Dp-finite fields reading seminar paper II, §5.2, §5.3, §5.4

Sylvy Anscombe

IMJ-PRG, U-Paris

sylvy.anscombe@imj-prg.fr

Disclaimer: all of this work is due to Will Johnson and can be found in his first two papers on Dp-finite fields, [J1] and [J2].

Theorem 5.9

- 1. Critical rank = dp-rank.
- **2.** A definable set $X \subseteq \mathbb{K}$ is heavy iff dp-rk(X) = dp-rk(\mathbb{K}).
- 3. The property of a definable set having full dp-rank is definable in families.

Theorem 5.9

- 1. Critical rank = dp-rank.
- **2.** A definable set $X \subseteq \mathbb{K}$ is heavy iff dp-rk(X) = dp-rk (\mathbb{K}) .
- 3. The property of a definable set having full dp-rank is definable in families.

Proof.

- 1. \longrightarrow Franzi's talk.
- **2.** We know that definable sets of full dp-rank are heavy. Conversely, if *X* is heavy, then *X* contains a critical set, which has critical dp-rank, i.e. dp-rk(\mathbb{K}).
- 3. We already know heaviness is definable in families.

Corollary 5.10

Let *K* be unstable with dp-rk(K) = n. Each of the following families is a neighbourhood basis of 0 in the canonical topology.

- 1. $X \infty X = \{\delta \in K \mid X \cap (X + \delta) \text{ is heavy}\}$, for definable X with dp-rk(X) = n.
- **2.** $X \ominus X = \{\delta \in K \mid X \cap (X + \delta) \text{ is infinite}\}$, for definable X with dp-rk(X) = n.
- 3. $X X = \{\delta \in K \mid X \cap (X + \delta) \text{ is nonempty}\}, \text{ for definable } X \text{ with dp-rk}(X) = n.$

Corollary 5.10

Let *K* be unstable with dp-rk(K) = n. Each of the following families is a neighbourhood basis of 0 in the canonical topology.

- 1. $X \infty X = \{\delta \in K \mid X \cap (X + \delta) \text{ is heavy}\}$, for definable X with dp-rk(X) = n.
- **2.** $X \ominus X = \{\delta \in K \mid X \cap (X + \delta) \text{ is infinite}\}$, for definable X with dp-rk(X) = n.
- 3. $X X = \{\delta \in K \mid X \cap (X + \delta) \text{ is nonempty}\}$, for definable X with dp-rk(X) = n.

Proof.

1. $\{X - \infty X \mid X \text{ definable, dp-rk}(X) = n\}$ is neighbourhood basis of 0 by definition.

Trivially $X - \infty X \subseteq X \ominus X \subseteq X - X$. Therefore both other families really are families of neighbourhoods of 0 in the canonical topology. For the cofinality:

2. We use the following claim.

Claim

For any heavy set *X* there is a heavy set *Y* such that

$$Y \ominus Y \subseteq Y - Y \subset X -_{\infty} X$$

Claim

For any heavy set *X* there is a heavy set *Y* such that

$$Y \ominus Y \subseteq Y - Y \subset X -_{\infty} X$$

Proof.

First note $I_K - I_K = I_K \subseteq X - \infty X$. Therefore the 2-type

$$x \in I_K, y \in I_K, x - y \in X - \infty X$$

is inconsistent. There exists $Y \supseteq I_K$ which is *K*-definable such that

$$Y-Y\subseteq X-_{\infty}X.$$

Since *Y* contains a *K*-definable basic neighbourhood, it is heavy.

2. Dp-finite II, §5.3: additive vs multiplicative infinitesimals

Proposition 5.12

Let K be a small model defining a critical coordinate configuration, and let I_K be the group of K-infinitesimals. Then the group U_K of multiplicative K-infinitesimals is exactly $1 + I_K$.

Proposition 5.12

Let *K* be a small model defining a critical coordinate configuration, and let I_K be the group of *K*-infinitesimals. Then the group U_K of multiplicative *K*-infinitesimals is exactly $1 + I_K$.

Proof.

- $U_K \subseteq 1 + I_K$ by Theorem 3.12.3.
- dp-rk($I_{\mathcal{K}}$) = dp-rk(\mathbb{K}) = ρ by Lemma 5.8 and Proposition 5.7.

Let $\varepsilon_0 \in I_K$ and *K*-definable heavy set $X \subseteq \mathbb{K}$. We must show that $X \cap (1 + \varepsilon)^{-1}X$ is heavy.

- Choose $a \in K$ such that for any $\varepsilon \in I_K$, dp-rk $(\varepsilon/K) = \rho = a + \varepsilon \in X$, by Proposition 5.6.

Claim

If ε_1 is a *K*-infinitesimal with dp-rk $(\varepsilon_1/K\varepsilon_0) = \rho$, then $(a + \varepsilon_1) \in X \cap (1 + \varepsilon_0)^{-1}X$.

Proof.

Claim

If ε_1 is a *K*-infinitesimal with dp-rk $(\varepsilon_1/K\varepsilon_0) = \rho$, then $(a + \varepsilon_1) \in X \cap (1 + \varepsilon_0)^{-1}X$.

Proof.

Claim

If ε_1 is a *K*-infinitesimal with dp-rk $(\varepsilon_1/K\varepsilon_0) = \rho$, then $(a + \varepsilon_1) \in X \cap (1 + \varepsilon_0)^{-1}X$.

Proof of claim.

 $-\varepsilon_2 := a\varepsilon_0 + \varepsilon_1 + \varepsilon_1\varepsilon_0$ is *K*-infinitesimal by [J1, Remark 6.9.3, Theorem 6.17, Corollary 10.5].

$$-\varepsilon_2 = (a + \varepsilon_1)(1 + \varepsilon_0) - a$$
, so ε_1 and ε_2 inter-definable over $K\varepsilon_0$.

$$- \mathsf{dp-rk}(\varepsilon_2/K\varepsilon_0) = \mathsf{dp-rk}(\varepsilon_1/K\varepsilon_0) = \rho.$$

$$- \operatorname{dp-rk}(\varepsilon_2/K) = \operatorname{dp-rk}(\varepsilon_1/K) = \rho_2$$

$$-a+\varepsilon_1\in X$$

$$-(a+\varepsilon_1)(1+\varepsilon_0)=a+\varepsilon_2\in X.$$

$$-a+\varepsilon_1\in X\cap (1+\varepsilon_0)^{-1}X.$$

Proof cont.

- Let $S := \{ \varepsilon \in I_K \mid a + \varepsilon \notin X \cap (1 + \varepsilon_0^{-1}X) \}.$
- S type-definable over $K \varepsilon_0$
- If dp-rk(S) = dp-rk(I_K) = ρ then there exists $\varepsilon \in S$ with dp-rk($\varepsilon/K\varepsilon_0$) = ρ . Contradiction to claim.
- $\text{ So dp-rk}(S) < \mathsf{dp-rk}(I_{\mathcal{K}}) = \rho, \text{ so dp-rk}(I_{\mathcal{K}} \setminus S) = \rho.$

$$- I_K \setminus S \longrightarrow X \cap (1 + \varepsilon_0)^{-1} X \text{ via } \varepsilon \longmapsto a + \varepsilon.$$

- So dp-rk(X ∩ (1 + ε)⁻¹X) ≥ ρ, so X ∩ (1 + ε₀)⁻¹X is heavy.

...working over arbitrary small model

Theroem 5.14

Let $K \preceq \mathbb{K}$ small model. Then $1 + I_K = U_K$.

Theroem 5.14

Let $K \preceq \mathbb{K}$ small model. Then $1 + I_K = U_K$.

Proof.

By Proposition 5.12, we may assume there is $K \leq K'$ with $1 + I_{K'} = U_{K'}$. Again, by Theorem 3.12.3, we have $1 + I_K \supseteq U_K$. Let X be K-definable heavy set. Consider the K-definable set

$$Y = \{ \mu \in \mathbb{K} \mid X \cap (\mu X) \text{ is heavy} \}.$$

Suffices to show $1 + I_K \subseteq Y$. In particular Y is K'-definable, so $1 + I_{K'} \subseteq U_{K'} \subseteq Y$. There exists a K'-definable heavy $N \supseteq I_{K'}$ such that $1 + N \subseteq Y$. By [J1, Proposition 6.5], we may assume N is of the form $Z - \infty Z$, a basic neighbourhood. Using definability of heaviness in families (this is 'pulling parameters down' trick again), there is K-definable heavy Z' such that $1 + I_K \subseteq 1 + (Z' - \infty Z') \subseteq Y$.

Corollary 5.15

Canonical topology is a field topology.

Proposition 5.16

Let K small model. Then

$$U_{\mathcal{K}} = \bigcap \{ X \cdot X^{-1} \mid X \subseteq \mathbb{K}^{ imes} ext{ is } \mathcal{K} ext{-definable heavy} \}.$$

Proposition 5.16

Let K small model. Then

$$U_{K} = \bigcap \{ X \cdot X^{-1} \mid X \subseteq \mathbb{K}^{\times} \text{ is } K \text{-definable heavy} \}.$$

Proof.

By Lemma 5.8 and Theorem 5.14, dp-rk(U_K) = dp-rk(\mathbb{K}). Denote

 $X \div X := \{ \mu \in \mathbb{K}^{\times} \mid X \cap (\mu X) \text{ non-empty} \}$ $X \div_{\infty} X := \{ \mu \in \mathbb{K}^{\times} \mid X \cap (\mu X) \text{ heavy} \}.$

Note $X \div_{\infty} X \subseteq X \div X = X \cdot X^{-1}$. Note also $X \div_{\infty} X$ is definable and

$$J_{K} = \bigcap \{X \div_{\infty} X \mid X \subseteq \mathbb{K}^{\times} \text{ heavy and } K\text{-definable} \}$$
by Thm 3.12. (proof)
$$\subseteq \bigcap \{X \div X \mid X \subseteq \mathbb{K}^{\times} \text{ heavy and } K\text{-definable} \}$$
$$\subseteq \bigcap \{X \div X \mid U_{K} \subseteq X \subseteq \mathbb{K}^{\times}, \text{ and } X \text{ is } K\text{-definable} \}$$
$$= U_{K}$$
by Thm 3.12.4 (proof).

3. Dp-finite II, §5.4: algebraic properties

We're collecting facts. Let \mathbb{K} saturated unstable dp-finite field. Let $K \preceq \mathbb{K}$ small model.

Proposition 5.17

- **1.** I_K is a subgroup of \mathbb{K} .
- **2.** $I_K = I_K \cdot I_K \quad (= \{\sum_{i < n} x_i y_i \mid x_i, y_i \in I_K\}).$
- **3.** $1 + I_K$ is a subgroup of \mathbb{K}^{\times} .
- 4. For every $n \ge 1$

$$1 + I_K \longrightarrow 1 + I_K$$
$$x \longmapsto x^n$$

is surjective.

5. In char(K) = p, the Artin–Schreier map

$$I_K \longrightarrow I_K$$

 $x \longmapsto x^p -$

х

is surjective.

Sylvy Anscombe

Proof.

- **1.** [**J**1, Theorem 6.17]
- **2.** Inclusion $I_K \cdot I_K \subseteq I_K$ by [J1, Corollary 10.5].

$$J - J = \bigcap \{X - X \mid X \supseteq J, X \text{ is } K \text{-definable} \}$$
$$\supseteq \bigcap \{X - X \mid X \supseteq J, X \text{ is } K \text{-definable, full rank} \}$$
$$\supseteq \bigcap \{X - \infty X \mid X \supseteq J, X \text{ is } K \text{-definable} \}$$
$$= I_{K}.$$

Thus
$$I_{\mathcal{K}} = \{xy - uv \mid u, v, x, y \in I_{\mathcal{K}}\} = I_{\mathcal{K}} \cdot I_{\mathcal{K}}.$$

- 3. Theorems 2.12.1 and 5.14.
- **4.** $\mathbb{K}^{\times n}$ has full dp-rank, thus $1 + I_K \subseteq \mathbb{K}^{\times n}$ by Theorems 3.12.4 and 5.9.2.
- 5. Use [J1, Corollary 6.19]

Will Johnson.

Dp-finite fields I: infinitesimals and positive characteristic.

Preprint, 2020. (arXiv:1903.11322 [math.LO])

Will Johnson.

Dp-finite fields II: the canonical topology and its relation to henselianity.

Preprint, 2019. (arXiv:1910.05932 [math.LO])