Asymptotics of integrals arising in the representation of correlations functions in the Sinh-Gordon model

Research interests: Statistical mechanics, β -ensembles, Riemann-Hilbert problems, LDP techniques

Charlie Dworaczek, Phd student under the supervision of A. Guionnet and K. Kozlowski

École Normale Supérieur de Lyon

September 10, 2021

What my work is about

- Main reference: Asymptotic expansion of a partition function related to the sinh-model, G. Borot, A. Guionnet, K. Kozlowski (2016)
- Framework: Computing the correlation functions in the Sinh-Gordon model, a relativistic quantum field theory.
- Current goal: obtaining the N-asymptotic expansion of

$$\mathcal{Z}_{N}^{\beta}[V] = \int_{\mathbb{R}^{N}} \prod_{i < j}^{N} \left(\prod_{k=1}^{2} \sinh \left[\pi \omega_{k} (\lambda_{i} - \lambda_{j}) \right] \right)^{\beta} \prod_{i=1}^{N} e^{-V(\lambda_{i})} d^{N} \lambda$$

• via LDP techniques: $\underset{N\infty}{\sim} e^{N^2 \log N \mathcal{E}(\mu_{\rm eq})}$ and DS-equations to obtain the behaviour of fluctuations

$$\mathbb{E}_{\mathsf{N}}^{\mathsf{V},\,eta}\Bigg[\int \phi d\Big(\mu_{\mathsf{eq}}-\mathsf{N}^{-1}\sum_{i=1}^{\mathsf{N}}\delta_{\lambda_i}\Big)\Bigg]$$

• $d\mu_{\rm eq}^{(N)}=\rho_{\rm eq}^{(N)}1_{[a_N,b_N]}dx$ can be approximated by Riemann-Hilbert techniques, since

$$V' = \mathcal{S}[
ho_{
m eq}^{(N)}]$$
 where \mathcal{S} is a Wiener-Hopf type operator

• Behaviour near the endpoints a_N/b_N allows to push the asymptotic expansion of $\log \mathcal{Z}_N^{\beta}[V]$ further thanks to the DS-equations.