MSRI, january 14^{th} 2021

Let $\mathfrak M$ be a sufficiently saturated dp-finite field and $\mathcal M$ be a small elementary substructure of M.

Recall that X is heavy if it is Y-heavy for some critical set Y, namely there is $\delta \in \mathfrak{M}$ such that $rk(Y \cap (X + \delta)) = rk(Y)$. Furthermore, if Y' is another critical set, then X is Y'-heavy (Proposition 4.18) and we were in the middle of that proof.

Let X, Y be two definable subsets of $\mathfrak M$ and set $X -_{\infty} Y := \{ \delta \in M : X \cap (Y + \delta) \text{ is heavy} \}.$

Note that $X -_{\infty} Y \subset X - Y$. (If $u \in X \cap (Y + \delta)$, then $u = x = v + \delta$, so $\delta = x - v$).

Candidates of basic neighbourhood of 0 inducing on \mathfrak{M} a field topology: (Definition 6.3) $X -_{\infty} X := {\delta \in \mathfrak{M} : X \cap (X + \delta)}$ is heavy}, where X is a definable heavy subset of \mathfrak{M} (so $0 \in X_{\infty}X$).

When $\mathfrak M$ is an abelian group, not of finite Morley rank we will get two disjoint heavy sets (Theorem 5.2) (and in case $\mathfrak M$ is a field, a Hausdorff topology (Proposition 6.5.5)).

Theorem (Theorem 4.20)

- **4** Assume that M is infinite, and X heavy, then X is infinite.
- **2** If $X \cup Y$ is heavy, then either X is heavy or Y is heavy.
- **3** If X is heavy and $X \subset Y$, then Y is heavy.
- \bigcirc Let $\{D_h: b \in \mathfrak{M}\}\)$ be a definable family of subsets of \mathfrak{M} , then ${b: D_b$ is heavy } is definable.
- \bullet X $-\infty$ Y is definable.
- \bullet \mathfrak{M} is heavy.
- **1** If X heavy, then for any $\alpha \in \mathfrak{M}^{\times}$, $\alpha \cdot X$ is heavy.
- **8** If X heavy, then for any $\alpha \in \mathfrak{M}$, $\alpha + X$ is heavy.
- \bigcirc If either X or Y is not heavy, then $X -_{\infty} Y = \emptyset$.
- **10** If X, Y are heavy, then $X \rightarrow \infty$ Y is heavy.
- Let X be heavy, then $0 \in X -_{\infty} X$.

(III)

Lemma (Lemma 4.12)

Let Y be a critical set of rank ρ and Q be quasi-minimal and let $t \geq 1$ an integer. There exist pairwise distinct $q_1, \ldots, q_t \in Q$ such that

$$
rk(\bigcap_{i=1}^t (Y+q_i))=\rho.
$$

Note that the lemma implies that $\bigcap_{i=1}^t (Y + q_i)$ is critical. (Indeed a translate of a critical set is critical and if a subset of a critical set has the same rank then it is also critical.)

Proof (by contradiction):

So for any distinct $q_1,\ldots,q_t\in Q$, $rk(\bigcap_{i=1}^t (Y+q_i))\leq \rho-1$ (1). Let (X_1, \ldots, X_n, P) be a critical configuration with target Y. By 3.23, $\rho = \sum_{i=1}^n r k(X_i)$. By 4.6, there exist a small model M and non-algebraic global M-invariant types p_i on X_i such that if $a \models p_1 \otimes \ldots \otimes p_n \upharpoonright M$, then $a \in P$. Furthermore we may assume that Q is defined over M and that there is a non-algebraic M-invariant type p_0 containing Q.

Claim (4.13)

For $k \in \mathbb{N}^*$, let $\Omega_k := \{ (a_{1,1},\ldots,a_{1,n},\ldots,a_{k,1},\ldots,a_{k,n},q_0) \in (\mathsf{X}_1 \times \ldots \times \mathsf{X}_n)^k \times Q \}$ such that

- **■** for each $i \in [k]$, $(a_{i,1}, \ldots, a_{i,n}) \in P$,
- 2 there are infinitely many $q \in Q$ such that $\bigwedge_{i=1}^k \big((q_0 + \sum_{j=1}^n a_{i,j}) \in Y + q\big).$

Then for $k>>0,$ Ω_{k} is not a broad subset of $(X_{1}\times \ldots \times X_{n})^{k}\times Q.$

Note that since \exists^{∞} is eliminated, the sets Ω_k are definable.

Proof of Claim (by contradiction).

Let $h := rk(Q) > 0$. Choose k large enough such that $t.h + k(\rho - 1) < h + k.\rho$, equivalently $h.(t - 1) < k$. By 3.23, if Ω_k were broad, $rk(\Omega_k) = h + k.\rho$. In particular Ω_k would contain a tuple of that rank (over M) (2). Let $(a_{1,1}, \ldots, a_{1,n}, \ldots, a_{k,1}, \ldots, a_{k,n}, q_0)$ be such tuple. For $i \in [k]$, let $s_i := \sum_{j=1}^n a_{i,j}.$ By definition of Ω_k , $(a_{i,1},\ldots,a_{i,n}) \in P.$ So $s_i \in Y (= \pi(P)).$

Proof continued.

Since the fibers of π are finite, $(a_{i,1}, \ldots, a_{i,n}) \in \text{acl}(s_iM)$. Again by definition of Ω_k , there are infinitely many $q \in Q$ such that ${q_0 + s_1, \ldots, q_0 + s_k} \in Y + q$. So we may choose q_1, \ldots, q_{t-1} pairwise distinct and not equal to q_0 such that $q_0+s_i\in \bigcap_{\ell=1}^{t-1} \gamma +q_\ell, \, i\in[k]$ (and so $q_0+s_i\in \bigcap_{\ell=0}^{t-1} \gamma +q_\ell).$ We have $rk(s_i/Mq_0, \ldots, q_{t-1}) = rk((a_{i,1}, \ldots, a_{i,n})/Mq_0, \ldots, q_{t-1})$ $rk(\bigcap_{\ell=0}^{t-1} Y+q_{\ell}) < \rho$ (by (1)). By subadditivity of dp-rank,

 $k\rho + h \leq \frac{rk((a_{1,1},\ldots,a_{1,n},\ldots,a_{k,1},\ldots,a_{k,n},q_0,q_1,\ldots,q_{t-1})}{M}$ $\lt k(\rho-1) + t.h$,

contradicting (2) (recall that k has been chosen such that $k(\rho - 1) + t.h < k\rho + h$.

End of proof of the claim.

Fix k such that $h(t-1) < k$ and so Ω_k is not broad. Choose $(a_{1,1}, \ldots, a_{1,n}, \ldots, a_{k,1}, \ldots, a_{k,n}, q_0)$ realizing $(p_1\otimes\ldots\otimes p_n)^{\otimes k}\otimes p_0$ over $M.$ Let $s_i:=\sum_{j=1}^n a_{i,j},\ i\in[k].$ Recall that each $\bar{\mathsf{a}}_i := (\mathsf{a}_{i,1}, \ldots, \mathsf{a}_{i,n}) \in P$ and so $\mathsf{s}_i \in Y$. By Lemma 4.5, $tp(\bar{a}_i,q_0)/M)$ is broad and so $(\bar{a}_i,q_0)\notin\Omega_k.$ So there are only finitely many $q \in Q$ such that $\bigwedge_{i=1}^k \big(q_0 + s_i \in Y + q\big)$. Since $s_i \in Y$, q_0 is among these q's, which implies that $q_0 \in \text{acl}(M, s_1 + q_0, \ldots, s_k + q_0)$. Choose ℓ minimal such that $q_0 \in \text{acl}(M, s_1 + q_0, \ldots, s_\ell + q_0)$. Note that $\ell \geq 1$, since $tp(q_0/M) = p_0$ is non-algebraic. Let $M' := M \cup \{s_1 + q_0, \ldots, s_{\ell-1} + q_0\}$. By choice of $\ell, q_0 \notin \text{acl}(M')$; also note that $M'q_0 \subset dcl(M, q_0, (a_{i,j})_{1 \leq i \leq n, 1 \leq i \leq \ell-1}).$

We are in position to apply Lemma 4.11. Indeed, $q_0 \notin \mathit{acl}(M'),$ \bar{a}_ℓ realizes the M-invariant type $p_1 \otimes \ldots \otimes p_n$ over $M'q_0$. So we can find N a small model containing M' and a N -invariant type r such that $\bar{a}_\ell q_0$ realizes $p_1 \otimes \ldots \otimes p_n \otimes r \upharpoonright N$, namely q_0 realizes $r \upharpoonright N$ (in particular r contains Q) and \bar{a}_{ℓ} realizes $p_1 \otimes \ldots \otimes p_n \upharpoonright N q_0$. By Lemma 4.5, $tp(\bar{a}_\ell, q_0/N)$ is broad. Recall that (X_1, \ldots, X_n, P) was a critical coordinate configuration $\bar{a}_{\ell} \in P$, Q a quasi-minimal set, $(\bar a_\ell, q_0) \in X_1 \times \ldots, X_n \times Q,$ with a broad type over N (over which everything is defined). So by Lemma 4.10, $q_0 \notin \text{acl}(s_\ell + q_0, N)$, otherwise one contradicts the fact that the configuration is critical. However ℓ was chosen such that

 $q_0 \in \mathit{acl}(M, s_1 + q_0, \ldots, s_\ell + q_0) \subset \mathit{acl}(M', s_\ell + q_0)$, a contradiction.

Lemma (Proposition 4.14)

Let Y be a critical set and Q_1, \ldots, Q_n be quasi-minimal. Then for every m there exist $\{q_{ij}\}_{i\in [n], j\in [m]}$ such that

- \bigcirc for fixed $i \in [n]$, $q_{i,1}, \ldots, q_{i,m}$ consist of m distinct elements of Qⁱ
- \textsf{D} the intersection $\bigcap_{\eta:[n]\to[m]}(Y+\sum_{i=1}^n q_{i,\eta(i)})$ is critical.

Proof.

We proceed by induction on n. The case $n = 1$ is Lemma 4.12. Assume $n > 1$, so by induction we may find $\{q_{ij}\}_{i \in [n-1], j \in [m]}$ with for fixed $i \in [n-1], q_{i,1}, \ldots, q_{i,m}$ consist of m distinct elements of Q_i and $Y' := \bigcap_{\eta:[n-1] \to [m]} (Y + \sum_{i=1}^{n-1} q_{i,\eta(i)})$ is critical. By the preceding lemma, there are pairwise distinct elements $q_{n,1},\ldots,q_{n,m}\in\mathcal{Q}_n$ such that $rk(\bigcap_{j=1}^m (Y'+q_{n,j}))=rk(Y')$ (and so is critical). Set $Y'':=(\bigcap_{j=1}^m (\overline{Y'}+q_{n,j})$. Unravelling what is Y' we get the result.

Indeed, $x \in Y''$ iff for every $j \in [m]$, and every $\eta : [n-1] \rightarrow [m]$, $x - q_{n,j} - q_{n-1,\eta(n-1)} - \ldots - q_{1,\eta(1)} \in Y$. So $Y'' = \bigcap_{\eta:[n] \to [m]} (Y + \sum_{i=1}^n q_{i,\eta(i)}).$

Lemma (Corollary 4.15)

Let Y be a critical set and Q_1, \ldots, Q_n be quasi-minimal. There exists $\delta \in \mathfrak{M}$ such that

$$
\{(x_1,\ldots,x_n)\in Q_1\times\ldots\times Q_n\colon x_1+\ldots+x_n\in Y+\delta\}
$$

is a broad subset of Q_1, \ldots, Q_n

Proof.

By Proposition 4.14 applied to the quasi-minimal sets $(-Q_i)$, we can find for every $m,~\{q_{ij}\}_{i\in [n],j\in [m]}$ such that

- **1** for fixed $i \in [n]$, $q_{i,1}, \ldots, q_{i,m}$ consist of m-distinct elements of Qⁱ
- $\textsf{D}\textup{ }$ the intersection $\bigcap_{\eta:[n]\to[m]}(Y-\sum_{i=1}^n q_{i,\eta(i)})$ is critical. (and in particular non-empty)

Let $-\delta \in \bigcap_{\eta:[n] \to [m]} (Y - \sum_{i=1}^n q_{i,\eta(i)}).$ So for any $\eta:[n] \to [m],$ $-\delta \in Y - \sum_{i=1}^{h-1} q_{i,\eta(i)}$. Equivalently, $\sum_{i=1}^{n} q_{i,\eta(i)} \in Y + \delta$. By compactness, we can find, for each $i \in [n]$, $(q_{i,j})_{i \in \mathbb{N}}$ pairwise distinct elements of $Q_i(\mathfrak{M})$ such that for any $\eta:[n]\rightarrow \mathbb{N},$ $\sum_{i=1}^n q_{i,\eta(i)} \in Y + \delta$. This means that $\{(q_1, \ldots, q_n) \in Q_1 \times \ldots \times Q_n : q_1 + \ldots + q_n \in Y + \delta\}$ is a broad subset of $Q_1 \times \ldots \times Q_n$.

Let Y, Y' be two critical sets and let X be a definable subset of \mathfrak{M} . Assume that X is Y-heavy.

Proof.

Let δ_0 be such that $rk(Y \cap (X + \delta_0)) = rk(Y)$. We have to show that X is Y' -heavy. Note that $X':=Y\cap (X+\delta _0)$ is critical as a subset of a critical set of the same rank. First we show that X^\prime is Y'-heavy. Since Y' is a critical set, we have (A_1, \ldots, A_n, P) a critical configuration with target Y' . By Theorem 3.10, there exist infinite definable subsets $D_i \subset A_i$ such that $D_1 \times \ldots \times D_n \setminus P$ is an hyperplane, namely for every $b \in D_n$

$$
\{(d_1, \ldots, d_{n-1}) \in D_1 \times \ldots \times D_{n-1} : (d_1, \ldots, d_{n-1}, b) \notin P\}
$$

is not a broad subset of $A_1 \times \ldots \times A_{n-1}$ (\star).

Proof.

By Corollary 4.15 (the D_i 's are quasi-minimal and X' is critical, there exists $\delta_1 \in \mathfrak{M}$ such that

$$
\{(x_1,\ldots,x_n)\in D_1\times\ldots\times D_n\colon x_1+\ldots+x_n\in X'+\delta_1\}
$$

is a broad subset of $D_1 \times \ldots \times D_n$ (and so of $A_1 \times \ldots \times A_n$). By (\star) , $\{(x_1, \ldots, x_n) \in P \colon x_1 + \ldots + x_n \in X' + \delta_1\}$ is a broad subset of $A_1 \times \ldots \times A_n$.

Proof.

Recall that the map π : $(x_1, \ldots, x_n) \mapsto x_1 + \ldots + x_n$ has finite fibers on P. So the subset of Y' : $\{x_1 + \ldots + x_n\}$:

$$
(x_1, ..., x_n) \in P, x_1 + ... + x_n \in X' + \delta_1\} = Y' \cap (X' + \delta_1)\}
$$

has full rank. So X' is Y'-heavy. Finally $X' \subset X + \delta_0$, so $Y' \cap (X + \delta_0 + \delta_1)$ has full rank in Y' and so X is Y'-heavy.