Random matrices and random landscapes

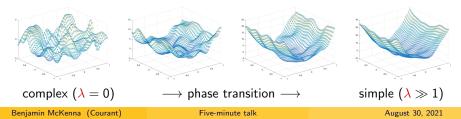
(see also Gérard's UCB course!)

Ben(jamin) McKenna

MSRI Postdoc (just finished Ph.D. at NYU Courant; after, IST Austria, then Harvard)

August 30, 2021

 $\mathcal{H}_2(x) = \text{random noise}(x) + \lambda \cdot \text{deterministic signal}(x), \quad x \in [-1, 1]^2$



- I'm interested in the geometry of random landscapes, meaning smooth (Gaussian) random functions *H_N* : ℝ^N → ℝ; for example, Hamiltonians in statistical physics, or loss functions in data science.
- Specifically I count critical points, meaning study the random variable $Crt(\mathcal{H}_N) = \#\{x : \nabla \mathcal{H}_N(x) = 0\}$, when $N \to +\infty$. Useful for ...
 - predicting dynamics of optimization
 - predicting physics phase transitions
 - finding ground states
- The Kac-Rice formula writes $\mathbb{E}[Crt(\mathcal{H}_N)]$ in terms of

 $\mathbb{E}[\left|\det(\nabla^2\mathcal{H}_N(x))\right| \mid \nabla\mathcal{H}_N(x) = 0]$

so I care about determinants of symmetric Gaussian random matrices.

• Often non-invariant: I study random landscapes that are far from isotropic, by studying random matrices that are far from GOE.