Dp-finite fields reading seminar paper I, 3.10 & paper II, §3

Sylvy Anscombe

IMJ-PRG, U-Paris

sylvy.anscombe@imj-prg.fr

Disclaimer: all of this work is due to Will Johnson and can be found in his first two papers on Dp-finite fields, [J1] and [J2].

1. Dp-finite I, Proposition 10.1

- $\ \mathbb{M}$ dp-finite but not finite Morley rank.
- M₀ small model
- \mathcal{P}_n poset of type-definable \mathcal{M}_0 -linear subspaces of \mathbb{M}^n .
- $\mathcal{P} := \mathcal{P}^1 \text{ and } \mathcal{P}^+ := \mathcal{P} \setminus \{0\}.$

1. Dp-finite I, Proposition 10.1

- M dp-finite but not finite Morley rank.
- M₀ small model
- \mathcal{P}_n poset of type-definable M_0 -linear subspaces of \mathbb{M}^n .
- $\mathcal{P} := \mathcal{P}^1 \text{ and } \mathcal{P}^+ := \mathcal{P} \setminus \{0\}.$

Proposition 10.1

- **1.** For each *n*, \mathcal{P}_n is a bounded lattice.
- **2.** For any small $M \subseteq M_0$, $I_M \in \mathcal{P}$. Thus $\mathcal{P} \supset \{0, \mathbb{M}\}$.
- **3.** If $J \in \mathcal{P}$, $J \neq 0$, then every definable $D \supseteq J$ is heavy.
- **4.** If $J \in \mathcal{P}^+$ is type-definable over some small $M \supseteq M_0$, then $J \supseteq I_M$.
- 5. If $J \in \mathcal{P}_n$, then $J = J^{00}$.
- 6. \mathcal{P}^+ is sublattice of \mathcal{P} . Thus \mathcal{P}^+ is a bounded-above lattice.
- 7. \mathcal{P} has reduced rank r for some $0 < r \leq dp rk(\mathbb{M})$. The reduced rank of \mathcal{P}^{+} is r. The reduced rank of \mathcal{P}^{n} is rn.

- 1. By Carol's talk: $G \wedge H = G \cap H = (G \cap H)^{00}$.
- **2.** I_M is neither 0 nor \mathbb{M} and is M_0 -linear.
- **3.** Suppose $0 \neq J \subseteq D$. Re-scaling if necessary, $1 \in J$. Thus $M_0 \subseteq J$. Heaviness goes up.
- 4. Now follows from Corollary 6.19 Silvain's talk.
- 5. From Corollary 8.7 Carol's talk.
- 6. Only have to show that \mathcal{P}^+ is closed under meet (i.e. intersection) since for $J_1, J_2 \in \mathcal{P}^+$, choose one small model $M \supseteq M_0$ over which both are type-definable. Then $J_1 \wedge J_2 = J_1 \cap J_2$ is type-definable over M and M_0 -linear. By (4), $I_M \leq J_1 \cap J_2$ and we already know $I_M \neq 0$.

Recall: the reduced rank $\operatorname{rk}_0(P)$ of a modular lattice (P, \leq) is supremum of $n \in \mathbb{N} \cup \{\infty\}$ such that a strict *n*-cube exists in *P*, i.e. \exists embedding $\mathcal{P}ow([n]) \longrightarrow P$. For $a \leq b$, the rank $\operatorname{rk}_{\perp}(a/b)$ is supremum of $n \in \mathbb{N} \cup \{\infty\}$ such that a strict *n*-cube exists in [b, a] with bottom *b*.

Recall: the reduced rank $rk_0(P)$ of a modular lattice (P, \leq) is supremum of $n \in \mathbb{N} \cup \{\infty\}$ such that a strict *n*-cube exists in *P*, i.e. \exists embedding $\mathcal{P}ow([n]) \longrightarrow P$. For $a \leq b$, the rank $rk_{\perp}(a/b)$ is supremum of $n \in \mathbb{N} \cup \{\infty\}$ such that a strict *n*-cube exists in [b, a] with bottom *b*.

Proof.

7. Simply denote $r = rk_0(\mathcal{P})$. By 9.31 (and 8.1), $r \leq n$. Clearly $0 < rk_0(\mathcal{P}^+) \leq rk_0(\mathcal{P}) = r \leq n$. The '<' is from (2). Suppose that $rk_0(\mathcal{P}^+) < rk_0(\mathcal{P})$. Then there is a strict *r*-cube in \mathcal{P} which does not lie in \mathcal{P}^+ , so it must include 0, in fact as the bottom of the cube, i.e. as the image of $\emptyset \in \mathcal{P}ow([r])$. In particular $r \leq rk_{\perp}(\mathcal{P})$. But also (more quirkily), $rk_{\perp}(\mathcal{P}) \leq 1$ by (6)! Therefore $r \leq 1 \leq rk_0(\mathcal{P}^+)$ – contradiction. So $rk_0(\mathcal{P}^+) = r$ also. Recall: the reduced rank $rk_0(P)$ of a modular lattice (P, \leq) is supremum of $n \in \mathbb{N} \cup \{\infty\}$ such that a strict *n*-cube exists in *P*, i.e. \exists embedding $\mathcal{P}ow([n]) \longrightarrow P$. For $a \leq b$, the rank $rk_{\perp}(a/b)$ is supremum of $n \in \mathbb{N} \cup \{\infty\}$ such that a strict *n*-cube exists in [b, a] with bottom *b*.

Proof.

7. Simply denote $r = rk_0(\mathcal{P})$. By 9.31 (and 8.1), $r \leq n$. Clearly $0 < rk_0(\mathcal{P}^+) \leq rk_0(\mathcal{P}) = r \leq n$. The '<' is from (2). Suppose that $rk_0(\mathcal{P}^+) < rk_0(\mathcal{P})$. Then there is a strict *r*-cube in \mathcal{P} which does not lie in \mathcal{P}^+ , so it must include 0, in fact as the bottom of the cube, i.e. as the image of $\emptyset \in \mathcal{P}ow([r])$. In particular $r \leq rk_{\perp}(\mathcal{P})$. But also (more quirkily), $rk_{\perp}(\mathcal{P}) \leq 1$ by (6)! Therefore $r \leq 1 \leq rk_0(\mathcal{P}^+)$ – contradiction. So $rk_0(\mathcal{P}^+) = r$ also.

Consider \mathcal{P}_n , and for each $i \in \{1, \ldots, n\}$ let $J_i := 0^{\oplus (i-1)} \oplus \mathbb{M} \oplus 0^{\oplus (n-i)}$. Then $J_i \in \mathcal{P}_n$ and the collection $(J_i)_i$ is independent (= relatively independent over 0), i.e.

$$0=J_i\wedge\bigvee_{j\neq i}J_j,$$

for each *i*. Also $\bigvee_i J_i = \mathbb{M}^n$. Since rk_0 is sub-additive and $(J_i)_i$ is independent, by 9.25 we have

$$\operatorname{rk}_0(\mathbb{M}^n) = \sum_i \operatorname{rk}_0(J_i) = \sum_i r = rn,$$

since $\mathcal{P} \longrightarrow [0, J_i], X \longmapsto 0^{\oplus (i-1)} \oplus X \oplus 0^{\oplus (n-i)}$ is isomorphism.

2. Dp-finite II, Section 3

K small model. Symmetries are invertible!

An affine symmetry

$$f: \mathbb{K} \longrightarrow \mathbb{K}$$
$$x \longmapsto ax + b$$

is K-deformation if for every K-definable heavy set X the intersection

 $X \cap f^{-1}(X)$

is heavy.

Roughly: K-deformations are thought of as K-infinitesimally close to the identity.

- $x \mapsto x + \varepsilon$ is *K*-deformation iff ϵ is *K*-infinitesimal (sense check!).
- All affine symmetries preserve heaviness.
- Set of *K*-deformations closed under compositional conjugation by *K*-definable affine symmetries, i.e. for *f*, *g K*-definable affine symmetries, if *f* is a *K*-deformation then so is $g^{-1} \circ f \circ g$.

The third of the above points shows the 'normal' part of the statement — to be proved later — that the K-deformations form a normal subgroup of the group of K-definable affine symmetries.

Definition

Let $X \subseteq \mathbb{K}$ be *K*-definable. An affine symmetry *f K*-*displaces X* if

 $x \in X \land x \in K \implies f(x) \notin X.$

Writing X(K) for the K-points of X, this says that $f(X(K)) \cap X = \emptyset$.

Lemma (Lemma 3.5)

Let $K \leq K'$. Let f = aX + b and f' = a'X + b' be two affine symmetries of \mathbb{K} . Suppose $\operatorname{tp}(a'b'/K')$ is an heir of $\operatorname{tp}(ab/K)$.

- **1.** If f is a K-deformation, then f' is a K'-deformation.
- **2.** If $X \subseteq \mathbb{K}$ is K-definable and is K-displaced by f, then X is K'-displaced by f'.

Proof.

Reduction: since $ab \equiv_{\kappa} a'b'$, can assume (a, b, f) = (a', b', f').

1. Suppose *f* not a *K'*-deformation. There exists a *K'*-definable heavy set *X* such that $X \cap f^{-1}(X)$ is not heavy. Suppose *X* is defined by $\varphi(x, c')$ for some (tuple) $c' \in K'$, i.e. $X = \varphi(\mathbb{K}, c')$. Re-writing: $\varphi(\mathbb{K}, c')$ is heavy and $\varphi(\mathbb{K}, c') \cap f^{-1}(\varphi(\mathbb{K}, c'))$ is light. Viewing $\varphi(x, y)$ as fixed, this is a *Kab*-definable property of *c'*. By the law of inheritance, there exists $c \in K$ with the same property, i.e. $\varphi(\mathbb{K}, c)$ is heavy and $\varphi(\mathbb{K}, c) \cap f^{-1}(\varphi(\mathbb{K}, c))$ is light. Therefore *f* is not a *K*-deformation.

Lemma (Lemma 3.5)

Let $K \leq K'$. Let f = aX + b and f' = a'X + b' be two affine symmetries of \mathbb{K} . Suppose $\operatorname{tp}(a'b'/K')$ is an heir of $\operatorname{tp}(ab/K)$.

- **1.** If f is a K-deformation, then f' is a K'-deformation.
- **2.** If $X \subseteq \mathbb{K}$ is K-definable and is K-displaced by f, then X is K'-displaced by f'.

Proof.

Reduction: since $ab \equiv_{\kappa} a'b'$, can assume (a, b, f) = (a', b', f').

- **1.** Suppose *f* not a *K'*-deformation. There exists a *K'*-definable heavy set *X* such that $X \cap f^{-1}(X)$ is not heavy. Suppose *X* is defined by $\varphi(x, c')$ for some (tuple) $c' \in K'$, i.e. $X = \varphi(\mathbb{K}, c')$. Re-writing: $\varphi(\mathbb{K}, c')$ is heavy and $\varphi(\mathbb{K}, c') \cap f^{-1}(\varphi(\mathbb{K}, c'))$ is light. Viewing $\varphi(x, y)$ as fixed, this is a *Kab*-definable property of *c'*. By the law of inheritance, there exists $c \in K$ with the same property, i.e. $\varphi(\mathbb{K}, c)$ is heavy and $\varphi(\mathbb{K}, c) \cap f^{-1}(\varphi(\mathbb{K}, c))$ is light. Therefore *f* is not a *K*-deformation.
- **2.** Suppose X not K'-displaced by f. Then there exists $c' \in K'$ such that $c' \in X$ and $f(c') \in X$. Again, these latter two conditions on c' are actually *Kab*-definable. By the law of inheritance, there exists $c \in K$ with the same two properties. Thus f fails to K-displace X.

From now on, K small.

Lemma (Lemma 3.6)

Suppose K defines a critical coordinate configuration. Let f be a K-deformation. Let X be K-definable and K-displaced by f. Then f is light.

Proof.

Write f = aX + b. Build sequence $(a_i, b_i, K_i)_{i < \omega}$ such that

- **1.** $(K_i)_i$ increasing elementary chain, with $K = K_0$,
- **2.** $a_i, b_i \in K_{i+1}$, for all i,
- **3.** $tp(a_ib_i/K_i)$ is an heir of tp(ab/K), for all *i*.

Define $f_i := a_i X + b_i$. By previous, f_i is a K_i -deformation and X is K_i -displaced by f_i . For $\alpha \in \{0, 1\}^{<\omega}$, define X_{α} recursively as follows:

$$- X_{\emptyset} = X_{\{\}} = X_{\{\}}$$

$$- X_{\alpha 0} := \{ x \in X_{\alpha} \mid f_n(x) \notin X \},\$$

$$- X_{\alpha 1} := \{ x \in X_{\alpha} \mid f_n(x) \in X \},$$

where length(α) = *n*. NIP \implies not all X_{α} non-empty.

Suppose $X = X_{\emptyset}$ is heavy.

Claim

 X_{α} heavy $\implies X_{\alpha 1}$ heavy.

Proof of claim. Since f_n is a K_n -deformation and X_α is heavy and K_n -definable, $X_\alpha \cap f_n^{-1}(X_\alpha)$ is heavy. Then $X_{\alpha 1} = X_\alpha \cap f_n^{-1}(X) \supseteq X_\alpha \cap f_n^{-1}(X_\alpha)$ is also heavy. \Box_{claim}

Suppose $X = X_{\emptyset}$ is heavy.

Claim

 X_{α} heavy $\implies X_{\alpha 1}$ heavy.

Proof of claim. Since f_n is a K_n -deformation and X_α is heavy and K_n -definable, $X_\alpha \cap f_n^{-1}(X_\alpha)$ is heavy. Then $X_{\alpha 1} = X_\alpha \cap f_n^{-1}(X) \supseteq X_\alpha \cap f_n^{-1}(X_\alpha)$ is also heavy. \Box_{claim}

Claim

 X_{α} heavy $\implies X_{\alpha 0}$ heavy.

Proof of claim. Note that X_{α} is K_n -definable and $X_{\alpha}(K_n) \subseteq X(K_n)$. Since X is K_n -displaced by f_n we have

$$x \in X(K_n) \implies f_n(x) \notin X(K_n).$$

Therefore $X_{\alpha}(K_n) \subseteq X_{\alpha 0}$. Heaviness goes up, by 4.22 from paper I, and so $X_{\alpha 0}$ is heavy. \Box_{claim}

Suppose $X = X_{\emptyset}$ is heavy.

Claim

 X_{α} heavy $\implies X_{\alpha 1}$ heavy.

Proof of claim. Since f_n is a K_n -deformation and X_α is heavy and K_n -definable, $X_\alpha \cap f_n^{-1}(X_\alpha)$ is heavy. Then $X_{\alpha 1} = X_\alpha \cap f_n^{-1}(X) \supseteq X_\alpha \cap f_n^{-1}(X_\alpha)$ is also heavy. \Box_{claim}

Claim

 X_{α} heavy $\implies X_{\alpha 0}$ heavy.

Proof of claim. Note that X_{α} is K_n -definable and $X_{\alpha}(K_n) \subseteq X(K_n)$. Since X is K_n -displaced by f_n we have

$$x \in X(K_n) \implies f_n(x) \notin X(K_n).$$

Therefore $X_{\alpha}(K_n) \subseteq X_{\alpha 0}$. Heaviness goes up, by 4.22 from paper I, and so $X_{\alpha 0}$ is heavy. \Box_{claim} Therefore all X_{α} are heavy, so non-empty. Contradiction. Therefore X is light.

Theorem (Theorem 3.10)

The K-deformations form a subgroup of the K-definable affine symmetries of \mathbb{K} .

Proof.

Let f_1, f_2 be two *K*-deformations. We must show that $f_1 \circ f_2^{-1}$ is a *K*-deformation. Let $K' \succeq K$ be a small model over which f_1, f_2 are both definable. Let $K'' \succeq K$ be a small model defining a critical coordinate configuration. *Move* K'' *over* K *so that* tp(K''/K') *is finitely satisfiable in* K.

Theorem (Theorem 3.10)

The K-deformations form a subgroup of the K-definable affine symmetries of \mathbb{K} .

Proof.

Let f_1, f_2 be two K-deformations. We must show that $f_1 \circ f_2^{-1}$ is a K-deformation. Let $K' \succeq K$ be a small model over which f_1, f_2 are both definable. Let $K'' \succeq K$ be a small model defining a critical coordinate configuration. Move K'' over K so that $\operatorname{tp}(K''/K')$ is finitely satisfiable in K. Write $f_i = a_i X + b_i$, thus $a_1 a_2 b_1 b_2 \in \operatorname{dcl}(K')$. Therefore $\operatorname{tp}(K''/Ka_i b_i)$ is finitely satisfiable in K (both i). By 3.5, both f_i are K''-deformations. By 3.9, $f_1 \circ f_2^{-1}$ is a K''-deformation.

An element $\mu \in \mathbb{K}^{\times}$ is a *multiplicative K-infinitesimal* if the map

 $x \mapsto \mu x$

is a K-deformation. Denote by U_K the set of multiplicative K-infinitesimals.

Theorem (Theorem 3.12)

- 1. $U_K \leq K^{\times}$
- **2.** U_K type-definable over K
- **3.** If μ is multiplicative infinisimal then $\mu 1$ is additive infinitesimal.
- **4.** Let $G \leq K^{\times}$ be type-definable over K. Suppose that for all K-definable $D \supseteq G$, D is heavy. Then $U_K \leq G$.

- **1.** 3.10!
- 2. Recall that heaviness is definable in families. Now, for fixed K-definable heavy X, the set

$$\{\mu \in \mathbb{K}^{\times} \mid X \cap (\mu X) \text{ is heavy}\}$$

is *K*-definable. The intersection of such sets (for all such *X*) is exactly the group of multiplicative *K*-infinitesimals.

- **3.** Write $f = \mu X$ and g = X + 1. Since f is K-deformation and g is a K-definable affine symmetry, as we already saw above, the map $g^{-1} \circ f \circ g$ is a K-deformation. By 3.10, the composition $g^{-1} \circ f \circ g \circ f^{-1}$ (in fact it's a commutator!) is a K-deformation. But this commutator is the affine symmetry $X + (\mu 1)$. Therefore $\mu 1$ is an additive K-infinitesimal.
- 4. Suppose G is such a subgroup with the stated property. Then
 G = ∩{D · D⁻¹ | D is K-definable and D ⊇ G} using compactness for the
 non-obvious direction. Let μ ∈ U_K. Then D ∩ (μD) is heavy, so nonempty. Therefore
 μ ∈ D · D⁻¹ for all D. So μ ∈ G.

Will Johnson.

Dp-finite fields I: infinitesimals and positive characteristic.

Preprint, 2020. (arXiv:1903.11322 [math.LO])

Will Johnson.

Dp-finite fields II: the canonical topology and its relation to henselianity.

Preprint, 2019. (arXiv:1910.05932 [math.LO])