Linear PDE with Constant Coefficients

Bernd Sturmfels MPI Leipzig and UC Berkeley

Prologue

A polynomial is exactly the same thing as a homogeneous linear partial differential equation (PDE) with constant coefficients.

Polynomials in one variable are ODE:

Exercise: Find all functions $\phi(z)$ that satisfy the equation

$$\phi^{\prime\prime\prime\prime}(z) - 6\phi^{\prime\prime\prime}(z) + 10\phi^{\prime\prime}(z) - 6\phi^{\prime}(z) + 9\phi(z) = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Prologue

A polynomial is exactly the same thing as a homogeneous linear partial differential equation (PDE) with constant coefficients.

Polynomials in one variable are ODE:

Exercise: Find all functions $\phi(z)$ that satisfy the equation

$$\phi^{\prime\prime\prime\prime}(z) - 6\phi^{\prime\prime\prime}(z) + 10\phi^{\prime\prime}(z) - 6\phi^{\prime}(z) + 9\phi(z) = 0.$$

Solution: ODE in operator form is the characteristic polynomial:

$$(\partial^4 - 6\partial^3 + 10\partial^2 - 6\partial + 9) \bullet \phi(z) = 0$$

$$x^4 - 6x^3 + 10x^2 - 6x + 9 = (x - 3)^2 \cdot (x^2 + 1)$$
Basis of solutions: $\{e^{3z}, z \cdot e^{3z}, e^{iz}, e^{-iz}\}$
Basis of solutions: $\{e^{3z}, z \cdot e^{3z}, \sin(z), \cos(z)\}$
Geometry: The ODE represents an affine scheme of length 4.

Undergraduates study the one-dimensional wave equation

$$\phi_{tt}(z,t) = c^2 \phi_{zz}(z,t), \quad \text{where } c \in \mathbb{R} \setminus \{0\}.$$

for functions $\phi : \mathbb{R}^2 \to \mathbb{R}$. The corresponding polynomial is

$$x_1^2 - c^2 x_2^2 = (x_1 - c x_2)(x_1 + c x_2).$$

Undergraduates study the one-dimensional wave equation

$$\phi_{tt}(z,t) = c^2 \phi_{zz}(z,t), \quad \text{where } c \in \mathbb{R} \setminus \{0\}.$$

for functions $\phi : \mathbb{R}^2 \to \mathbb{R}$. The corresponding polynomial is

$$x_1^2 - c^2 x_2^2 = (x_1 - c x_2)(x_1 + c x_2).$$

In 1747, Jean Le Rond D'Alembert found that the general solution is the superposition of traveling waves:

$$\phi(z,t) = f(z+ct) + g(z-ct),$$

where f and g are twice differentiable functions in one variable. **Question**: How to deal with the special parameter value c = 0 ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Undergraduates study the one-dimensional wave equation

$$\phi_{tt}(z,t) = c^2 \phi_{zz}(z,t), \quad \text{where } c \in \mathbb{R} \setminus \{0\}.$$

for functions $\phi : \mathbb{R}^2 \to \mathbb{R}$. The corresponding polynomial is

$$x_1^2 - c^2 x_2^2 = (x_1 - c x_2)(x_1 + c x_2).$$

In 1747, Jean Le Rond D'Alembert found that the general solution is the superposition of traveling waves:

$$\phi(z,t) = f(z+ct) + g(z-ct),$$

where f and g are twice differentiable functions in one variable. **Question**: How to deal with the special parameter value c = 0? **A**: Replace g(z - ct) with $\frac{1}{2c}(h(z+ct) - h(z-ct))$ and take limit:

$$\phi(z,t) = f(z) + t \cdot h'(z).$$

In his 1938 article on foundations of algebraic geometry, Gröbner introduced differential operators to characterize **membership in a polynomial ideal**. He derived this for zero-dimensional ideals (Macaulay's inverse systems), and he envisioned it for all ideals. Gröbner wanted algorithmic solutions. *We provide them.*

Wolfgang Gröbner: Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten, *Monatshefte für Mathematik und Physik*, 1939

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In his 1938 article on foundations of algebraic geometry, Gröbner introduced differential operators to characterize **membership in a polynomial ideal**. He derived this for zero-dimensional ideals (Macaulay's inverse systems), and he envisioned it for all ideals. Gröbner wanted algorithmic solutions. *We provide them.*

Wolfgang Gröbner: Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten, *Monatshefte für Mathematik und Physik*, 1939

In the 1960s, Ehrenpreis and Palamodov studied solutions to linear partial differential equations (PDE) with constant coefficients. A main step was the characterization of membership in a primary ideal by *Noetherian operators*.

Their celebrated Fundamental Principle appears in the books

Leon Ehrenpreis: Fourier Analysis in Several Complex Variables, 1970 Victor Palamodov: Linear Differential Operators w Constant Coeffs, 1970

Section 3.3

Wolfgang Gröbner

Theorem 3.27. Let I be a zero-dimensional ideal in $\mathbb{C}[x_1,\ldots,x_n]$, here interpreted as a system of linear PDEs. The space of holomorphic solutions has dimension equal to the degree of I. There exist nonzero polynomial solutions if and only if the maximal ideal $M = \langle x_1, \ldots, x_n \rangle$ is an associated prime of I. In that case, the polynomial solutions are precisely the solutions to the system of PDEs given by the M-primary component $(I:(I:M^{\infty}))$. ・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Quiz on Power Sums

Given three distinct integers a, b, c > 0, describe the space of all functions $\phi = \phi(z_1, z_2, z_3)$ that satisfy the three PDE

$$\frac{\partial^{a}\phi}{\partial z_{1}^{a}} + \frac{\partial^{a}\phi}{\partial z_{2}^{a}} + \frac{\partial^{a}\phi}{\partial z_{3}^{a}} = \frac{\partial^{b}\phi}{\partial z_{1}^{b}} + \frac{\partial^{b}\phi}{\partial z_{2}^{b}} + \frac{\partial^{b}\phi}{\partial z_{3}^{b}} = \frac{\partial^{c}\phi}{\partial z_{1}^{c}} + \frac{\partial^{c}\phi}{\partial z_{2}^{c}} + \frac{\partial^{c}\phi}{\partial z_{3}^{c}} = 0.$$
$$\langle \partial_{1}^{a} + \partial_{2}^{a} + \partial_{3}^{a}, \partial_{1}^{b} + \partial_{2}^{b} + \partial_{3}^{b}, \partial_{1}^{c} + \partial_{2}^{c} + \partial_{3}^{c} \rangle$$

Example: Consider (a, b, c) = (1, 2, 3). The solution space is six-dimensional. It consists of a cubic and all its derivatives:

$$\phi = (z_1 - z_2)(z_1 - z_3)(z_2 - z_3).$$

The ideal $I = \langle x_1 + x_2 + x_3, x_1^2 + x_2^2 + x_3^2, x_1^3 + x_2^3 + x_3^3 \rangle$ is Gorenstein.

Example: Consider (a, b, c) = (2, 5, 8). What happens now?

H. Melánová, BSt, R. Winter: Recovery from power sums, 2106.13981

Prime Ideals

Let *P* be a prime ideal in $\mathbb{C}[x_1, \ldots, x_n]$ and V(P) its variety in \mathbb{C}^n . A polynomial *f* is in the ideal *P* if and only if *f* vanishes on V(P). Setting $x_i = \partial_{z_i}$, view *P* as PDE for an unknown function $\phi(z_1, \ldots, z_n)$.

Remark

For $u \in \mathbb{C}^n$, the exponential function

$$z \mapsto \exp(u \cdot z) = \exp(u_1 z_1 + \cdots + u_n z_n)$$

satisfies the PDE given by P if and only if $u \in V(P)$.

Prime Ideals

Let *P* be a prime ideal in $\mathbb{C}[x_1, \ldots, x_n]$ and V(P) its variety in \mathbb{C}^n . A polynomial *f* is in the ideal *P* if and only if *f* vanishes on V(P). Setting $x_i = \partial_{z_i}$, view *P* as PDE for an unknown function $\phi(z_1, \ldots, z_n)$.

Remark

For $u \in \mathbb{C}^n$, the exponential function

$$z \mapsto \exp(u \cdot z) = \exp(u_1 z_1 + \cdots + u_n z_n)$$

satisfies the PDE given by P if and only if $u \in V(P)$.

Proposition

Each solution to P admits an integral representation

$$\phi(z) = \int_{V(P)} \exp(x \cdot z) d\mu(x),$$

where μ is a measure on the irreducible variety V(P).

Primary Ideals

Set $\mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_n]$. An ideal Q is *primary* if it has only one associated prime P. The variety V(Q) = V(P) in \mathbb{C}^n is irreducible.

Theorem (Ehrenpreis-Palamodov)

Fix a prime ideal P in $\mathbb{C}[x]$. For any P-primary ideal Q, there exist polynomials B_1, \ldots, B_m in 2n variables such that the function

$$\phi(z) = \sum_{i=1}^{m} \int_{V(P)} B_i(x, z) \exp(x \cdot z) d\mu_i(x)$$

is a solution to the PDE, for any measures μ_1, \ldots, μ_m on V(P).

Primary Ideals

Set $\mathbb{C}[x] = \mathbb{C}[x_1, \dots, x_n]$. An ideal Q is *primary* if it has only one associated prime P. The variety V(Q) = V(P) in \mathbb{C}^n is irreducible.

Theorem (Ehrenpreis-Palamodov)

Fix a prime ideal P in $\mathbb{C}[x]$. For any P-primary ideal Q, there exist polynomials B_1, \ldots, B_m in 2n variables such that the function

$$\phi(z) = \sum_{i=1}^{m} \int_{V(P)} B_i(x, z) \exp(x \cdot z) d\mu_i(x)$$

is a solution to the PDE, for any measures μ_1, \ldots, μ_m on V(P). Conversely, every solution $\phi(z)$ of the PDE given by Q admits such an integral representation. The minimal number is

$$m = \operatorname{length}(R_P/QR_P) = \frac{\operatorname{degree}(Q)}{\operatorname{degree}(P)}$$

The polynomials $B_1(x, z), \ldots, B_m(x, z)$ are Noetherian multipliers. They depend only on the ideal Q and encode all solutions $\phi(z)$.

Palamodov's Example

Let n = 3, $P = \langle x_1, x_2 \rangle$. Then $Q = \langle x_1^2, x_2^2, x_1 - x_2 x_3 \rangle$ is *P*-primary of multiplicity m = 2. We seek functions $\phi(z_1, z_2, z_3)$ that satisfy

$$\frac{\partial^2 \phi}{\partial z_1^2} = \frac{\partial^2 \phi}{\partial z_1^2} = \frac{\partial \phi}{\partial z_1} - \frac{\partial^2 \phi}{\partial z_2 \partial z_3} = 0.$$

Writing ξ, ψ for functions in one variable, the general solution is

$$\phi(z) = \xi(z_3) + z_2 \psi(z_3) + z_1 \psi'(z_3),$$

Palamodov's Example

Let n = 3, $P = \langle x_1, x_2 \rangle$. Then $Q = \langle x_1^2, x_2^2, x_1 - x_2 x_3 \rangle$ is *P*-primary of multiplicity m = 2. We seek functions $\phi(z_1, z_2, z_3)$ that satisfy

$$\frac{\partial^2 \phi}{\partial z_1^2} = \frac{\partial^2 \phi}{\partial z_1^2} = \frac{\partial \phi}{\partial z_1} - \frac{\partial^2 \phi}{\partial z_2 \partial z_3} = 0.$$

Writing ξ, ψ for functions in one variable, the general solution is

$$\phi(z) = \xi(z_3) + z_2 \psi(z_3) + z_1 \psi'(z_3),$$

The Noetherian multipliers of Q are $B_1 = 1$ and $B_2 = z_2 + x_3 z_1$. Their integrals in the Ehrenpreis-Palamodov Theorem are

$$\phi_1(z) = \int 1 \cdot \exp(0z_1 + 0z_2 + x_3z_3) d\mu_1(x) = \xi(z_3)$$
 and

$$\begin{aligned} \phi_2(z) &= \int (z_2 + z_1 x_3) \cdot \exp(0z_1 + 0z_2 + x_3 z_3) \, d\mu_2(x) \\ &= z_2 \int \exp(0z_1 + 0z_2 + x_3 z_3) \, d\mu_2(x) + z_1 \int x_3 \exp(0z_1 + 0z_2 + x_3 z_3) \, d\mu_2(x) \\ &= z_2 \, \psi(z_3) + z_1 \, \psi'(z_3). \end{aligned}$$

Noetherian Operators

The Noetherian multipliers $B_i(x, z)$ of a primary ideal Q furnish a finite representation of the (infinite-dimensional) vector space of all solutions to the PDE. We now recycle them for ideal membership.

Switching the roles of x and z, we set $z_1 = \partial_{x_1}, \ldots, z_n = \partial_{x_n}$ in $B_i(x, z)$, with z-variables to the right of the x-variables in each monomial. This gives the *Noetherian operators* $B_i(x, \partial_x)$. These are elements in the Weyl algebra. They act on polynomials in $\mathbb{C}[x]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Noetherian Operators

The Noetherian multipliers $B_i(x, z)$ of a primary ideal Q furnish a finite representation of the (infinite-dimensional) vector space of all solutions to the PDE. We now recycle them for ideal membership.

Switching the roles of x and z, we set $z_1 = \partial_{x_1}, \ldots, z_n = \partial_{x_n}$ in $B_i(x, z)$, with z-variables to the right of the x-variables in each monomial. This gives the *Noetherian operators* $B_i(x, \partial_x)$. These are elements in the Weyl algebra. They act on polynomials in $\mathbb{C}[x]$.

Proposition

Noetherian operators characterize ideal membership. Namely, a polynomial f(x) lies in the primary ideal Q if and only if

$$B_i(x, \partial_x) \bullet f(x)$$
 lies in P for $i = 1, ..., m$.

Example

A polynomial f lies in the primary ideal $Q = \langle x_1^2, x_2^2, x_1 - x_2 x_3 \rangle$ if and only if both f and $(x_3 \partial_{x_1} + \partial_{x_2}) \bullet f$ vanish on the x₃-axis V(P).

Towards an Algorithm

Input: Generators of a (primary) ideal Q in the polynomial ring $\mathbb{C}[x]$. **Output:** Noetherian multipliers (resp. Noetherial operators) for Q.

- B. Mourrain: Isolated points, duality&residues, J. Pure Appl.Algebra,1997
- U. Oberst: The construction of Noetherian operators, J. Algebra, 1999
- S. Shankar: The Nullstellensatz for systems of PDE, *Advances in Applied Math*, 1999
- B. Sturmfels: Solving Systems of Polynomial Equations, AMS, 2002

A. Damiano, I. Sabadini, D. Struppa: Computational methods for the construction of a class of Noetherian operators, *Experimental Math*, 2007 J. Chen, M. Härkönen, R. Krone and A. Leykin: Noetherian operators and primary decomposition, 2006.13881

J. Chen, Y. Cid-Ruiz, M. Härkönen, R. Krone and A. Leykin: Noetherian operators in Macaulay2, 2101.01002

R. Ait El Manssour, M. Härkönen and BSt.: Linear PDE with constant coefficients, Glasgow Math J., 2022

Current Perspective

Fix a prime *P* of codimension *c* in $R = \mathbb{C}[x_1, \ldots, x_n]$, in Noether position. Write $\mathbb{F} = \mathbb{C}(u_1, \ldots, u_n)$ for the field of fractions of R/P.

Theorem

The following sets are in bijective correspondences:

- (a) P-primary ideals Q in R of multiplicity m,
- (b) points in the punctual Hilbert scheme $\operatorname{Hilb}^m(\mathbb{F}[[y_1, \ldots, y_c]])$,
- (c) *m*-dimensional \mathbb{F} -subspaces of $\mathbb{F}[z_1, \ldots, z_c]$ that are closed under differentiation, Inverse systems
- (d) *m*-dimensional \mathbb{F} -subspaces of the Weyl-Noether module $\mathbb{F} \otimes_R D_{n,c}$ that are *R*-bi-modules, where $D_{n,c} = R\langle \partial_{x_1}, \ldots, \partial_{x_c} \rangle$.

(c) \rightarrow Noetherian multipliers (d) \rightarrow Noetherian operators

Yairon Cid-Ruiz, Roser Homs Pons and BSt: Primary ideals and their differential equations, *Foundat. Computational Math*, 2021

Solving Gröbner's Problem

If $I = Q_1 \cap \cdots \cap Q_k$ is a primary decomposition then we may simply

- aggregate Noetherian operators to get a membership test for I
- aggregate Noetherian multipliers to solve the PDE given by I

Works fine if *I* has no embedded primes. Can do better in general.

Example (Fat point on a double line)

$$I = \langle x_1^2, x_2^2, x_1 x_3 - x_2 x_3^2 \rangle = \langle x_1^2, x_2^2, x_1 - x_2 x_3 \rangle \cap \langle x_1^2, x_2^2, x_3 \rangle$$

The naive method gives six Noetherian multipliers, namely two for the line and four for the point. But we need only four of them:

prime	$\langle x_1, x_2 \rangle$	$\langle x_1, x_2, x_3 \rangle$
multipliers	$1, z_2 + x_3 z_1$	$z_1 , z_1 z_2$
operators	$1, \partial_{x_2} + x_3 \partial_{x_1}$	$\partial_{x_1}, \partial_{x_1}\partial_{x_2}$

Commutative Algebra

Fix $R = \mathbb{C}[x]$. Consider **any** ideal $I \subset R$. Associated primes P_1, \ldots, P_k . A *differential primary decomposition* of I is a list $(P_1, A_1), \ldots, (P_k, A_k)$ where A_i is a finite subset of $D_{n,n}$ with

$$I \;=\; ig\{f\in R\mid \deltaullet f\in P_i ext{ for all }\delta\in \mathcal{A}_i ext{ and }i=1,\ldots,kig\}.$$

Its arithmetic multiplicity is $\operatorname{amult}(I) = \sum_{j=1}^{k} \operatorname{mult}(P_j)$, where

$$\operatorname{mult}_{I}(P) = \frac{\operatorname{degree}(\operatorname{saturate}(I, P)/I)}{\operatorname{degree}(P)}$$

is the length of the largest ideal of finite length in R_P/IR_P .

Commutative Algebra

Fix $R = \mathbb{C}[x]$. Consider **any** ideal $I \subset R$. Associated primes P_1, \ldots, P_k . A differential primary decomposition of I is a list $(P_1, A_1), \ldots, (P_k, A_k)$ where A_i is a finite subset of $D_{n,n}$ with

$$I \;=\; ig\{f\in R \mid \delta ullet f\in P_i ext{ for all } \delta\in \mathcal{A}_i ext{ and } i=1,\ldots,kig\}.$$

Its arithmetic multiplicity is $\operatorname{amult}(I) = \sum_{j=1}^{k} \operatorname{mult}(P_j)$, where

$$\operatorname{mult}_{I}(P) = \frac{\operatorname{degree}(\operatorname{saturate}(I, P)/I)}{\operatorname{degree}(P)}$$

is the length of the largest ideal of finite length in R_P/IR_P .

This makes sense for any algebra R that is essentially of finite type over a perfect field. The Weyl algebra $D_{n,n}$ gets replaced by the ring of differential operators on R, which is usually not noetherian.

Yairon Cid-Ruiz and BSt:

Primary decomposition with differential operators, 2101.03643

Main Result

Theorem

Let I be an ideal in $R = \mathbb{C}[x]$, or an algebra R as above. The size of a differential primary decomposition of I is at least amult(I). This lower bound is tight. More precisely:

- (i) The ideal I has a differential primary decomposition $(P_1, A_1), \ldots, (P_k, A_k)$ such that $|A_i| = \text{mult}_I(P_i)$.
- (ii) If $(P_1, A_1), \ldots, (P_k, A_k)$ is any differential primary decomposition for I, then $|A_i| \ge \text{mult}_I(P_i)$.

This theoretical result yields a practical algorithm for computing a minimal DPD for I in $R = \mathbb{C}[x]$. The output translates into Noetherian multipliers, and hence into a general solution to the PDE given by I. Try the command solvePDE in Macaulay2.

Slogan: Primary decompositions are unique (up to change of basis).

Macaulay 2

Computing a minimal differential primary decomposition:

i1 : needsPackage "NoetherianOperators";

- i3 : I = ideal(x^2,y^2,x*z-y*z^2);
- o3 : Ideal of R
- i4 : amult(I)
- 04 = 4
- i5 : solvePDE(I)
- o5 = {{ideal (y, x), {| 1 |, | zdx+dy |}}, {ideal (z, y, x), {| dx |, | dxdy | }}

This is double line with a fat point: $P_1 = \langle x, y \rangle$, $A_1 = \{1, z\partial_x + \partial_y\}$ $P_2 = \langle x, y, z \rangle$, $A_2 = \{\partial_x, \partial_x \partial_y\}$

Modules

The treatment of Ehrenpreis-Palamodov in books on analysis emphasizes PDE for vector-valued functions $\psi : \mathbb{C}^n \to \mathbb{C}^k$.

[J.-E. Björk: Rings of Differential Operators], [L. Hörmander: An Introduction to Complex Analysis in Several Variables]

In calculus we learn how to rewrite one higher-order ODE as a system of first order ODE, and in algebraic geometry we learn how to appreciate matrix representations of geometric objects:

 $\begin{array}{rcl} \mbox{Ideals} & \longrightarrow & \mbox{Schemes} \\ \mbox{Modules} & \longrightarrow & \mbox{Coherent Sheaves} \end{array}$

A system of ℓ linear PDE for ψ is represented by a $k \times \ell$ matrix with entries in $R = \mathbb{C}[x_1, \ldots, x_n]$. The image of this matrix is a submodule M of R^k . Primary decomposition makes sense here:

$$M = M_1 \cap \cdots \cap M_k.$$

... and so does differential primary decomposition aka as solvePDE

Coherent Sheaves

needsPackage "NoetherianOperators"; R = Q0[x1,x2,x3,x4]; M = image matrix { {x1*x3, x1*x2, x1^2*x2}, { x1^2, x2^2, x1^2*x2}, amult(M) solvePDE(M)

Let $M \subset R^2$ be the module spanned by the columns of

$$\begin{bmatrix} \partial_1 \partial_3 & \partial_1 \partial_2 & \partial_1^2 \partial_2 \\ \partial_1^2 & \partial_2^2 & \partial_1^2 \partial_4 \end{bmatrix}$$

This represents PDE for functions $\psi : \mathbb{C}^4 \to \mathbb{C}^2$. We seek $\psi(z) = (\psi_1(z_1, z_2, z_3, z_4), \psi_2(z_1, z_2, z_3, z_4))$ such that $\frac{\partial^2 \psi_1}{\partial z_1 \partial z_3} + \frac{\partial^2 \psi_2}{\partial z_1^2} = \frac{\partial^2 \psi_1}{\partial z_1 \partial z_2} + \frac{\partial^2 \psi_2}{\partial z_2^2} = \frac{\partial^3 \psi_1}{\partial z_1^2 \partial z_2} + \frac{\partial^3 \psi_2}{\partial z_1^2 \partial z_4} = 0.$

The module *M* has six associated primes, namely $P_1 = \langle \partial_1 \rangle$, $P_2 = \langle \partial_2, \partial_4 \rangle$, $P_3 = \langle \partial_2, \partial_3 \rangle$, $P_4 = \langle \partial_1, \partial_3 \rangle$, $P_5 = \langle \partial_1, \partial_2 \rangle$, $P_6 = \langle \partial_1^2 - \partial_2 \partial_3, \partial_1 \partial_2 - \partial_3 \partial_4, \partial_2^2 - \partial_1 \partial_4 \rangle$. Primes P_4, P_5 are embedded. Arithmetic multiplicity: 1+1+1+1+4+1 = 9 = amult(M). To solve the PDE, we compute a differential primary decomposition.

Making Waves

Analysts are interested in **wave solutions**. Collaboration with Jonas Hirsch and Bogdan Raita. Here is one example motivated by

A. Arroyo-Rabasa, G. De Philippis, J. Hirsch and F. Rindler: Dimensional estimates and rectifiability for measures satisfying linear PDE constraints, *Geometric and Functional Analysis*, 2019.

Fix $n = \ell = 4, k = 7$ and let M be the image in R^7 of

_			_
x_1	0	0	0
<i>x</i> ₂	x_1	0	0
<i>x</i> 3	<i>x</i> ₂	x_1	0
<i>x</i> 4	<i>x</i> ₃	<i>x</i> ₂	x_1
0	<i>x</i> ₄	<i>x</i> 3	<i>x</i> ₂
0	0	<i>x</i> ₄	<i>x</i> 3
0	0	0	<i>x</i> ₄
_			

This module is primary with $P = \{0\}$ and $\operatorname{amult}(M) = 3$. It represents a first-order PDE for functions $\phi : \mathbb{R}^4 \to \mathbb{R}^7$. Here solvePDE outputs three Noetherian multipliers; these are left syzygies. They span all syzygies as a vector space over $\mathbb{R}(x)$.

Hankel Matrix

We get solutions ϕ to the PDE from any syzygy by applying that differential operator to any function $f(z_1, z_2, z_3, z_4)$. For instance, one Noetherian multiplier gives

$$\phi = (f_{2222} - 3f_{1223} + f_{1133} + 2f_{1124}, 2f_{1123} - f_{1222} - f_{1114}, \\ f_{1122} - f_{1113}, -f_{1112}, f_{1111}, 0, 0).$$

Consider the Hankel matrix

$$H(u) = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 \\ u_2 & u_3 & u_4 & u_5 \\ u_3 & u_4 & u_5 & u_6 \\ u_4 & u_5 & u_6 & u_7 \end{bmatrix}$$

Wave cones of [ADHR] are the varieties $\{u \in \mathbb{P}^6 : \operatorname{rank}(H(u)) \leq r\}$. r = 1: rational normal curve in \mathbb{P}^6 ; r = 3: variety of secant planes. Parametrization as the span of our three Noetherian multipliers.

Any $u \in \mathbb{P}^6$ with H(u) of low rank yields wave solutions to M.

Distributions

Example

The Hankel matrix H(u) has rank one for

u = (1, 2, 4, 8, 16, 32, 64).

Kernel of H(u) is spanned by $2e_1 - e_2, 2e_2 - e_3, 2e_3 - e_4$. Any function $f : \mathbb{R}^3 \to \mathbb{R}$ yields a solution

$$\phi(z) = f(2z_1 - z_2, 2z_2 - z_3, 2z_3 - z_4) \cdot u.$$

This vector is a wave solution as in 1747. If f is the Dirac distribution at the origin in \mathbb{R}^3 then ϕ is a distributional solution supported on a line in \mathbb{R}^4 . Characterizing such supports is the point of [ADHR].

THE END

Many thanks for your attention !!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・