3 + 2 + 1
κ .
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Theorem: continuation criterion

For each integer k ≥ 0 there exists an energy functional E2k = E2k(r, v)
with the following properties:

Coercivity: as long as A remains bounded, we have

E2k(r, v) ≈ ‖(r, v)‖2H2k .

Energy estimates hold for solutions, i.e.,

d

dt
E2k(r, v) .A B‖(r, v)‖2H2k .

Therefore,

‖(r, v)‖2H2k . e
∫ t
0 C(A)B(τ) dτ‖(̊r, v̊)‖2H2k .

In particular, the H2k solutions can be continued as long as A remains
bounded and B ∈ L1

t (Ω).
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Previous results: liquid

A priori estimates: Oliynyk (’17) and Ginsberg (’19).

Local existence and uniqueness: Oliynyk (’19) and Miao,
Shahshahani, and Wu (’20): “hard phase”.

First-order symmetric hyperbolic approach for local existence and
uniqueness: Trakhinin (’09).

Recently, good progress in the case of a liquid.
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Previous results: gas under symmetry

Tolman, Oppenheimer, and Volkoff, TOV eqs (’30s): modeling of a
star; spherically symmetric static solutions to the Einstein-Euler
system for a fluid body in vacuum; vanishing of the pressure as the
correct physical condition on the boundary (gas and liquid).

Spherically symmetric static solutions of Einstein-Euler: Lindblom
(’88), Rendall and Schmidt (’91), Makino (’98).

Spherical and axisymmetry: Makino (’16, ’17): spherical symmetric
solutions of Einstein-Euler with a vacuum boundary near equilibrium
(TOV). Makino (’18): axisymmetry and slowly rotating (related:
Heilig (’95) and Makino (’19)). Hadžić and Lin (’20): “turning point
principle” for relativistic stars.

Much can be said under symmetry assumptions (including considering
coupling to Einstein’s equations).
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Previous results: gas, no physical vacuum

Existence and uniqueness for a gas not satisfying the physical
boundary condition: Rendall (’92), Makino and Ukai (’95), LeFloch
and Ukai (’09), Brauer and Karp (’14). (Unnatural regularity near the
boundary; no acceleration on the boundary).

Frame-formalism approach: Friedrich (’98).

A few results have been obtained if one violates the physical vacuum
condition.
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Previous results: gas, physical vacuum

A priori estimates: Jang, LeFloch, and Masmoudi (’16), and Hadžić,
Shkoller, and Speck (’19). (Results all in Lagrangian coordinates; we
work entirely in Eulerian coordinates.)

Local existence and uniqueness in 1 + 1 dimensions: Oliynyk (’12)
(Geometry plays no role, main difficulties are absent).
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The linerized equation and Dt

The linearized system for (s, w) (r ; s, v ; w):

Dts+
1

κ
Gij∂irwj + rGij∂iwj + rvi∂is = error,

Dtwi + ∂is = error,
(3)

admits the energy ‖(s, w)‖2H :=
∫

Ωt
r

1−κ
κ (s2 + rGijwjwi) dx.

The term 1
κG

ij∂irwj is not an error.

Want to differentiate (3); bad terms when differentiating the weights r.

Not the case if differentiating w.r.t. Dt because Dtr ∼ r∂(r, v).
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The good linearized variables

From the above, want to work with (D`
tr,D

`
tv): solve the linearized

equations with good perturbative terms?

Not quite: Dt does not generate
an exact symmetry of the equation like ∂.

Correction terms: define (modified for small N ; r0 = r, v0 = v):

(wN )i := DN
t vi,

sN := DN
t r −

1

κ
Gij∂irD

N−1
t vj .

(sN , wN ) are good approximations for solutions of the linearized equation.

Control of the energy: E2k(r, v) :=
k∑

N=0

‖(s2N , w2N )‖H.

Full control of (r, v): use the equations to get D2N
t r ∼ rN∂2Nr,

D2N
t v ∼ rN∂2Nv. (Recall the H2k norm).
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Second-order transition operators

To establish D2N
t (r, v) ∼ rN∂2N (r, v) we use elliptic estimates for:

L1s := Gij
(
r∂i∂j +

1

κ
∂ir∂js

)
,

(L2w)i := Gml
(
∂i(r∂mwl) +

1

κ
∂mr∂iwl

)
,

for which s2N = L1s2N−2 + F2N , w2N = (L2w2N−2)i + (G2N )i.

Come from wave evolution: D2
t r ∼ L1r, D2

t v ∼ L2v. Elliptic estimates
(also ω):

‖(s2N−2, w2N−2)‖H2k−2N+2 . ‖(s2N , w2N )‖H2k−2N + ε‖(r, v)‖H2k .

F,G are perturbative: ‖(F2N , G2N )‖H2k−2N . O(A)‖(r, v)‖H2k .

This gives coercivity of the energy: E2k(r, v) & ‖(r, v)‖2H2k .
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)
,

(L2w)i := Gml
(
∂i(r∂mwl) +

1

κ
∂mr∂iwl

)
,

for which s2N = L1s2N−2 + F2N , w2N = (L2w2N−2)i + (G2N )i.

Come from wave evolution: D2
t r ∼ L1r, D2

t v ∼ L2v. Elliptic estimates
(also ω):

‖(s2N−2, w2N−2)‖H2k−2N+2 . ‖(s2N , w2N )‖H2k−2N + ε‖(r, v)‖H2k .

F,G are perturbative: ‖(F2N , G2N )‖H2k−2N . O(A)‖(r, v)‖H2k .

This gives coercivity of the energy: E2k(r, v) & ‖(r, v)‖2H2k .
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Energy estimates

To establish

d

dt
E2k(r, v) .A B‖(r, v)‖2H2k

We use that the (s2N , w2N ) satisfy the linearized equation with good
perturbative terms.

Good means that the pertrubative terms can be
interpolated with a single factor of B to be controlled by

B‖(r, v)‖2H2k .
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Construction of solutions

We construct solutions with a time discretization given by the following
steps:

Regularization.

Transport (iterate the boundary).

Newton’s method.

Taken separately, each of these steps is unbounded. Taken together, there
is an extra cancellation that comes to rescue (direct analogue of similar
cancellation for the linearized equation).

To control the iteration, we need to translate our energy estimates to
purely spatial estimates at a fixed time. We do so by reinterpreting the
operators DN

t as differential operators at fixed time obtained by reiterating
the equations.
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Uniqueness

Consider two solutions (r1, v1) and (r2, v2) defined in Ω1 and Ω2. Put
Ωt := Ωt,1 ∩ Ωt,2, Γt := ∂Ωt. (Eulerian coordinates.)

Consider the following distance functional (inspired by the linearized eqs.):

DH((r1, v1), (r2, v2)) :=

∫
Ωt

(r1 + r2)
1−κ
κ ((r1 − r2)2 + (r1 + r2)|v1 − v2|2) dx.

Features:

DH((r1, v1), (r2, v2)) = 0 iff (r1, v1) = (r2, v2).

DH((r1, v1), (r2, v2)) is propagated by the flow (DH ≈ D̃H).∫
Γt
|r1 + r2|

1
κ

+2dσ . DH((r1, v1), (r2, v2)).
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Some questions

Some natural follow-up questions are the following:

Inclusion of entropy.

Expanding relativistic gas (Jang, Hadžić, Rickard,...).

Non-relativistic limit.

Other models (MHD, gravity, viscosity,...).
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— Thank you for your attention —
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