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K an unstable dp-finite field of dp-rank n.

Definition 8.2. Let G ≤ (K,+) be type-definable.

(1) G is heavy if every definable set containing G is heavy.

(2) G is bounded if for every heavy subgroup G′ ≤ K, there is a non-

zero a ∈ K such that G ≤ a ·G′.
(3) A small K0 � K is magic if whenever G ≤ (Km,+) is type-definable,

then K0 ·G ⊂ G implies G = G00. In other words, all type-definable

K0-vector spaces are connected. That magic fields exist comes

from dpI, 8.4 and 8.7.

The aim of this talk is to show

Corollary 8.9. If K is a small submodel, then IK is bounded.
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8.1 – Recall the following : let G ≤ K be type-definable. TFAE:

(1) dp−rk(G) = n.

(2) Every definable set D ⊇ G has rank n.

(3) Every definable set D ⊇ G is heavy.

(4) G contains IK for some small K � K.

Recall also the notion of strict r-cube and reduced rank. Given a

modular lattice M , a strict r-cube is an injective homomorphism from

the power set of r to M , with unbounded relative indices. The base of

the cube is the image of ∅. The reduced rank rk0(M) is the maximum

r such that a strict r-cube exists. If a ≥ b, then rk0(a/b) is the reduced

rank of the sublattice [b, a]. If M is a sublattice of subgroups of (K,+),

then we know that rk0(M) ≤ n.
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We fix a magic subfield K0, and let Λ = ΛK0
be the lattice of type-

definable K0-linear subspaces of K1. So, if M ∈ Λ, then M = M00, by
magic. Let r = rk0(Λ). A K0-pedestal (or simply pedestal since K0
is fixed) is an element of Λ+ := Λ \ {0} which is the basis of a strict
r-cube.

Lemma 8.5. Let G ∈ Λ be such that rk0(K/G) = r. Then G is
bounded.
Proof. Wma G 6= (0). Let H be a heavy subgroup of K, and choose
a strict r-cube in [G,K] ⊆ Λ, with base J. Let K ≺ K be small and
chosen large enough so G and J are type-definable over K, K ⊇ K0
and IK ⊆ H.

Then IK · J ⊆ IK (dpI, 10.4.3), so that IK · G ⊆ IK · J ⊆ IK ⊆ H. As
IK 6= (0) (dpI, 6.9.1), if 0 6= ε ∈ IK, then ε ·G ⊆ IK ·G ⊆ H, as desired.
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Lemma 8.7. Let {Ux} be a 0-definable family of basic neighbour-

hoods. Then there is a 0-definable family of basic neighbourhoods

{Vx} satisfying

∃b∀c∃d Vb · Vd ⊆ Uc.

Proof. Recall that bases of neighbourhoods can be given by {X−∞X |
X heavy}, {X 	X | X heavy} or {X −X | X heavy} (5.10).

Fix a (non-zero) pedestal J; choose K1 � K0 such that J is type-

defined over K1, and let K2 � K1 be |K1|+-saturated. Then:

IK1
⊆ J, IK2

· J ⊆ IK2

whence for any c ∈ dcl(K2), IK2
· IK1

⊆ IK2
· J ⊆ IK2

⊆ Uc (the last

equality is almost by definition of IK2
).
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So there are a K1-definable neighbourhood W1 and a K2-definable

neighbourhood W2 such that W1 ·W2 ⊆ Uc. This is by compactness,

as each JKi is an intersection of Ki-definable basic neighbouhoods.

Let θ(x, z) define Uz, and consider the type

q(z) = {∀y ρ(y)→ (∃x ∈ (ϕ(K) · ψ(K, y)) \ θ(K, z))},

where ϕ(x) ranges over all L(K1)-formulas defining basic neighbour-

hoods, ψ(x, y) over all L-formulas, and ρ(y) is the formula expressing

that ψ(K, y) is a basic neighbourhood. By the above, this type is not

realized in K2, hence is inconsistent. So, there are K1-definable basic

neighbourhoods X1, . . . , Xm, and a 0-definable family {Vy} of basic

neighbourhoods such that for all c ∈ dcl(K2), there is i ∈ {1, . . . ,m}
and d ∈ dcl(K2) such that Xi · Vd ⊂ Uc. Setting X =

⋂
iXi, wma

Xi = X.
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So we have

∀c ∈ dcl(K2)∃d ∈ dcl(K2) X · Vd ⊆ Uc.

??? Enlarging Vd, wma X = Vb for some b ∈ dcl(K1) ⊆ dcl(K2). The

property then passes to K: ∀c∃d Vb · Vd ⊆ Uc.
I don’t understand what he is saying. I would do the following: let X

be defined by Ya, where Yy is a 0-definable family of basic neighbour-

hoods. Consider the 0-definable family (Y ∩ V )e,d.

??? I don’t see the point of writing dcl(K2) if K2 � K.
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Lemma 8.8. If K1 � K2 � K, then IK1
· IK2

⊆ IK2
.

Proof. In 8.7, we proved the conclusion under certain hypotheses

on K1 - which we don’t have here. Let U be a K2-definable basic

neighbourhood, U = Uc, where {Ux} is a 0-definable family of basic

neighbourhoods and c ∈ dcl(K2). Let Vx be a 0-definable family of

basic neighbourhoods as in 8.7, and b such that ∀x∃y Vb · Vy ⊆ Ux. As

K1 � K, we may take b ∈ K1, and then there is d such that Vb ·Vd ⊆ Uc.
Moreover we can take d ∈ dcl(K2) because b, c ∈ dcl(K2) and K2 � K.

So we get

IK1
· IK2

⊆ Vb · Vd ⊆ Ub = U,

i.e., IK1
· IK2

⊆ IK2
because U was an arbitrary K2-definable basic

neighbourhood.
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Corollary 8.9. For any small submodel K � K, the group IK is

bounded.

Proof. Take a non-zero pedestal J, which is type-definable over

some small K1 � K containing K and K0. Thus by dpI(10.4), we

have IK1
⊆ J, and because J is bounded (8.6), we get IK1

bounded.

If 0 6= ε ∈ IK1
, then ε·IK ⊆ IK1

·IK ⊆ IK1
, and therefore IK is bounded.
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Proposition 8.12. If G1 and G2 are two bounded type-definable

subgroups of (K,+), then G1 +G2 is also bounded.

Proof. Fix non-zero pedestal J, which is heavy. There are non-zero

a1, a2 ∈ K such that G1 ⊆ a1 · J and G2 ⊆ a2 · J; then a1 · J and a2 · J
are pedestals. Let K be a small model containing K0 and over which

a1 · J and a2 · J are type-defined. Then by dpI(10.4), IK · (a1 · J) ⊆ IK
and IK · (a2 · J) ⊆ IK. If 0 6= ε ∈ IK, then we get ε · G1 ⊆ IK and

ε ·G2 ⊆ IK, so that G1 +G2 ⊆ ε−1 · IK, and G1 +G2 is bounded.
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Proposition 10.4 of dpI.

(1) Λ has a pedestal.

(2) Let J ∈ Λ be a pedestal, and A1, . . . , Ar be the atoms of a strict

r-cube with basis J. If G ∈ Λ is such that G∩Ai 6⊆ J for all i, then

G ⊇ J.

(3) If J is a pedestal and K is a small model containing K0, then

IK · J ⊆ IK ⊆ J.

(5) If J is a pedestal, and α 6= 0, then α · J is a pedestal.
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