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Outline

1 What are SPDE and why are they
useful/important/interesting?

2 What is space-time white noise? Construction and calculus.

3 Basic linear SPDE and and Duhamel’s principle

4 Chaos expansion and multiplicative SPDE.

5 Martingale methods to identify the law of an SPDE

6 Singular SPDE: regularity computations and local
subcriticality assumptions, pathwise solution theories

7 Markov property and invariant measures for SPDEs; rate of
convergence.
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What are SPDEs

SPDEs are to PDEs what SDEs are to ODEs. We are going to
focus mainly on evolution SPDEs of the form

∂t f = L(f ) + σ(f )ξ.

where L is some operator (possibly nonlinear) and σ is a linear
operator. Here ξ is Gaussian space-time white noise, to be
explained shortly.

Note the analogy with SDE’s of the form

dXt = L(Xt)dt + σ(Xt)dBt .
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SPDEs

Examples of L we will consider:

1 (SHE / Edwards-Wilkinson) L(f ) = ∂2x f or more generally
L(f ) = −(−∂2x )

αf . And σ(f ) = I .

2 (mSHE) L(f ) = ∂2x f and σ(f )g = fg .

3 (KPZ) L(f ) = ∂2x f + (∂x f )2 and σ(f ) = I .
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1 (SHE / Edwards-Wilkinson) ∂t f = ∂2x f + ξ, or more generally
∂t f = −(−∂2x )

αf + ξ

2 (mSHE) ∂t f = ∂2x f + f ξ.

3 (KPZ) ∂t f = ∂2x f + (∂x f )2 + ξ
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Why study these?

They describe the fluctuations of various systems coming from
probability, statistical mechanics.

Simple example: iid random walks or brownian motions.
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What exactly is space-time white noise?

Often space-time white noise is described as a condinuum iid
Gaussian field, i.e.,

E[ξ(t, x)ξ(s, y)] = δ(t − s)δ(x − y).

That’s not rigorous and it needs to be interpreted in an integrated
sense: ξ is a random variable taking values in Schwarz distributions
such that (ξ, f ) is always a Gaussian and

E[(ξ, f )L2(ξ, g)L2 ] = (f , g)L2 ,

where L2 = L2(R+ ×R).
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Construction of STWN

How to prove existence of such a random variable ξ taking values
in S ′(R2)? Similar to construction of Brownian motion. Several
options:

1. Use Kolmogorov’s extension theorem to construct a projective
family of r.v. {(ξ, f )} indexed by f ∈ S such that the convariance
structure of any finite subfamily is as specified.

2. Choose an orthonormal basis {ej} for L2(R+ ×R) and let ξj
be iid N(0,1). Then define

(ξ, f ) := ∑
j

(ej , f )ξj ,

which always converges by L2 martingale convergence theorem.
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Construction of STWN

So far this defines a family (ξ, f ) indexed by f ∈ S (in fact by
f ∈ L2) such that (ξ, f + αg) = (ξ, f ) + α(ξ, g) and such that

E[(ξ, f )2] = ‖f ‖2L2 .

After this, one still needs to “glue together” or “modify” this
family of variables so that it can actually be realized as a random
element of S ′(R2). This is possible thanks to a Kolmogorov
continuity criterion together with Gaussian tail bounds:

E[|(ξ, f )|p ] .p ‖f ‖pL2 .
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Integration against ξ

Note that (ξ, f )L2(R+×R) is well-defined for all f ∈ L2(R+ ×R).
It’s usually denoted suggestively as∫

R+×R
f (t, x)ξ(t, x)dtdx

or as ∫
R+×R

f (t, x)ξ(dt dx),

though it should be remarked that ξ is a.s. neither a function nor a
measure.
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Linear equations

Let’s return to the additive-noise stochastic heat equation:

∂th(t, x) = ∆xh(t, x) + ξ(t, x),

with x ∈ Rd and t ≥ 0, and h(0, x) some given function.
Rearrange terms and formally apply the operator e−t∆ to both
sides to obtain

∂t(e
−t∆h) = e−t∆∂th− e−t∆∆h = e−t∆ξ.

Integrate both sides from 0 to t, then apply et∆:

e−t∆h(t, ·)− h(0, ·) =
∫ t

0
e−s∆ξ(ds, ·).

h(t, ·) = et∆h(0, ·) +
∫ t

0
e(t−s)∆ξ(ds, ·).
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Linear equations

What exactly is et∆? It’s an operator that denotes the solution at
time t to the solution of the equation

∂th = ∆h.

In other words et∆ is just convolution with the heat kernel:

et∆f (x) =
∫

R
p(t, x − y)f (y)dy ,

where

p(t, x) =
1

(2πt)d/2 e
−|x |2/2t.
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Linear SPDE

Summarizing, we have shown formally that the “solution” of

∂th = ∆h+ ξ

is given by

h(t, x) =
∫

R
p(t, x− y)h(0, y)dy +

∫
R+×Rd

p(t− s, x− y)ξ(ds dy).

The integral in the second term on the RHS is deterministic and in
L2(R+ ×Rd ) when d = 1.
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Linear SPDE

One can retroactively check that this is indeed the solution in the
sense of Schwarz distributions, i.e.,

−(h, ∂tφ) = (h, ∆φ) + (ξ, φ)

a.s. for all smooth space-time Schwarz functions φ.

It turns out that (the derivative of) h describes the fluctuations in
the Brownian Motion picture from earlier. We will prove this later.
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What about d > 1?

The kernel fails to be in L2(R+ ×Rd ) for d > 1.

But intuitively one expects there to be a well-defined fluctuation
field for 2d noninteracting Brownian motions.

It turns out that the only issue is the singularity of the kernel at
the origin.
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What about d > 1?

In particular if φ ∈ S(Rd+1) then one can make sense of the
smoothed out field

h(φ) :=
∫

Rd
pφ(t, x− y)h(0, y)dy +

∫
R+×R2

pφ(t− s, x− y)ξ(ds dy),

where

pφ(t, x) = (p ∗ φ)(t, x) =
∫

R3
p(t − s, x − y)φ(s, y)dsdy .

These random variables h(φ) as φ ranges through all Schwarz
functions, can then be lifted to a random Schwarz distribution on
R+ ×Rd which will solve the SHE in weak form.
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The linear theory for the SHE

Summarizing, the equation

∂th = ∆h+ ξ

is solved by the Duhamel formula

h(t, x) =
∫

R
p(t, x − y)h(0, y)dy +

∫
R+×R

p(t− s, x − y)ξ(dsdy).

One can show that for all d , h(t, ·) can actually be evaluated as an
element of S ′(Rd ) for fixed times t and any initial data in S ′(Rd ).

For fixed t > 0 the field h(t, ·) is locally absolutely continuous
w.r.t Brownian motion when d = 1 and w.r.t the Gaussian free
field when d = 2.
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Remark: What about σ 6= I?

Nothing special about space-time white noise so far. We could
replace it by any (possibly correlated) noise η and the solution is
still given by the Duhamel formula:

h(t, x) =
∫

R
p(t, x− y)h(0, y)dy +

∫
R+×R

p(t− s, x− y)η(s, y)dsdy ,

provided that the integral on the right hand side makes sense
(possibly in a distributional sense). This will not be the case for all
Gaussian noises η but it will be true for example when η = ∂xξ or
η = (−∆x )αξ.
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Moving onto nonlinear SPDE...

So we can integrate deterministic integrands against ξ. What
about random integrands? E.g. can we make sense of iterated
integrals such as ...∫ [ ∫

f (t, x , s, y)ξ(ds dy)

]
ξ(dt dx)

even with deterministic f ? How about k-fold integrals such as∫
· · ·

∫
f (t, x)ξ⊗k(dt, dx)?

And what about things like∫
σ

( ∫
f (t, x , s, y)ξ(ds dy)

)
ξ(dt dx)?
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Motivation: why should we care about these objects?

Consider SPDE’s such as the multiplicative SHE or its
generalizations:

∂t f = ∂2x f + f ξ.

∂t f = ∂2x f + σ(f )ξ,

in spatial dimension d = 1.

We’ll focus on the first one. Duhamel’s principle still applies here,
but as opposed to the linear case it gives an iterative relation
rather than a finished solution, e.g.

f (t, x) =
∫

R
p(t, x− y)f (0, y)dy +

∫
R+×R

p(t− s, x− y)f (s, y)ξ(ds, dy),
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Multiplicative SHE

We can (Picard) iterate the previous relation once to obtain

f (t, x) =
∫

R
p(t, x − y)f (0, y)dy

+
∫

R+×R

[ ∫
R
p(t − s, x − y)p(s, y − z)f (0, z)dz

]
ξ(ds, dz)

+
∫

R+×R

∫
R+×R

p(t− s, x− y)p(s−u, y − z)f (u, z)ξ(du, dz)ξ(ds, dy).
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Keep iterating to obtain:

f (t, x) =
∞

∑
k=1

uk(t, x)

where

uk+1(t, x) =
∫

R+×R
p(t − s, x − y)uk(s, y)ξ(ds, dy)

and u0 is just the heat flow started from h(0, ·).
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The explicit form of uk :

Nonrecursively we have that uk(t, x) is given by

∫
(R+×R)k+1

k+1

∏
i=1

p(ti − ti−1, xi − xi−1)f (0, xk+1)dxk+1ξ⊗k(dt, dx),

with tk+1 = t and x0 = x .
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Integration of adapted processes

The filtration Ft of ξ is defined to be the sigma algebras generated
by (f , ξ) with f supported on [0, t]×R.

A random space time function f (t, x) is called adapted to the
filtration of ξ if f (t, x) is Ft measurable for all t, x .

A random space-time function is called predictable if it lies in the
L2 closure of the linear span of elementary functions: things of the
form f (x , t, ω) = X (ω)1(a,b](t)1E (x) where E ⊂ Rd is Borel and
X is Fa measurable.

Theorem: any adapted continuous function is predictable.
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Integration of adapted random processes

The integral of an elementary process f (t, x) = X · 1(a,b](t)1E (x)
against the noise can be defined in the obvious manner:∫

R+×R
f (t, x)ξ(dt dx) = X · (ξ, 1(a,b]×E ).

One has the Ito-Walsh isometry

E

[( ∫
R+×R

f (t, x)ξ(dt dx)

)2]
=
∫

R+×R
E[f (t, x)2]dtdx ,

which allows us to define integrals for any adapted continuous
function, in particular iterated integrals as we wanted earlier.
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Properties of stochastic integrals

Note that if f ∈ L2(R+ ×R) then it is not true that

∫
(R+×R)k

k

∏
1

f (ti , xi )ξ
⊗k(dt, dx) = (f , ξ)k .

Rather the right hand side equals Hk((ξ, f )) when ‖f ‖L2 = 1,
where Hk is the kth Hermite polynomial. Again, ξ is not a
measure or a function.

In particular all k-fold iterated integrals are orthogonal to all n-fold
iterated integrals for k 6= n. The set of all k-fold iterated integrals
is called the kth homogeneous chaos of ξ, denoted Hk(Ω,F , P).

Theorem: L2(Ω,F , P) =
⊕

k∈NHk(Ω,F , P).
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Why does this happen?

Think about the simple case k = 2 with just a Brownian motion
instead of white noise. Recall the computation of how∫ 1

0
BtdBt =

1

2
(B2

t − t).

There’s a law of large numbers averaging happening at the second
order. This is referred to as renormalization and tends to become
relevant in all SPDE’s with a nonlinear term such as a product.
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Returning to the multiplicative SHE

Recall our formula for the solution of

∂t f = ∂2x f + f ξ

was given by

f (t, x) =
∞

∑
k=1

uk(t, x)

where

uk+1(t, x) =
∫

R+×R
p(t − s, x − y)uk(s, y)ξ(ds, dy).
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The iteration

So by the Ito isometry we have

E[uk+1(t, x)2] =
∫

R+×R
p(t − s, x − y)2E[uk(s, y)2]dsdy .

One can thus obtain inductive bounds that will show that

∑
k

E[uk(s, y)2] < ∞.

To show this, one however needs fairly stringent assumptions on
initial conditions, e.g.

sup
x∈R

e−a|x |E[f (0, x)2] < ∞.

Also d cannot be larger than 1.

Yier Lin, Shalin Parekh, Kevin Yang Part 2: Introduction to SPDE



Martingale methods

Given a space-time process defined on some probability space, how
can one identify it as the solution of some SPDE?

First consider SDE. Suppose Xt is a continuous process defined on
some space with the property that

Mt := Xt −
∫ t

0
b(Xs)ds

is a martingale such that

〈M〉t =
∫ t

0
σ(Xs)

2ds,

where b, σ are smooth with σ > 0.
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Martingale methods

Then Xt must have the same law as the diffusion

dX = b(X )dt + σ(X )dB.

Proof: Let Bt =
∫ t
0 σ(Xs)−1dMs . Note that B is a martingale

with quadratic variation t and therefore is a Brownian motion.
Moreover by construction

Xt −
∫ t

0
b(Xs)ds = Mt =

∫ t

0
σ(Xs)dBs .
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Similar theory for white-noise driven SPDEs

Theorem [Konno-Shiga, ’88]: suppose that (f (t, x))t≥0,x∈R is a
continuous process with the property that the processes

Mt(φ) = (f (t, ·), φ)L2(R) −
∫ t

0
(f (s, ·), φ′′)L2(R)ds

are martingales with respect to the filtration of f and that

〈M(φ)〉t =
∫ t

0
(σ(f (·, t))2φ, φ)L2(R)ds,

for all Schwartz functions φ on R. Then f is distributed as the
solution of

∂t f = ∂2x f + σ(f )ξ.
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Returning to the Brownian motions picture

Let’s do a computation with the empirical measures.
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The global limit

The global limit is the solution of the SPDE

∂tu = ∂2xu + ∂x
(√

p(t, x) · ξ
)

which happens to be the spatial derivative of

∂th = ∂2xh+
√

p(t, x) · ξ,

which looks like SHE (Edwards-Wilkinson) if one zooms in locally
around any deterministic space-time point.
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