Guido Mazzuca

• Program Associate

• Office: 316

• Email: gmazzuca@sissa.it

• Affiliation: SISSA - Trieste

• Advisors: Tamara Grava, Alberto Maspero

• Next: Postdoc at KTH

 \bullet 20th September

Statistical properties of interacting particle systems in the thermodynamic limit

$$\mathcal{M} \subset \mathbb{R}^{2n}$$
, $H(p,q)$, $d\mu \propto e^{-\beta H(p,q)} dp dq$

• Almost Integrable Systems

- adiabatic invariants;
- \bullet consider them as perturbation of a ${\bf nonlinear}$ integrable system.

Statistical properties of interacting particle systems in the thermodynamic limit

$$\mathcal{M} \subset \mathbb{R}^{2n}$$
, $H(p,q)$, $d\mu \propto e^{-\beta H(p,q)} dp dq$

• Almost Integrable Systems

- adiabatic invariants;
- consider them as perturbation of a **nonlinear** integrable system.

• Integrable Systems

- Correlation functions;
- Universal behaviour of solutions:
- Random Matrix Theory plays a crucial role.

$$\dot{L} = [L; B]$$

Random Matrix	Integrable System
$G\beta E$	Toda lattice
$C\beta E$	Ablowitz-Ladik lattice
$J\beta E$	Schur flow
$AG\beta E$	Volterra lattice