A basis of neighbourhoods of 0 in fields of finite dp-rank (from: Will Johnson Dpl, section 4)

MSRI, january 21th 2021

(IV)

Let $\mathfrak M$ be a sufficiently saturated dp-finite field and $\mathcal M$ be a small elementary substructure of $\mathfrak M.$

Recall that X is heavy if it is Y-heavy for some critical set Y, namely there is $\delta \in \mathfrak{M}$ such that $\operatorname{rk}(Y \cap (X + \delta)) = \operatorname{rk}(Y)$.

Furthermore, if Y' is another critical set , then X is Y'-heavy (Proposition 4.18).

Lemma (Proposition 4.14)

Let Y be a critical set and Q_1, \ldots, Q_n be quasi-minimal. Then for every m there exist $\{q_{ij}\}_{i \in [n], j \in [m]}$ such that

- O for fixed i ∈ [n], q_{i,1},...,q_{i,m} consist of m distinct elements of Q_i
- ③ the intersection $\bigcap_{\eta:[n] \to [m]} (Y + \sum_{i=1}^{n} q_{i,\eta(i)})$ is critical.

Lemma (Corollary 4.15)

Let Y be a critical set and Q_1, \ldots, Q_n be quasi-minimal. There exists $\delta \in \mathfrak{M}$ such that

$$\{(x_1,\ldots,x_n)\in Q_1\times\ldots\times Q_n\colon x_1+\ldots+x_n\in Y+\delta\}$$

is a broad subset of Q_1, \ldots, Q_n

Proof.

By Proposition 4.14 applied to the quasi-minimal sets $(-Q_i)$, we can find for every m, $\{q_{ij}\}_{i \in [n], j \in [m]}$ such that

- for fixed $i \in [n]$, $q_{i,1}, \ldots, q_{i,m}$ consist of *m*-distinct elements of Q_i
- ② the intersection $\bigcap_{\eta:[n] \to [m]} (Y \sum_{i=1}^{n} q_{i,\eta(i)})$ is critical (and in particular non-empty)

Let $-\delta \in \bigcap_{\eta:[n] \to [m]} (Y - \sum_{i=1}^{n} q_{i,\eta(i)})$. So for any $\eta: [n] \to [m]$, $-\delta \in Y - \sum_{i=1}^{n} q_{i,\eta(i)}$. Equivalently, $\sum_{i=1}^{n} q_{i,\eta(i)} \in Y + \delta$. By compactness, we can find, for each $i \in [n]$, $(q_{i,j})_{j \in \mathbb{N}}$ pairwise distinct elements of $Q_i(\mathfrak{M})$ such that for any $\eta: [n] \to \mathbb{N}$, $\sum_{i=1}^{n} q_{i,\eta(i)} \in Y + \delta$. This means that $\{(q_1, \ldots, q_n) \in Q_1 \times \ldots \times Q_n: q_1 + \ldots + q_n \in Y + \delta\}$ is a broad subset of $Q_1 \times \ldots \times Q_n$. Let X, Y be two definable subsets of \mathfrak{M} and set $X -_{\infty} Y := \{\delta \in M \colon X \cap (Y + \delta) \text{ is heavy}\}.$

Note that $X - {}_{\infty} Y \subset X - Y$. (If $u \in X \cap (Y + \delta)$, then $u = x = y + \delta$, so $\delta = x - y$).

Theorem (Theorem 4.20)

- Assume that \mathfrak{M} is infinite, and X heavy, then X is infinite.
- **(a)** If $X \cup Y$ is heavy, then either X is heavy or Y is heavy.
- If X is heavy and $X \subset Y$, then Y is heavy.
- Let {D_b: b ∈ 𝔐} be a definable family of subsets of 𝔐, then {b: D_b is heavy } is definable.
- $X _{\infty} Y$ is definable.
- M is heavy.
- **(**) If X heavy, then for any $\alpha \in \mathfrak{M}^{\times}$, $\alpha \cdot X$ is heavy.
- **(**) If X heavy, then for any $\alpha \in \mathfrak{M}$, $\alpha + X$ is heavy.
- If either X or Y is not heavy, then $X -_{\infty} Y = \emptyset$.
- If X, Y are heavy, then $X \infty Y$ is heavy.
- **Q** Let X be heavy, then $0 \in X \infty X$.

In theorem above, some properties (in the text) are stated for light sets, but a light set is the complement of an heavy set!

- Assume that *M* is infinite, and *X* heavy, then *X* is infinite. The critical rank is always > 0 and since a heavy set contains a critical set, it is of rank > 0 and so infinite.
- If $X \cup Y$ is heavy, then either X is heavy or Y is heavy. Assume $X \cup Y$ is Z-heavy for some critical set Z. Then there $\delta \in M$ such that $rk((X \cup Y) + \delta) \cap Z) = rk(Z)$. But $(X \cup Y) + \delta = (X + \delta) \cup (Y + \delta)$ and $((X + \delta) \cup (Y + \delta)) \cap Z = ((X + \delta) \cap Z) \cup ((Y + \delta) \cap Z)$.
- If X is heavy and X ⊂ Y, then Y is heavy.
 (X + δ) ∩ Z ⊂ (Y + δ) ∩ Z and so if (X + δ) ∩ Z is a critical set, then so is (Y + δ) ∩ Z.

Proof of 4.20 (continued)

• Let $\{D_b: b \in \mathfrak{M}\}$ be a definable family of subsets of \mathfrak{M} , then $\{b: D_b \text{ is heavy }\}$ is definable. By Proposition 4.18, we may assume that the sets D_b are Y-heavy for the same Y. Namely that $rk(Y \cap (D_b + \delta_b)) = rk(Y)$. But by Proposition 4.3(1), full rank is definable, namely $\{b: rk(Y \cap (D_b + \delta_b)) = rk(Y)\}$ is definable.

The set X -∞ Y, where X and Y are definable, is definable (and X -∞ Y ⊆ X - Y).
 X -∞ Y = {b ∈ M: (X ∩ (Y + b)) is heavy}.

M is heavy.

M contains a critical set.

Proof of 4.20 (continued)

- If X heavy, then for any $\alpha \in M^{\times}$, $\alpha \cdot X$ is heavy. The map $x \mapsto \alpha x$ is a definable bijection.
- If X heavy, then for any $\alpha \in M$, $\alpha + X$ is heavy. the map $x \mapsto x + \alpha$ is a definable bijection.
- If either X or Y is not heavy, then X -∞ Y = Ø. Suppose otherwise. Let δ ∈ X -∞ Y. So X ∩ (Y + δ) is heavy. But this set is included in X and Y + δ, so X and Y + δ are heavy. If Y + δ is heavy, Y is heavy.

Proof of 4.20 (continued)

• If X, Y are heavy, then $X -_{\infty} Y$ is heavy. W.l.o.g. we may assume that X and Y are critical sets (translates of critical sets are critical and if you contain a critical set, you are critical). Let (A_1, \ldots, A_n, P) be a coordinate configuration for Y. By Theorem 3.10 (and the beginning of the proof), there are infinite definable subsets $Q_i \subset A_i$ (so quasi-minimal) such that $(Q_1 \times \ldots \times Q_n) \setminus P$ is not broad. By Corollary 4.15, there is $\delta \in \mathfrak{M}$ such that

$$\{(q_1,\ldots,q_n,q_1',\ldots,q_n')\in (Q_1\times\ldots\times Q_n)^2:$$

$$q_1+\ldots+q_n+q_1'+\ldots+q_n'\in X+\delta\}$$

is broad as a subset of $(Q_1 \times \ldots \times Q_n)^2$. So we can find $(q_{i,j}), (q'_{i,j}) \in Q_i, 1 \le i \le n, j \in \mathbb{N}$, with $q_{i,j} \ne q_{i,k}$, $q'_{i,j} \ne q'_{i,k}$, for $j \ne k$ and for any $\eta, \eta' : [n] \rightarrow \mathbb{N}$,

$$\sum_{i=1}^n q_{i,\eta(i)} + q'_{i,\eta'(i)} \in X + \delta.$$

Let $s_{\eta} := \sum_{i=1}^{n} q_{i,\eta(i)}$, then the elements (q'_{ii}) witness that the set $\{(q'_1,\ldots,q'_n)\in (Q_1\times\ldots\times Q_n): s_n+q'_1+\ldots+q'_n\in X+\delta\}$ is a broad subset of $Q_1 \times \ldots \times Q_n$. Since $(Q_1 \times \ldots \times Q_n \setminus P)$ is not broad, it follows that $W := \{ (q'_1, \dots, q'_n) \in P : s_n + q'_1 + \dots + q'_n \in X + \delta \}$ is a broad subset of $Q_1 \times \ldots \times Q_n$, as well. By 3.23, $rk(W) = \sum_{i=1}^{n} rk(Q_i) = \sum_{i=1}^{n} rk(A_i) =: \rho$. Since (A_1, \ldots, A_n, P) is a coordinate configuration for Y, we have $q'_1 + \ldots + q'_n \in Y$ (and the fibers of this map are finite) (*). So $(s_n + Y) \cap (X + \delta)$ has rank ρ . The translate $(s_n + Y - \delta) \cap X$ has rank ρ (and since its intersection with X is itself), it is X-heavy. So, $s_n - \delta \in X -_{\infty} Y$. This holds for any function η , so $\{(q_1,\ldots,q_n)\in (Q_1\times\ldots\times Q_n): q_1+\ldots+q_n-\delta\in X-\infty Y\}$ is broad as a subset of $Q_1 \times \ldots \times Q_n$. So by 3.23, it has full rank ρ .

Again (see (*)), this implies that $(Y - \delta) \cap (X - \infty Y)$ has rank ρ . So $X - \infty Y$ is heavy. Candidates of basic neighbourhood of 0 inducing on \mathfrak{M} a field topology: $X -_{\infty} X := \{\delta \in \mathfrak{M} \colon X \cap (X + \delta) \text{ is heavy}\}$, where X is a definable *heavy* subset of \mathfrak{M} (so $0 \in X -_{\infty} X$)–(Definition 6.3).

We have seen that if X is definable, then $X - \infty X$ is definable and if it is not empty X should be heavy (and if X is heavy, then $X - \infty X$ is heavy).

Remark (Remark 6.2)

• Let $\delta_1, \delta_2 \in \mathfrak{M}$, then $(X + \delta_1) -_{\infty} (Y + \delta_2) = X -_{\infty} Y + (\delta_1 - \delta_2).$ Translates of heavy sets are heavy.

For any α ∈ M[×], α ⋅ X −_∞ α ⋅ Y = α ⋅ (X −_∞ Y). So, If U is a basic neighbourhood and α ∈ M[×], then α ⋅ U is a basic neighbourhood.

If Z is heavy, α .Z is heavy.

● If $X' \subset X$ and $Y' \subset Y$, then $X' -_{\infty} Y' \subseteq X -_{\infty} Y$.

Remark (Remark 6.4)

If \mathcal{M} is a small model, then every M-definable basic neighbourhood is of the form $X - \infty X$, where X is heavy and M-definable.

Let U be a basic neighbourhood of the form $X - \infty X$ and let $\varphi(x; y)$ be such that $X = \varphi(\mathfrak{M}; b), b \in \mathfrak{M}$. Since the set of parameters c such that $\varphi(\mathfrak{M}; c)$ is heavy is definable and since U is M-definable, $\{c \in \mathfrak{M} : U = \varphi(\mathfrak{M}, c) - \infty \varphi(\mathfrak{M}, c) \text{ and } \varphi(\mathfrak{M}, c) \text{ is heavy } \}$ is definable, M-invariant, non-empty (it contains b) and so it is M-definable. So it has a non-empty intersection with M. Let b' in that intersection and let $X' := \varphi(\mathfrak{M}, b')$. We have $U = \varphi(\mathfrak{M}, b') - \infty \varphi(\mathfrak{M}, b')$ with $\varphi(\mathfrak{M}, b')$ heavy, $b' \in M$.

Proposition (Proposition 6.5)

- If U is a basic neighbourhood, then U is heavy.
- If U is a basic neighbourhood, then $0 \in U$.
- If *U* is a basic neighbourhood and $\alpha \in \mathfrak{M}^{\times}$, then $\alpha \cdot U$ is a basic neighbourhood.
- If U_1, U_2 are basic neighbourhoods, then there is a basic neighbourhood $U_3 \subset U_1 \cap U_2$. If U_1, U_2 are *M*-definable, then we can choose U_3 to be *M*-definable.
- If M is not of finite Morley rank and a ∈ M \ {0}, then there is a basic neighbourhood U with a ∉ U. If a is M-definable, we may choose U to be M-definable.

Proof of Proposition 6.5 (3)

If U_1, U_2 are basic neighbourhoods, then there is a basic neighbourhood $U_3 \subset U_1 \cap U_2$. If U_1, U_2 are *M*-definable, then we can choose U_3 to be *M*-definable.

Proof.

Set $U_i := X_i - \infty X_i$, i = 1, 2, with X_i heavy. By Theorem 4.20, $X_1 - \infty X_2$ is heavy (so non empty). Let $\delta \in X_1 - \infty X_2$. Set $X_3 := X_1 \cap (X_2 + \delta)$. By choice of δ , X_3 is heavy. Check that $X_3 - \infty X_3 \subseteq U_1 \cap U_2$. Let $\varphi(x; y)$ and $b \in \mathfrak{M}$ be such that $X_3 = \varphi(\mathfrak{M}, b)$. Consider $\{c : \emptyset \neq \varphi(\mathfrak{M}, c) - \infty \varphi(\mathfrak{M}, c) \subset U_1 \cap U_2\}$. (Note that since $\emptyset \neq \varphi(\mathfrak{M}, c) - \infty \varphi(\mathfrak{M}, c)$, $\varphi(\mathfrak{M}, c)$ is heavy). It is definable, contains b and M-invariant. So it is M-definable and so we can choose $b_0 \in M$ such that $\emptyset \neq \varphi(\mathfrak{M}, b_0) - \infty \varphi(\mathfrak{M}, b_0) \subset U_1 \cap U_2$ and $\varphi(\mathfrak{M}, b_0)$ heavy.

Proof of Proposition 6.5 (4)

Since \mathfrak{M} is not of finite Morley rank, there are two disjoint heavy sets: X, Y (Theorem 5.2). Since $X -_{\infty} Y$ is heavy, it is not empty. Let $\delta \in X -_{\infty} Y$. Consider $X' := X \cap (Y + \delta) \subseteq X$: it is heavy by choice of δ , as well as $Y' := X' - \delta = (X - \delta) \cap Y \subseteq Y$. So $X' \cap Y' = \emptyset$. This implies that $\delta \notin Y' -_{\infty} Y'$ $(Y' \cap (Y' + \delta) = Y' \cap X')$. Since Y' is heavy, $U_0 := Y' -_{\infty} Y'$ is a neighbourhood of 0, which does not contain δ . In particular $\delta \neq 0$.

Since \mathfrak{M} is a field, given any $\alpha \neq 0$, there is $\beta \in \mathfrak{M}$ such that $\alpha = \beta \delta$. So βU_0 is again a basic neighbourhood of 0 which does not contain α .

Finally if $\alpha \in M \setminus \{0\}$. We have shown that $\alpha \notin \varphi(\mathfrak{M}, b) -_{\infty} \varphi(\mathfrak{M}, b)$, with $\varphi(\mathfrak{M}, b)$ heavy. Consider $\{b \in \mathfrak{M} : \varphi(\mathfrak{M}, b) \text{ heavy and } \alpha \notin \varphi(\mathfrak{M}, b) -_{\infty} \varphi(\mathfrak{M}, b)\}$. It is definable, *M*-invariant and not empty. So, it is *M*-definable. So we can find such $b \in M$, which produces a basic *M*-definable neighbourhood of 0 not containing α .

Lemma (Lemma 4.21)

Let \mathcal{M} a small model defining a critical coordinate configuration. Let Z be an M-definable heavy set. Let D_1, \ldots, D_m be \mathfrak{M} -definable sets such that $Z(M) \subseteq D_1 \cup \ldots \cup D_m$. Then there is $Z' \subset Z$, $1 \leq j \leq m$ such that Z' is M-definable, heavy and $Z'(M) \subset D_j$.

Proof.

Let Y be a critical set such that Z is Y-heavy. Let (X_1, \ldots, X_n, P) be a critical *M*-definable configuration with target Y. Let $\delta \in \mathfrak{M}$ be such that $Y \cap (Z + \delta)$ has full rank in Y. W.I.o.g. $\delta \in M$. Replacing Z by $Z + \delta$ and D_i by $D_i + \delta$, we may assume that $\delta = 0$. Consider $R := \{(x_1, \ldots, x_n) \in P : x_1 + \ldots + x_n \in Z\}$. This set is broad since $Y \cap Z$ has full rank in Y by Theorem 3.23.

Proof.

Note that R(M) is a union of externally definable sets: $R(M) = \bigcup_{i=1}^{m} \{ (x_1, \dots, x_n) \in P(M) : x_1 + \dots + x_n \in Z \cap D_i \}.$ By Lemma 3.13 on externally definable sets, there is a M-definable subset R' of R and $j \in [m]$ such that R' is broad and $(x_1,\ldots,x_n) \in R'(M) \Rightarrow x_1 + \ldots + x_n \in D_i$. Define $Z' := \{ u \colon \exists x_1, \dots, \exists x_n \ u = x_1 + \dots + x_n \& (x_1, \dots, x_n) \in R' \}.$ Then Z' is critical. Z' is M-definable. $Z' \subset Y \cap Z$ and Z' is Y-heavy. Let us show that $Z'(M) \subset D_i$. Indeed given $u \in Z'(M)$ there exist finitely many tuples $(x_1, \ldots, x_n) \in \mathfrak{M}$ such that $u = x_1 + \ldots + x_n$. Since $\mathcal{M} \prec \mathfrak{M}$, they belong to M and so to R'(M). So $Z'(M) \subset D_i$.

Lemma (Lemma 4.22)

Let \mathcal{M} a small model defining a critical coordinate configuration. Let Z be an M-definable heavy set. Let W be \mathfrak{M} -definable with the property that $Z(M) \subset W$. Then W is heavy.

Proof.

Assume that Z is Y-heavy and let (X_1, \ldots, X_n, P) be a critical *M*-definable configuration with target Y. By using the same trick as in the beginning of the proof of Lemma 4.21, we may assume that $Y \cap Z$ has full rank in Y. So, the *M*-definable set $\{(x_1, \ldots, x_n) \in P : x_1 + \ldots + x_n \in Z\}$ is broad in $X_1 \times \ldots \times X_n$ by 3.23. By Lemma 3.14 (on externally definable sets), $\{(x_1, \ldots, x_n) \in P : x_1 + \ldots + x_n \in W\}$ is broad. By 3.23, $rk(W \cap Y) = rk(Y)$, so *W* is Y-heavy.

Definition (Definition 6.6)

Let \mathcal{M} be a small model. An element $\epsilon \in \mathfrak{M}$ is M-infinitesimal if ϵ belongs to every M-definable basic neighbourhood, equivalently if for every M-definable heavy set $X \cap (X + \epsilon)$ is heavy.

Denote the set of *M*-infinitesimals by I_M .

The set I_M is type-definable over M as

$$\bigcap_{X \text{ heavy and } M-\text{definable}} X -_{\infty} X$$