Dp-finite fields II, section 8, after Will Johnson

Zoé Chatzidakis CNRS (DMA) - ENS

18 March 2021 MSRI - Working group \mathbbm{K} an unstable dp-finite field of dp-rank n.

Definition 8.2. Let $G \leq (\mathbb{K}, +)$ be type-definable.

- (1) G is *heavy* if every definable set containing G is heavy.
- (2) G is *bounded* if for every heavy subgroup $G' \leq \mathbb{K}$, there is a non-zero $a \in \mathbb{K}$ such that $G \leq a \cdot G'$.
- (3) A small $K_0 \leq \mathbb{K}$ is *magic* if whenever $G \leq (\mathbb{K}^m, +)$ is type-definable, then $K_0 \cdot G \subset G$ implies $G = G^{00}$. In other words, all type-definable K_0 -vector spaces are connected. That magic fields exist comes from dpI, 8.4 and 8.7.

The aim of this talk is to show

Corollary 8.9. If K is a small submodel, then I_K is bounded.

8.1 – Recall the following : let $G \leq \mathbb{K}$ be type-definable. TFAE:

- (1) dp-rk(G) = n.
- (2) Every definable set $D \supseteq G$ has rank n.
- (3) Every definable set $D \supseteq G$ is heavy.
- (4) G contains I_K for some small $K \preceq \mathbb{K}$.

Recall also the notion of *strict r*-*cube* and *reduced rank*. Given a modular lattice M, a strict *r*-cube is an injective homomorphism from the power set of r to M, with unbounded relative indices. The *base* of the cube is the image of \emptyset . The reduced rank $\operatorname{rk}_0(M)$ is the maximum r such that a strict r-cube exists. If $a \ge b$, then $\operatorname{rk}_0(a/b)$ is the reduced rank of the sublattice [b, a]. If M is a sublattice of subgroups of $(\mathbb{K}, +)$, then we know that $\operatorname{rk}_0(M) \le n$.

We fix a magic subfield K_0 , and let $\Lambda = \Lambda_{K_0}$ be the lattice of typedefinable K_0 -linear subspaces of \mathbb{K}^1 . So, if $M \in \Lambda$, then $M = M^{00}$, by magic. Let $r = \operatorname{rk}_0(\Lambda)$. A K_0 -pedestal (or simply pedestal since K_0 is fixed) is an element of $\Lambda^+ := \Lambda \setminus \{0\}$ which is the basis of a strict *r*-cube.

Lemma 8.5. Let $G \in \Lambda$ be such that $rk_0(\mathbb{K}/G) = r$. Then G is bounded.

Proof. Wma $G \neq (0)$. Let H be a heavy subgroup of \mathbb{K} , and choose a strict r-cube in $[G, \mathbb{K}] \subseteq \Lambda$, with base J. Let $K \prec \mathbb{K}$ be small and chosen large enough so G and J are type-definable over $K, K \supseteq K_0$ and $I_K \subseteq H$.

Then $I_K \cdot J \subseteq I_K$ (dpI, 10.4.3), so that $I_K \cdot G \subseteq I_K \cdot J \subseteq I_K \subseteq H$. As $I_K \neq$ (0) (dpI, 6.9.1), if $0 \neq \varepsilon \in I_K$, then $\varepsilon \cdot G \subseteq I_K \cdot G \subseteq H$, as desired.

Lemma 8.7. Let $\{U_x\}$ be a 0-definable family of basic neighbourhoods. Then there is a 0-definable family of basic neighbourhoods $\{V_x\}$ satisfying

$$\exists b \,\forall c \,\exists d \, V_b \cdot V_d \subseteq U_c.$$

Proof. Recall that bases of neighbourhoods can be given by $\{X - \infty X \mid X \text{ heavy}\}$, $\{X \ominus X \mid X \text{ heavy}\}$ or $\{X - X \mid X \text{ heavy}\}$ (5.10). Fix a (non-zero) pedestal J; choose $K_1 \succeq K_0$ such that J is typedefined over K_1 , and let $K_2 \succeq K_1$ be $|K_1|^+$ -saturated. Then:

$$I_{K_1} \subseteq J, \quad I_{K_2} \cdot J \subseteq I_{K_2}$$

whence for any $c \in dcl(K_2)$, $I_{K_2} \cdot I_{K_1} \subseteq I_{K_2} \cdot J \subseteq I_{K_2} \subseteq U_c$ (the last equality is almost by definition of I_{K_2}).

So there are a K_1 -definable neighbourhood W_1 and a K_2 -definable neighbourhood W_2 such that $W_1 \cdot W_2 \subseteq U_c$. This is by compactness, as each J_{K_i} is an intersection of K_i -definable basic neighbouhoods. Let $\theta(x, z)$ define U_z , and consider the type

 $q(z) = \{ \forall y \ \rho(y) \to (\exists x \in (\varphi(\mathbb{K}) \cdot \psi(\mathbb{K}, y)) \setminus \theta(\mathbb{K}, z)) \},\$

where $\varphi(x)$ ranges over all $\mathcal{L}(K_1)$ -formulas defining basic neighbourhoods, $\psi(x, y)$ over all \mathcal{L} -formulas, and $\rho(y)$ is the formula expressing that $\psi(\mathbb{K}, y)$ is a basic neighbourhood. By the above, this type is not realized in K_2 , hence is inconsistent. So, there are K_1 -definable basic neighbourhoods X_1, \ldots, X_m , and a 0-definable family $\{V_y\}$ of basic neighbourhoods such that for all $c \in dcl(K_2)$, there is $i \in \{1, \ldots, m\}$ and $d \in dcl(K_2)$ such that $X_i \cdot V_d \subset U_c$. Setting $X = \bigcap_i X_i$, wma $X_i = X$. So we have

 $\forall c \in \mathsf{dcl}(K_2) \exists d \in \mathsf{dcl}(K_2) \ X \cdot V_d \subseteq U_c.$

??? Enlarging V_d , wma $X = V_b$ for some $b \in dcl(K_1) \subseteq dcl(K_2)$. The property then passes to \mathbb{K} : $\forall c \exists d \ V_b \cdot V_d \subseteq U_c$.

I don't understand what he is saying. I would do the following: let X be defined by Y_a , where Y_y is a 0-definable family of basic neighbourhoods. Consider the 0-definable family $(Y \cap V)_{e,d}$.

??? I don't see the point of writing $dcl(K_2)$ if $K_2 \preceq \mathbb{K}$.

Lemma 8.8. If $K_1 \preceq K_2 \preceq \mathbb{K}$, then $I_{K_1} \cdot I_{K_2} \subseteq I_{K_2}$.

Proof. In 8.7, we proved the conclusion under certain hypotheses on K_1 - which we don't have here. Let U be a K_2 -definable basic neighbourhood, $U = U_c$, where $\{U_x\}$ is a 0-definable family of basic neighbourhoods and $c \in dcl(K_2)$. Let V_x be a 0-definable family of basic neighbourhoods as in 8.7, and b such that $\forall x \exists y V_b \cdot V_y \subseteq U_x$. As $K_1 \preceq \mathbb{K}$, we may take $b \in K_1$, and then there is d such that $V_b \cdot V_d \subseteq U_c$. Moreover we can take $d \in dcl(K_2)$ because $b, c \in dcl(K_2)$ and $K_2 \preceq \mathbb{K}$. So we get

$$I_{K_1} \cdot I_{K_2} \subseteq V_b \cdot V_d \subseteq U_b = U,$$

i.e., $I_{K_1} \cdot I_{K_2} \subseteq I_{K_2}$ because U was an arbitrary K_2 -definable basic neighbourhood.

Corollary 8.9. For any small submodel $K \leq \mathbb{K}$, the group I_K is bounded.

Proof. Take a non-zero pedestal J, which is type-definable over some small $K_1 \leq \mathbb{K}$ containing K and K_0 . Thus by dpI(10.4), we have $I_{K_1} \subseteq J$, and because J is bounded (8.6), we get I_{K_1} bounded. If $0 \neq \epsilon \in I_{K_1}$, then $\epsilon \cdot I_K \subseteq I_{K_1} \cdot I_K \subseteq I_{K_1}$, and therefore I_K is bounded. **Proposition 8.12**. If G_1 and G_2 are two bounded type-definable subgroups of $(\mathbb{K}, +)$, then $G_1 + G_2$ is also bounded.

Proof. Fix non-zero pedestal J, which is heavy. There are non-zero $a_1, a_2 \in \mathbb{K}$ such that $G_1 \subseteq a_1 \cdot J$ and $G_2 \subseteq a_2 \cdot J$; then $a_1 \cdot J$ and $a_2 \cdot J$ are pedestals. Let K be a small model containing K_0 and over which $a_1 \cdot J$ and $a_2 \cdot J$ are type-defined. Then by dpI(10.4), $I_K \cdot (a_1 \cdot J) \subseteq I_K$ and $I_K \cdot (a_2 \cdot J) \subseteq I_K$. If $0 \neq \varepsilon \in I_K$, then we get $\varepsilon \cdot G_1 \subseteq I_K$ and $\varepsilon \cdot G_2 \subseteq I_K$, so that $G_1 + G_2 \subseteq \varepsilon^{-1} \cdot I_K$, and $G_1 + G_2$ is bounded.

Proposition 10.4 of dpI.

- (1) Λ has a pedestal.
- (2) Let $J \in \Lambda$ be a pedestal, and A_1, \ldots, A_r be the atoms of a strict *r*-cube with basis *J*. If $G \in \Lambda$ is such that $G \cap A_i \not\subseteq J$ for all *i*, then $G \supseteq J$.
- (3) If J is a pedestal and K is a small model containing K_0 , then $I_K \cdot J \subseteq I_K \subseteq J$.
- (5) If J is a pedestal, and $\alpha \neq 0$, then $\alpha \cdot J$ is a pedestal.