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Nonlinear algebra provides modern math-
ematical tools to address challenges arising 
in the sciences and engineering. It is useful 
everywhere, where polynomials appear: in 
particular, data and computational sciences, 
statistics, physics, optimization. The book 
offers an invitation to this broad and fast-
developing area. It is not an extensive 
encyclopedia of known results, but rather 
a first introduction to the subject, allowing 
the reader to enter into more advanced topics. It was designed as the next step 
after linear algebra and well before abstract algebraic geometry. The book presents 
both classical topics—like the Nullstellensatz and primary decomposition—and 
more modern ones—like tropical geometry and semidefinite programming. The 
focus lies on interactions and applications. Each of the thirteen chapters introduces  
fundamental concepts. The book may be used for a one-semester course, and 
the over 200 exercises will help the readers to deepen their understanding of the 
subject.
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Prologue

A polynomial is exactly the same thing as a homogeneous linear
partial differential equation (PDE) with constant coefficients.

Polynomials in one variable are ODE:

Exercise: Find all functions φ(z) that satisfy the equation

φ′′′′(z)− 6φ′′′(z) + 10φ′′(z)− 6φ′(z) + 9φ(z) = 0.

Solution: ODE in operator form is the characteristic polynomial:

(∂4 − 6∂3 + 10∂2 − 6∂ + 9) • φ(z) = 0

x4 − 6x3 + 10x2 − 6x + 9 = (x − 3)2 · (x2 + 1)

Basis of solutions:
{
e3z , z · e3z , e iz , e−iz

}

Basis of solutions:
{
e3z , z · e3z , sin(z), cos(z)

}

Geometry: The ODE represents an affine scheme of length 4.
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18th Century
Undergraduates study the one-dimensional wave equation

φtt(z , t) = c2 φzz(z , t), where c ∈ R\{0}.

for functions φ : R2 → R. The corresponding polynomial is

x21 − c2x22 = (x1 − cx2)(x1 + cx2).

In 1747, Jean Le Rond D’Alembert found that the
general solution is the superposition of traveling waves:

φ(z , t) = f (z + ct) + g(z − ct),

where f and g are twice differentiable functions in one variable.

Question: How to deal with the special parameter value c = 0 ?
A: Replace g(z − ct) with 1

2c (h(z+ct)− h(z−ct)) and take limit:

φ(z , t) = f (z) + t · h′(z).

Geometry: A pair of lines becomes a double line.
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20th Century
In his 1938 article on foundations of algebraic geometry, Gröbner
introduced differential operators to characterize membership in
a polynomial ideal. He derived this for zero-dimensional ideals
(Macaulay’s inverse systems), and he envisioned it for all ideals.
Gröbner wanted algorithmic solutions. We provide them.

Wolfgang Gröbner: Über die algebraischen Eigenschaften der Integrale
von linearen Differentialgleichungen mit konstanten Koeffizienten,

Monatshefte für Mathematik und Physik, 1939

In the 1960s, Ehrenpreis and Palamodov studied solutions
to linear partial differential equations (PDE) with constant
coefficients. A main step was the characterization of
membership in a primary ideal by Noetherian operators.

Their celebrated Fundamental Principle appears in the books

Leon Ehrenpreis: Fourier Analysis in Several Complex Variables, 1970

Victor Palamodov: Linear Differential Operators w Constant Coeffs, 1970
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3.3. Linear PDEs with Constant Coe�cients 51

correspond to the 16 exponential solutions in (3.5). The ideal Q is primary
to the maximal ideal rad(Q) = hx, y, zi. Since all associated primes are
minimal, by Theorem 3.22, this primary ideal is uniquely determined by I:

Q =
⌦
x2y, x2z, xy2, xz2, y2z, yz2, x3 � yz, y3 � xz, z3 � xy

↵
.

This zero-dimensional primary ideal has degree 11. It contributes the 11
polynomial solutions to the three partial di↵erential equations in (3.4).

Below is a general result explaining our observations from Example 3.26.

Theorem 3.27. Let I be a zero-dimensional ideal in C[x1, . . . , xn], here
interpreted as a system of linear PDEs. The space of holomorphic solutions
has dimension equal to the degree of I. There exist nonzero polynomial
solutions if and only if the maximal ideal M = hx1, . . . , xni is an associated
prime of I. In that case, the polynomial solutions are precisely the solutions
to the system of PDEs given by the M -primary component (I : (I : M1)).

Proof. Fix a degree compatible monomial order and let in(I) be the initial
ideal of I for that order. The set S of standard monomials is finite. For each
xu 2 S we will construct explicitly a power series solution to the PDE given
by I. We will also show that these solutions form a basis for the space of
holomorphic solutions. These are the solutions represented by power series.

Regarding I as a C-vector space, it has a basis consisting of elements
of the form xv +

P
xu2S �ux

u, where xv 62 S. Consider a polynomial p̃
that is a C-linear combination of monomials in S. We claim that p̃ can be
uniquely extended to a power series p that is a solution to the associated
PDEs. Indeed, the above basis operators uniquely determine the coe�cients
of all other monomials, thus p is unique. Further, p has the property that
when di↵erentiated with any operator from I, the constant term in the result
is zero. Thus, all operators in I annihilate p. Hence, the dimension of the
solution space equals |S| = degree(I). The basis of this space is given by

(3.7) pu(x1, . . . , xn) = xu + higher order terms, where xu runs over S.

The series (3.7) is a polynomial if and only if it is annihilated by (@/@xi)
d

for some d and i = 1, 2, . . . , n. This is always the case when I is M -primary.

Suppose now that I is primary in C[x]. Since I is zero-dimensional, its
radical is the maximal ideal hx1�a1, . . . , xn�ani, where V(I) = {(a1, . . . , an)}
in Cn. By translating (a1, . . . , an) to the origin (0, . . . , 0), we can apply the
analysis in the previous paragraph. From this and Lemma 3.25, we obtain
degree(I) many polynomials pu with xu 2 S as in (3.7) such that

(3.8) pu(x1, . . . , xn) · exp(a1x1 + · · · + anxn)

solves the PDEs given by I. These functions form a basis of the holomorphic
solutions to I. None of them is a polynomial unless (a1, . . . , an) = (0, . . . , 0).



Quiz on Power Sums

Given three distinct integers a, b, c > 0, describe the space
of all functions φ = φ(z1, z2, z3) that satisfy the three PDE

∂aφ

∂za1
+
∂aφ

∂za2
+
∂aφ

∂za3
=

∂bφ

∂zb1
+
∂bφ

∂zb2
+
∂bφ

∂zb3
=

∂cφ

∂zc1
+
∂cφ

∂zc2
+
∂cφ

∂zc3
= 0.

〈 ∂a1 + ∂a2 + ∂a3 , ∂
b
1 + ∂b2 + ∂b3 , ∂

c
1 + ∂c2 + ∂c3 〉

Example: Consider (a, b, c) = (1, 2, 3). The solution space is
six-dimensional. It consists of a cubic and all its derivatives:

φ = (z1 − z2)(z1 − z3)(z2 − z3).

The ideal I = 〈x1+x2+x3, x
2
1+x22+x23 , x

3
1+x32+x33 〉 is Gorenstein.

Example: Consider (a, b, c) = (2, 5, 8). What happens now?

H. Melánová, BSt, R. Winter: Recovery from power sums, 2106.13981



Prime Ideals

Let P be a prime ideal in C[x1, . . . , xn] and V (P) its variety in Cn.
A polynomial f is in the ideal P if and only if f vanishes on V (P).

Setting xi = ∂zi , view P as PDE for an unknown function φ(z1, . . . , zn).

Remark
For u ∈ Cn, the exponential function

z 7→ exp(u · z) = exp(u1z1 + · · ·+ unzn)

satisfies the PDE given by P if and only if u ∈ V (P).

Proposition

Each solution to P admits an integral representation

φ(z) =

∫

V (P)
exp (x · z) dµ(x),

where µ is a measure on the irreducible variety V (P).
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Primary Ideals

Set C[x ] = C[x1, . . . , xn]. An ideal Q is primary if it has only one
associated prime P. The variety V (Q) = V (P) in Cn is irreducible.

Theorem (Ehrenpreis-Palamodov)

Fix a prime ideal P in C[x ]. For any P-primary ideal Q, there exist
polynomials B1, . . . ,Bm in 2n variables such that the function

φ(z) =
m∑

i=1

∫

V (P)
Bi (x , z) exp(x · z) dµi (x)

is a solution to the PDE, for any measures µ1, . . . , µm on V (P).

Conversely, every solution φ(z) of the PDE given by Q admits
such an integral representation. The minimal number is

m = length
(
RP/QRP

)
=

degree(Q)

degree(P)
.

The polynomials B1(x , z), . . . ,Bm(x , z) are Noetherian multipliers.
They depend only on the ideal Q and encode all solutions φ(z).
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Palamodov’s Example
Let n = 3,P = 〈x1, x2〉. Then Q = 〈x21 , x22 , x1 − x2x3〉 is P-primary
of multiplicity m = 2. We seek functions φ(z1, z2, z3) that satisfy

∂2φ

∂z21
=

∂2φ

∂z21
=

∂φ

∂z1
− ∂2φ

∂z2∂z3
= 0.

Writing ξ, ψ for functions in one variable, the general solution is

φ(z) = ξ(z3) + z2 ψ(z3) + z1 ψ
′(z3),

The Noetherian multipliers of Q are B1 = 1 and B2 = z2 + x3z1.

Their integrals in the Ehrenpreis-Palamodov Theorem are

φ1(z) =

∫
1· exp(0z1+0z2+x3z3) dµ1(x) = ξ(z3) and

φ2(z) =
∫

(z2 + z1x3) · exp(0z1 + 0z2 + x3z3) dµ2(x)
= z2

∫
exp(0z1+0z2+x3z3)dµ2(x) + z1

∫
x3 exp(0z1+0z2+x3z3)dµ2(x)

= z2 ψ(z3) + z1 ψ
′(z3).
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Noetherian Operators

The Noetherian multipliers Bi (x , z) of a primary ideal Q furnish a
finite representation of the (infinite-dimensional) vector space of all
solutions to the PDE. We now recycle them for ideal membership.

Switching the roles of x and z , we set z1 = ∂x1 , . . . , zn = ∂xn
in Bi (x , z), with z-variables to the right of the x-variables in each
monomial. This gives the Noetherian operators Bi (x , ∂x). These
are elements in the Weyl algebra. They act on polynomials in C[x ].

Proposition

Noetherian operators characterize ideal membership. Namely,
a polynomial f (x) lies in the primary ideal Q if and only if

Bi (x , ∂x) • f (x) lies in P for i = 1, . . . ,m.

Example

A polynomial f lies in the primary ideal Q = 〈x21 , x22 , x1 − x2x3〉 if
and only if both f and (x3∂x1+∂x2) • f vanish on the x3-axis V (P).
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Towards an Algorithm

Input: Generators of a (primary) ideal Q in the polynomial ring C[x ].
Output: Noetherian multipliers (resp. Noetherial operators) for Q.

B. Mourrain: Isolated points, duality&residues, J. Pure Appl.Algebra,1997

U. Oberst: The construction of Noetherian operators, J. Algebra, 1999

S. Shankar: The Nullstellensatz for systems of PDE, Advances in Applied
Math, 1999
B. Sturmfels: Solving Systems of Polynomial Equations, AMS, 2002

A. Damiano, I. Sabadini, D. Struppa: Computational methods for the
construction of a class of Noetherian operators, Experimental Math, 2007
J. Chen, M. Härkönen, R. Krone and A. Leykin:
Noetherian operators and primary decomposition, 2006.13881

J. Chen, Y. Cid-Ruiz, M. Härkönen, R. Krone and A. Leykin:
Noetherian operators in Macaulay2, 2101.01002

R. Ait El Manssour, M. Härkönen and BSt.:
Linear PDE with constant coefficients, Glasgow Math J., 2022



Current Perspective

Fix a prime P of codimension c in R = C[x1, . . . , xn], in Noether
position. Write F = C(u1, . . . , un) for the field of fractions of R/P.

Theorem
The following sets are in bijective correspondences:

(a) P-primary ideals Q in R of multiplicity m,

(b) points in the punctual Hilbert scheme Hilbm(F[[y1, . . . , yc ]]),

(c) m-dimensional F-subspaces of F[z1, . . . , zc ]
that are closed under differentiation, Inverse systems

(d) m-dimensional F-subspaces of the Weyl-Noether module
F⊗R Dn,c that are R-bi-modules, where Dn,c = R〈∂x1 , . . . , ∂xc 〉.

(c) → Noetherian multipliers (d) → Noetherian operators

Yairon Cid-Ruiz, Roser Homs Pons and BSt: Primary ideals and
their differential equations, Foundat. Computational Math, 2021



Solving Gröbner’s Problem

If I = Q1 ∩ · · · ∩Qk is a primary decomposition then we may simply

I aggregate Noetherian operators to get a membership test for I

I aggregate Noetherian multipliers to solve the PDE given by I

Works fine if I has no embedded primes. Can do better in general.

Example (Fat point on a double line)

I = 〈x21 , x22 , x1x3 − x2x
2
3 〉 = 〈x21 , x22 , x1 − x2x3〉 ∩ 〈x21 , x22 , x3〉

The naive method gives six Noetherian multipliers, namely two for
the line and four for the point. But we need only four of them:

prime 〈x1, x2〉 〈x1, x2, x3〉
multipliers 1 , z2 + x3z1 z1 , z1z2
operators 1, ∂x2 + x3∂x1 ∂x1 , ∂x1∂x2



Commutative Algebra

Fix R = C[x ]. Consider any ideal I ⊂ R. Associated primes
P1, . . . ,Pk . A differential primary decomposition of I is a list
(P1,A1), . . . , (Pk ,Ak) where Ai is a finite subset of Dn,n with

I =
{
f ∈ R | δ • f ∈ Pi for all δ ∈ Ai and i = 1, . . . , k

}
.

Its arithmetic multiplicity is amult(I ) =
∑k

j=1multI (Pj), where

multI (P) =
degree(saturate(I, P)/I)

degree(P)

is the length of the largest ideal of finite length in RP/IRP .

This makes sense for any algebra R that is essentially of finite type
over a perfect field. The Weyl algebra Dn,n gets replaced by the
ring of differential operators on R, which is usually not noetherian.

Yairon Cid-Ruiz and BSt:
Primary decomposition with differential operators, 2101.03643
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∑k

j=1multI (Pj), where

multI (P) =
degree(saturate(I, P)/I)

degree(P)

is the length of the largest ideal of finite length in RP/IRP .

This makes sense for any algebra R that is essentially of finite type
over a perfect field. The Weyl algebra Dn,n gets replaced by the
ring of differential operators on R, which is usually not noetherian.
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Main Result

Theorem
Let I be an ideal in R = C[x ], or an algebra R as above.
The size of a differential primary decomposition of I is at
least amult(I ). This lower bound is tight. More precisely:

(i) The ideal I has a differential primary decomposition
(P1,A1), . . . , (Pk ,Ak) such that |Ai | = multI (Pi ).

(ii) If (P1,A1), . . . , (Pk ,Ak) is any differential primary
decomposition for I , then |Ai | ≥ multI (Pi ).

This theoretical result yields a practical algorithm for computing
a minimal DPD for I in R = C[x ]. The output translates into
Noetherian multipliers, and hence into a general solution to the
PDE given by I . Try the command solvePDE in Macaulay2.

Slogan: Primary decompositions are unique (up to change of basis).



Macaulay 2

Computing a minimal differential primary decomposition:

i1 : needsPackage "NoetherianOperators";

i2 : R = QQ[x,y,z];

i3 : I = ideal(x^2,y^2,x*z-y*z^2);

o3 : Ideal of R

i4 : amult(I)

o4 = 4

i5 : solvePDE(I)
     
o5 = {{ideal (y, x),     {| 1 |, | zdx+dy |}},
      {ideal (z, y, x),  {| dx |, | dxdy | }}}
      

This is double line with a fat point:
P1 = 〈x , y〉 , A1 = {1, z∂x + ∂y}
P2 = 〈x , y , z〉 , A2 = {∂x , ∂x∂y}



Modules

The treatment of Ehrenpreis-Palamodov in books on analysis
emphasizes PDE for vector-valued functions ψ : Cn → Ck .

[J.-E. Björk: Rings of Differential Operators], [L. Hörmander:
An Introduction to Complex Analysis in Several Variables]

In calculus we learn how to rewrite one higher-order ODE as a
system of first order ODE, and in algebraic geometry we learn
how to appreciate matrix representations of geometric objects:

Ideals −→ Schemes
Modules −→ Coherent Sheaves

A system of ` linear PDE for ψ is represented by a k × ` matrix
with entries in R = C[x1, . . . , xn]. The image of this matrix is a
submodule M of Rk . Primary decomposition makes sense here:

M = M1 ∩ · · · ∩Mk .

... and so does differential primary decomposition aka as solvePDE



Coherent Sheaves
needsPackage "NoetherianOperators";
R = QQ[x1,x2,x3,x4];
M = image matrix {
{x1*x3, x1*x2, x1^2*x2},
{ x1^2,  x2^2, x1^2*x4}};
amult(M)
solvePDE(M)

Let M ⊂ R2 be the module spanned by the columns of
[
∂1∂3 ∂1∂2 ∂21∂2
∂21 ∂22 ∂21∂4

]
.

This represents PDE for functions ψ : C4 → C2. We seek
ψ(z) =

(
ψ1(z1, z2, z3, z4), ψ2(z1, z2, z3, z4)

)
such that

∂2ψ1

∂z1∂z3
+
∂2ψ2

∂z21
=

∂2ψ1

∂z1∂z2
+
∂2ψ2

∂z22
=

∂3ψ1

∂z21∂z2
+

∂3ψ2

∂z21∂z4
= 0.

The module M has six associated primes, namely P1 = 〈∂1〉,
P2 = 〈∂2, ∂4〉, P3 = 〈∂2, ∂3〉, P4 = 〈∂1, ∂3〉, P5 = 〈∂1, ∂2〉,
P6 = 〈∂21 − ∂2∂3, ∂1∂2 − ∂3∂4, ∂22 − ∂1∂4〉. Primes P4,P5 are

embedded. Arithmetic multiplicity: 1+1+1+1+4+1 = 9 = amult(M).

To solve the PDE, we compute a differential primary decomposition.



Making Waves
Analysts are interested in wave solutions. Collaboration with
Jonas Hirsch and Bogdan Raita. Here is one example motivated by

A. Arroyo-Rabasa, G. De Philippis, J. Hirsch and F. Rindler:
Dimensional estimates and rectifiability for measures satisfying

linear PDE constraints, Geometric and Functional Analysis, 2019.

Fix n = ` = 4, k = 7 and let M be the image in R7 of



x1 0 0 0
x2 x1 0 0
x3 x2 x1 0
x4 x3 x2 x1
0 x4 x3 x2
0 0 x4 x3
0 0 0 x4




This module is primary with P = {0} and amult(M) = 3. It
represents a first-order PDE for functions φ : R4 → R7. Here
solvePDE outputs three Noetherian multipliers; these are left
syzygies. They span all syzygies as a vector space over R(x).



Hankel Matrix
We get solutions φ to the PDE from any syzygy by applying
that differential operator to any function f (z1, z2, z3, z4).

For instance, one Noetherian multiplier gives

φ = (f2222 − 3f1223 + f1133 + 2f1124, 2f1123 − f1222 − f1114,
f1122 − f1113, −f1112, f1111, 0, 0 ).

Consider the Hankel matrix

H(u) =




u1 u2 u3 u4
u2 u3 u4 u5
u3 u4 u5 u6
u4 u5 u6 u7


 .

Wave cones of [ADHR] are the varieties {u ∈ P6 : rank(H(u)) ≤ r}.
r = 1: rational normal curve in P6; r = 3: variety of secant planes.

Parametrization as the span of our three Noetherian multipliers.

Any u ∈ P6 with H(u) of low rank yields wave solutions to M.



Distributions

Example

The Hankel matrix H(u) has rank one for

u = (1, 2, 4, 8, 16, 32, 64).

Kernel of H(u) is spanned by 2e1 − e2, 2e2 − e3, 2e3 − e4.

Any function f : R3 → R yields a solution

φ(z) = f (2z1 − z2, 2z2 − z3, 2z3 − z4) · u.

This vector is a wave solution as in 1747. If f is the Dirac distribution
at the origin in R3 then φ is a distributional solution supported on
a line in R4. Characterizing such supports is the point of [ADHR].

THE END

Many thanks for your attention!!


