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Main Result

We consider the incompressible 3D Euler equations for an unknown velocity
u : R× T3 → R3 and pressure p : R× T3 → R

∂tu + div (u ⊗ u) +∇p = 0

div u = 0

Theorem
Fix β ∈ (0, 1/2). For any divergence-free, mean-zero vector fields
vstart, vend ∈ L2

(
T3
)
, any T > 0, and any ε > 0, there exists a weak solution

v ∈ C
(
[0,T ];Hβ(T3)

)
to the 3D Euler equations such that

‖v(0)− vstart‖L2 , ‖v(T )− vend‖L2 < ε.

Motivation: K41, intermittency (see Vlad’s talk!)
Goal of the talk: (1) - Setup and Main Difficulties, (2) - Key heuristic
estimates, (3) - Putting everything together



Setup and Main Difficulties: Inductive Assumptions

◦ Induction on q: (uq, R̊q) solve the Euler-Reynolds system

∂tuq + div(uq ⊗ uq) +∇pq = div R̊q

div uq = 0

◦ Spatial frequency parameter λq = a(b
q)

◦ Amplitude parameter δq = λ−2β
q

◦ Very heuristic inductive assumptions:∥∥∥R̊q

∥∥∥
C0
t L

1
x

≤ δq+1, ‖∇uq‖C0
t L

2
x
≤ δ1/2

q λq, ‖wq+1‖C0
t L

2
x
≤ δ1/2

q+1



Set-Up and Main Difficulties: The Increment

◦ Addition of the increment wq+1 shows that

div R̊q+1 −∇(pq+1 − pq) = div (wq+1 ⊗ wq+1 + R̊q)

+ (∂t + uq · ∇)wq+1

+ wq+1 · ∇uq

◦ Ansatz for wq+1 is

wq+1 ≈
∑
ξ

aξ
(
R̊q

)
Wξ,rq+1

◦ aξ is such that ∑
ξ

a2ξ(R̊q) ξ ⊗ ξ = ρ(x , t) Id− R̊q



Set-Up and Main Difficulties: Intermittent Mikado/Pipe
Flows

Convex integration and phenomenologies in turbulence 223

We summarize the above properties (6.27)–(6.30) of the Mikado building blocks
defined in (6.26) in the following result:
Lemma 6.7 ([48, Lemma 2.3]). Given a symmetric matrix R 2 xB1=2.Id/ and � 2 N, the
Mikado flow

W.R; x/ D
X
�2ƒi

�.R/W�;�.x/

obeys

divW D 0; div .W ˝W/ D 0;

ˆ
T3

W dx D 0;

 
T3

W ˝W dx D R:

That is, W is a zero mean, presureless, solution of the stationary 3D Euler equations,
which may be used to cancel the stress R.

Figure 9. Example of a Mikado flow W restricted to one of the .T=�/3 periodic boxes. The interiors
of the six disjoint cylinders represent the supports of the Mikado building blocks ‰.�/ while their
axis represent the direction vectors � .

To conclude this section we note thatW.�/ may be written as the curl of a vector field,
a fact which is useful in defining the incompressibility corrector in Section 6.5.4. Indeed,
since � � rˆ.�/ D 0, and since by definition we have that � 1

.n��/2
�ˆ.�/ D �.�/ we obtain

curl
�

1

.n��/2
r‰.�/��

�
D curl

�
1

.n��/2
curl .�‰.�//

�
D ��

�
1

.n��/2
�‰.�/

�
D W.�/ :

(6.31)
For notational simplicity, we define

V.�/ D
1

.n��/2
r‰.�/ � � (6.32)

so that curlV.�/ D W.�/. With this notation we have the bounds

kW.�/kCN C �qC1kV.�/kCN . �NqC1 (6.33)

for N � 0.



Set-Up and Main Difficulties: Type 1 Oscillation Error

div
(
wq+1 ⊗ wq+1 + R̊q

)
= div

∑
ξ

a2ξ(R̊q)Wξ,rq+1 ⊗Wξ,rq+1 + R̊q


= div

∑
ξ

a2ξ(R̊q)P=0

(
Wξ,rq+1 ⊗Wξ,rq+1

)
+ R̊q


+
∑
ξ

∇a2ξ(R̊q)P 6=0

(
Wξ,rq+1 ⊗Wξ,rq+1

)



Set-Up and Main Difficulties: The Transport Error

(∂t + uq · ∇)
(
aξ
(
R̊q

)
Wξ,rq+1

)
= (∂t + uq · ∇)

(
aξ
(
R̊q

))
Wξ,rq+1

+ aξ
(
R̊q

)
(∂t + uq · ∇)

(
Wξ,rq+1

)



Set-Up and Main Difficulties: Type 2 Oscillation Error

div
(
aξaξ′Wξ,rq+1(Φξ)⊗Wξ′,rq+1

(Φξ′)
)



Heuristic Estimates: Velocity and Stress Cutoff Functions

◦ Cutoffs: We need knowledge of ∇uq to determine a timescale for
Lagrangian coordinate systems, and we need knowledge of the local size
of R̊q to enact cancellation

◦ Heuristic Definition: Level set decomposition

◦ Issues: How to estimate material derivatives?



Heuristic Estimates: Three General Principles

◦ R̊q lives at frequency λq = λq+1 · λq

λq+1
and has amplitude δq+1 =

δq+1λq

λq+1·
λq

λq+1

◦ R̊q+1 lives at frequency λq+1 = λq+1 · 1 and has amplitude δq+2 =
δq+1λq

λq+1·1

◦ “Intermediate” errors satisfy “intermediate” estimate

Goal: Build a sub-perturbation wq+1,n which cancels R̊q,n and produces errors
which either are small enough to be absorbed into R̊q+1 or satisfy estimates as
before but with rq+1,n′ > rq+1,n.



Heuristic Estimates: 3rd General Principle (Type 2 Osc.)

∥∥∥∇M R̊q,n

∥∥∥
L1
≤ δq+1λq

λq+1rq+1,n
(λq+1rq+1,n)M

Claim: Correcting this error by pipe flows with intermittency rq+1,n′ for
rq+1,n′ = rq+1,n

3/4 produces new Type 2 oscillation errors which vanish

Proof: Strategy - Intermittency parameter rq+1,n′ allows for (rq+1,n′)
−2 disjoint

placements

Step 1 - Checkerboard Cutoff Functions and “Pipe Wavelets”



Heuristic Estimates: 3rd General Principle (Type 2 Osc.
cont’d)

Diagram of Stress Decomposition and Pipe Wavelets

Oscillation 2: the enemy

EE!

LWto introduce a
"

checkerboard cutoff
"

which localizes to a scale inverse proportional
to the maximal frequency in Egm .



Heuristic Estimates: 3rd General Principle (Type 2 Osc.
cont’d)

∥∥∥∇M R̊q,n

∥∥∥
L1
≤ δq+1λq

λq+1rq+1,n
(λq+1rq+1,n)M

Claim: Correcting this error by pipe flows with intermittency rq+1,n′ for
rq+1,n′ = rq+1,n

3/4 produces new Type 2 oscillation errors which vanish

Proof: (cont’d)
Step 2 - Counting existing pipes

How many pipes which were periodized to scale (λq+1rq+1,n′)
−1 and then

deformed by a Lipschitz diffeomorphism inhabit a set of diameter
(λq+1rq+1,n)−1?



Heuristic Estimates: 3rd General Principle (Type 2 Osc.
cont’d)

Projection and Counting of Existing Pipes

Oscillation 2: the enemy

EE!

LWto introduce a
"

checkerboard cutoff
"

which localizes to a scale inverse proportional
to the maximal frequency in Egm .



Heuristic Estimates: 3rd General Principle (Type 2 Osc.
cont’d)

∥∥∥∇M R̊q,n

∥∥∥
L1
≤ δq+1λq

λq+1rq+1,n
(λq+1rq+1,n)M

Claim: Correcting this error by pipe flows with intermittency rq+1,n′ for
rq+1,n′ = rq+1,n

3/4 produces new Type 2 oscillation errors which vanish

Proof: (cont’d)
Step 3 - Covering a single existing pipe

How many grid squares of size λ−1
q+1 does it take to cover a deformed pipe of

thickness λ−1
q+1 which lives in a set of diameter (λq+1rq+1,n)−1?



Heuristic Estimates: 3rd General Principle (Type 2 Osc.
cont’d)

∥∥∥∇M R̊q,n

∥∥∥
L1
≤ δq+1λq

λq+1rq+1,n
(λq+1rq+1,n)M

Claim: Correcting this error by pipe flows with intermittency rq+1,n′ for
rq+1,n′ = rq+1,n

3/4 produces new Type 2 oscillation errors which vanish

Proof: (cont’d)
Step 4 - Pigeonhole principle and relative intermittency inequality
How many grid squares did I use to cover the existing pipes, and is this less
than the number of options I have for placing the new set?



Putting Everything Together -Adding Sub-Perturbations
wq+1,n

rq+1,0 strengthens all other error terms, and because of this, in our construction we will choose rq+1,0 as in
Definition 2.3, item (3). One may refer to the blog post of Tao [60] for a slightly different argument which
reaches the same apparent regularity limit. This apparent regularity limit is independent of dimension.

The higher order stresses mentioned in Section 1.2 will compensate for the losses incurred in this nonlinear
error term when rq+1,0 � 1. As we shall describe in the next section, we use the phrase “higher order stresses”

to describe errors which are higher in frequency and smaller in amplitude than R̊q, but not sufficiently small

enough or at high enough frequency to belong to R̊q+1. Similarly, “higher order perturbations” are used to
correct the higher order stresses and thus increase the extent to which an approximate solution solves the
Euler equations.

2.4.2 Specifics of the higher order stresses

In convex integration schemes which measure regularity in L∞ (i.e. using Hölder spaces Cα), pipe flows
interact through the nonlinearity to produce low (≈ λq) and high (≈ λq+1) frequencies. We denote by

wq+1,0 the perturbation designed to correct R̊q. In the absence of intermittency, the low frequencies from

the self-interaction of wq+1,0 cancel the Reynolds stress error R̊q, and the high frequencies are absorbed by

the pressure up to an error small enough to be placed in R̊q+1. In an intermittent scheme, the self-interaction
of the intermittent pipe flows comprising wq+1,0 produces low, intermediate, and high frequencies. The low
and high frequencies play a similar role as before. However, the intermediate frequencies cannot be written
as a gradient, nor are small enough to be absorbed in R̊q+1. This issue has limited the available regularity on
the final solution in many previous intermittent convex integration schemes. In order to reach the threshold
H

1
2 , we address this issue using higher order Reynolds stress errors R̊q,n for n = 1, 2, . . . , nmax, cf. Figure 3.

R̊q,0 R̊q,1 R̊q,2 R̊q,n R̊q+1

R̊q,0 R̊q,1 R̊q,2 R̊q,n

. . . . . .

. . . . . .

Adding wq+1,0

R̊q+1

1

Figure 3: Adding the increment wq+1,0 corrects the stress R̊q,0 = R̊q, but produces error terms which live at
frequencies that are intermediate between λq and λq+1, due to the intermittency of wq+1,0. These new errors are
sorted into higher order stresses R̊q,n for 1 ≤ n ≤ nmax, as depicted above. The heights of the boxes corresponds to
the amplitude of the errors that will fall into them, while the frequency support of each box increases from λq for
R̊q,0 = R̊q, to λq+1 for R̊q+1.

After the addition of wq+1,0 to correct R̊q, which is labeled in Figure 4 as R̊q,0, low frequency error terms
are produced, which we divide into higher order stresses. To correct the error term of this type at the lowest
frequency, which is labeled R̊q,1 in Figure 4, we add a sub-perturbation wq+1,1. The subsequent bins are
lighter in color to emphasize that they are not yet full; that is, there are more error terms which have yet
to be constructed but will be sorted into such bins. The emptying of the bins then proceeds inductively on
n, as we add higher order perturbations wq+1,n, which are designed to correct R̊q,n. For 1 ≤ n ≤ nmax, the

12

frequency support of R̊q,n is11 {
k ∈ Z3 : λq,n,0 ≤ |k| < λq,n+1,0

}
. (2.9)

This division will be justified upon calculation of the heuristic bounds in Section 2.7.

R̊q,0 R̊q,1 R̊q,n R̊q,n+1 R̊q+1

R̊q,0 R̊q,1 R̊q,n R̊q,n+1

. . . . . .

. . . . . .

Adding wq+1,n

R̊q+1

1

Figure 4: Adding wq+1,n to correct R̊q,n produces error terms which are distributed among the Reynolds stresses
R̊q,n′ for n+ 1 ≤ n′ ≤ nmax.

Let us now explain the motivation for the division of R̊q,n into the further subcomponents R̊q,n,p. Suppose

that we add a perturbation wq+1,n to correct R̊q,n for n ≥ 1. The amplitude of wq+1,n would depend on the

amplitude of R̊q,n, which in turn depends on the gain induced by inverting the divergence to produce R̊q,n,
which depends then on the minimum frequency λq,n,0. However, derivatives on the low frequency coefficient

function used to define wq+1,n would depend on the maximum frequency of R̊q,n, which is λq,n+1,0. The
(sharp-eyed) reader may at this point object that the first derivative on the low-frequency coefficient function
∇(a(R̊q,n)) should be cheaper, since R̊q,n is obtained from inverting the divergence, and taking the gradient
of the cutoff function written above should thus morally involve bounding a zero-order operator. However,
constructing the low-frequency coefficient function presents technical difficulties which prevent us from taking
advantage of this intuition. In fact, the failure of this intuition is the sole reason for the introduction of
the parameter p, as one may see from the heuristic estimates later. In any case, increasing the regularity
β of the final solution requires minimizing this gap between the gain in amplitude provided by inverting
the divergence and the cost of a derivative, and so we subdivide R̊q,n into further components R̊q,n,p for

1 ≤ p ≤ pmax.12 Both nmax and pmax are fixed independently of q. Each component R̊q,n,p then will have
frequency support in the set{

k ∈ Z3 : λq,n,p−1 ≤ |k| < λq,n,p
}

=
{
k ∈ Z3 : λq,n,0f

p−1
q,n ≤ |k| < λq,n,0f

p
q,n

}
. (2.10)

Notice that by the definition of fq,n in Definition 2.4, 2.10 defines a partition of the frequencies in between
λq,n,0 and λq,n+1,0 for 1 ≤ p ≤ pmax. Figure 5 depicts this division, and we shall describe in the heuristic

estimates how each subcomponent R̊q,n,p is corrected by wq+1,n,p, with all resulting errors absorbed into

either R̊q+1 or R̊q,n′ for n′ > n.
Thus, the net effect of the higher order stresses is that one may take errors for which the inverse divergence

provides a weak estimate due to the presence of relatively low frequencies and push them to higher frequencies
for which the inverse divergence estimate is stronger. We will repeat this process until all errors are moved

11In reality, the higher order stresses are not compactly supported in frequency. However, they will satisfy derivative estimates
to very high order which are characteristic of functions with compact frequency support.

12There are certainly a multitude of ways to manage the bookkeeping for amplitudes and frequencies. Using both n and p is
convenient because then n is the only index which quantifies the rate of periodization.
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Thank you for your attention!



Difficulties and Solutions

1. Low-frequency, high-amplitude
oscillation errors due to
intermittency

1. Higher order stresses and
correctors - “two (or more) bites
at the apple”

Michael



Difficulties and Solutions

1. Low-frequency, high-amplitude
oscillation errors due to
intermittency
test
test

2. Sharp higher order material and
spatial derivatives, and sharp
local timescale information
test
test
test

1. Higher order stresses and
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Difficulties and Solutions

1. Low-frequency, high-amplitude
oscillation errors due to
intermittency
test
test

2. Sharp higher order material and
spatial derivatives, and sharp
local timescale information
test
test
test

3. Pipes from overlapping
Lagrangian coordinate systems
or different “bites at the apple”
may intersect
test
test

1. Higher order stresses and
correctors - “two (or more) bites
at the apple”
test
test

2. Cutoff functions which act as a
Littlewood-Paley projection in
Eulerian and Lagrangian
coordinates, with info about
position and amplitude
test

3. Intermittency allows for shifts,
and thus a placement technique

Michael

Michael



General Principles

Let rn ∈ [λq/λq+1, 1], and let R̊q,n be an error living at frequency λq+1rq+1,n and

of size
δq+1λq

λq+1rq+1,n
in L1.

1. Effect of intermittency on Type 1: Correcting this error by a pipe flow
with intermittency rq+1,n′ > rq+1,n produces a new Type 1 oscillation error

with minimum frequency λq+1rq+1,n′ and size
δq+1λq

λq+1rq+1,n′
.
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General Principles

Let rn ∈ [λq/λq+1, 1], and let R̊q,n be an error living at frequency λq+1rq+1,n and

of size
δq+1λq

λq+1rq+1,n
in L1.

1. Effect of intermittency on Type 1: Correcting this error by a pipe flow
with intermittency rq+1,n′ > rq+1,n produces a new Type 1 oscillation error

with minimum frequency λq+1rq+1,n′ and size
δq+1λq

λq+1rq+1,n′

2. Effect of intermittency on Nash/transport: Correcting this error by a
pipe flow with intermittency rq+1,n′ = rq+1,n

1/2 produces new Nash and

transport errors of size δq+2 which are commensurate with H
1
2 regularity.
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General Principles

Let rn ∈ [λq/λq+1, 1], and let R̊q,n be an error living at frequency λq+1rq+1,n and

of size
δq+1λq

λq+1rq+1,n
in L1.

1. Effect of intermittency on Type 1: Correcting this error by a pipe flow
with intermittency rq+1,n′ > rq+1,n produces a new Type 1 oscillation error

with minimum frequency λq+1rq+1,n′ and size
δq+1λq

λq+1rq+1,n′

2. Effect of intermittency on Nash/transport: Correcting this error by a
pipe flow with intermittency rq+1,n′ = rq+1,n

1/2 produces new Nash and

transport errors of size δq+2 which are commensurate with H
1
2 regularity.

3. Effect of intermittency on Type 2: Correcting this error by pipe flows
with intermittency rq+1,n′ = rq+1,n

3/4 ensures that the new Type 2 errors
vanish.


