Part 2: Introduction to SPDE

Yier Lin, Shalin Parekh, Kevin Yang

September 2021, UIRM @ MSRI

Yier Lin, Shalin Parekh, Kevin Yang [Part 2: Introduction to SPDE](#page-36-0)

 \triangleright \rightarrow \exists \triangleright \rightarrow

 Ω

Outline

- **1** What are SPDE and why are they useful/important/interesting?
- ² What is space-time white noise? Construction and calculus.
- **3** Basic linear SPDE and and Duhamel's principle
- **4** Chaos expansion and multiplicative SPDE.
- **Martingale methods to identify the law of an SPDE**
- ⁶ Singular SPDE: regularity computations and local subcriticality assumptions, pathwise solution theories
- **2** Markov property and invariant measures for SPDEs; rate of convergence.

SPDEs are to PDEs what SDEs are to ODEs. We are going to focus mainly on evolution SPDEs of the form

$$
\partial_t f = L(f) + \sigma(f)\xi.
$$

where L is some operator (possibly nonlinear) and σ is a linear operator. Here *ξ* is Gaussian space-time white noise, to be explained shortly.

Note the analogy with SDE's of the form

$$
dX_t = L(X_t)dt + \sigma(X_t)dB_t.
$$

Examples of L we will consider:

 \bullet (SHE / Edwards-Wilkinson) $L(f) = \partial_x^2 f$ or more generally $L(f) = -(-\partial_x^2)^{\alpha} f$. And $\sigma(f) = I$.

• (mSHE)
$$
L(f) = \partial_x^2 f
$$
 and $\sigma(f)g = fg$.

• (KPZ)
$$
L(f) = \partial_x^2 f + (\partial_x f)^2
$$
 and $\sigma(f) = I$.

御 ▶ す 君 ▶ す 君 ▶

 200

 \bullet (SHE / Edwards-Wilkinson) $\partial_t f = \partial_x^2 f + \xi$, or more generally $\partial_t f = -(-\partial_x^2)^{\alpha} f + \xi$

$$
\bullet \text{ (mSHE)} \partial_t f = \partial_x^2 f + f \xi.
$$

• (KPZ)
$$
\partial_t f = \partial_x^2 f + (\partial_x f)^2 + \xi
$$

押 トメミ トメミト

 2990

э

Why study these?

They describe the fluctuations of various systems coming from probability, statistical mechanics.

Simple example: iid random walks or brownian motions.

 $\sigma = 0.05 \ \sigma^2 = 0.0025 \ \tau = 400$

つくへ

Why study these?

Simple example: iid random walks or brownian motions.

 \mathcal{O}

Why study these?

Simple example: iid random walks or brownian motions.

Yier Lin, Shalin Parekh, Kevin Yang [Part 2: Introduction to SPDE](#page-0-0)

Often space-time white noise is described as a condinuum iid Gaussian field, i.e.,

$$
\mathbb{E}[\xi(t,x)\xi(s,y)]=\delta(t-s)\delta(x-y).
$$

That's not rigorous and it needs to be interpreted in an integrated sense: *ξ* is a random variable taking values in Schwarz distributions such that (ξ, f) is always a Gaussian and

$$
\mathbb{E}[(\xi, f)_{L^2}(\xi, g)_{L^2}] = (f, g)_{L^2},
$$

where $L^2 = L^2(\mathbb{R}_+ \times \mathbb{R})$.

How to prove existence of such a random variable *ξ* taking values in $\mathcal{S}'(\mathbb{R}^2)$? Similar to construction of Brownian motion. Several options:

1. Use Kolmogorov's extension theorem to construct a projective family of r.v. $\{(\xi, f)\}\$ indexed by $f \in S$ such that the convariance structure of any finite subfamily is as specified.

2. Choose an orthonormal basis $\{e_j\}$ for $L^2(\mathbb{R}_+\times\mathbb{R})$ and let ξ_j be iid $N(0,1)$. Then define

$$
(\xi, f) := \sum_j (e_j, f) \xi_j,
$$

which always converges by L^2 martingale convergence theorem.

 $\mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \times \mathbb{R}^n$

So far this defines a family (ξ, f) indexed by $f \in \mathcal{S}$ (in fact by $f \in L^2$) such that $(\xi, f + \alpha g) = (\xi, f) + \alpha(\xi, g)$ and such that $\mathbb{E}[(\xi, f)^2] = ||f||_{L^2}^2.$

After this, one still needs to "glue together" or "modify" this family of variables so that it can actually be realized as a random element of $\mathcal{S}'(\mathbb{R}^2)$. This is possible thanks to a Kolmogorov continuity criterion together with Gaussian tail bounds:

> $\mathbb{E}[|(\xi,f)|^p] \lesssim_p \|f\|_L^p$ ρ
L²

Note that $(\xi, f)_{L^2(\mathbb{R}_+ \times \mathbb{R})}$ is well-defined for all $f \in L^2(\mathbb{R}_+ \times \mathbb{R})$. It's usually denoted suggestively as

$$
\int_{\mathbb{R}_+\times\mathbb{R}} f(t,x)\xi(t,x)dtdx
$$

or as

$$
\int_{\mathbb{R}_+\times\mathbb{R}}f(t,x)\xi(dt\ dx),
$$

though it should be remarked that *ξ* is a.s. neither a function nor a measure.

Let's return to the additive-noise stochastic heat equation:

$$
\partial_t h(t,x) = \Delta_x h(t,x) + \xi(t,x),
$$

with $x \in \mathbb{R}^d$ and $t \geq 0$, and $h(0,x)$ some given function. Rearrange terms and formally apply the operator $e^{-t\Delta}$ to both sides to obtain

$$
\partial_t (e^{-t\Delta}h) = e^{-t\Delta} \partial_t h - e^{-t\Delta} \Delta h = e^{-t\Delta} \xi.
$$

Integrate both sides from 0 to t, then apply $e^{t\Delta}$:

$$
e^{-t\Delta}h(t,\cdot)-h(0,\cdot)=\int_0^t e^{-s\Delta}\xi(ds,\cdot).
$$

$$
h(t,\cdot)=e^{t\Delta}h(0,\cdot)+\int_0^t e^{(t-s)\Delta}\xi(ds,\cdot).
$$

What exactly is $e^{t\Delta}$? It's an operator that denotes the solution at time t to the solution of the equation

$$
\partial_t h = \Delta h.
$$

In other words $e^{t\Delta}$ is just convolution with the heat kernel:

$$
e^{t\Delta}f(x)=\int_{\mathbb{R}}p(t,x-y)f(y)dy,
$$

where

$$
p(t,x) = \frac{1}{(2\pi t)^{d/2}} e^{-|x|^2/2t}.
$$

Summarizing, we have shown formally that the "solution" of

$$
\partial_t h = \Delta h + \xi
$$

is given by

$$
h(t,x)=\int_{\mathbb{R}}\rho(t,x-y)h(0,y)dy+\int_{\mathbb{R}_+\times\mathbb{R}^d}\rho(t-s,x-y)\xi(ds\,dy).
$$

The integral in the second term on the RHS is deterministic and in $L^2(\mathbb{R}_+ \times \mathbb{R}^d)$ when $d = 1$.

医阿里氏阿里氏

つへへ

One can retroactively check that this is indeed the solution in the sense of Schwarz distributions, i.e.,

$$
-(h, \partial_t \phi) = (h, \Delta \phi) + (\xi, \phi)
$$

a.s. for all smooth space-time Schwarz functions *φ*.

It turns out that (the derivative of) h describes the fluctuations in the Brownian Motion picture from earlier. We will prove this later.

The kernel fails to be in $L^2(\mathbb{R}_+ \times \mathbb{R}^d)$ for $d > 1$.

But intuitively one expects there to be a well-defined fluctuation field for 2d noninteracting Brownian motions.

It turns out that the only issue is the singularity of the kernel at the origin.

In particular if $\phi \in \mathcal{S}(\mathbb{R}^{d+1})$ then one can make sense of the smoothed out field

$$
h(\phi) := \int_{\mathbb{R}^d} p^{\phi}(t,x-y)h(0,y)dy + \int_{\mathbb{R}_+\times\mathbb{R}^2} p^{\phi}(t-s,x-y)\xi(ds\,dy),
$$

where

$$
p^{\phi}(t,x)=(p*\phi)(t,x)=\int_{\mathbb{R}^3}p(t-s,x-y)\phi(s,y)dsdy.
$$

These random variables h(*φ*) as *φ* ranges through all Schwarz functions, can then be lifted to a random Schwarz distribution on $\mathbb{R}_+ \times \mathbb{R}^d$ which will solve the SHE in weak form.

Summarizing, the equation

$$
\partial_t h = \Delta h + \xi
$$

is solved by the Duhamel formula

$$
h(t,x)=\int_{\mathbb{R}}p(t,x-y)h(0,y)dy+\int_{\mathbb{R}_+\times\mathbb{R}}p(t-s,x-y)\xi(dsdy).
$$

One can show that for all d, $h(t, \cdot)$ can actually be evaluated as an element of $\mathcal{S}'(\mathbb{R}^d)$ for fixed times t and any initial data in $\mathcal{S}'(\mathbb{R}^d)$.

For fixed $t > 0$ the field $h(t, \cdot)$ is locally absolutely continuous w.r.t Brownian motion when $d = 1$ and w.r.t the Gaussian free field when $d = 2$.

 Ω

Nothing special about space-time white noise so far. We could replace it by any (possibly correlated) noise *η* and the solution is still given by the Duhamel formula:

$$
h(t,x)=\int_{\mathbb{R}}p(t,x-y)h(0,y)dy+\int_{\mathbb{R}_+\times\mathbb{R}}p(t-s,x-y)\eta(s,y)dsdy,
$$

provided that the integral on the right hand side makes sense (possibly in a distributional sense). This will not be the case for all Gaussian noises η but it will be true for example when $\eta = \partial_x \xi$ or *η* = $(-Δ_x)^αξ$.

医阿里氏阿里氏

Moving onto nonlinear SPDE...

So we can integrate deterministic integrands against *ξ*. What about random integrands? E.g. can we make sense of iterated integrals such as ...

$$
\int \bigg[\int f(t,x,s,y) \xi(ds\,dy) \bigg] \xi(dt\,dx)
$$

even with deterministic f ? How about k -fold integrals such as

$$
\int \cdots \int f(\mathbf{t}, \mathbf{x}) \zeta^{\otimes k} (d\mathbf{t}, d\mathbf{x})?
$$

And what about things like

$$
\int \sigma \bigg(\int f(t,x,s,y) \xi(ds\,dy) \bigg) \xi(dt\,dx)?
$$

Consider SPDE's such as the multiplicative SHE or its generalizations:

$$
\partial_t f = \partial_x^2 f + f \xi.
$$

$$
\partial_t f = \partial_x^2 f + \sigma(f) \xi,
$$

in spatial dimension $d = 1$.

We'll focus on the first one. Duhamel's principle still applies here, but as opposed to the linear case it gives an iterative relation rather than a finished solution, e.g.

$$
f(t,x)=\int_{\mathbb{R}}\rho(t,x-y)f(0,y)dy+\int_{\mathbb{R}_+\times\mathbb{R}}\rho(t-s,x-y)f(s,y)\xi(ds,dy
$$

Consider SPDE's such as the multiplicative SHE or its generalizations:

$$
\partial_t f = \partial_x^2 f + f \xi.
$$

$$
\partial_t f = \partial_x^2 f + \sigma(f) \xi,
$$

in spatial dimension $d = 1$.

We'll focus on the first one. Duhamel's principle still applies here, but as opposed to the linear case it gives an iterative relation rather than a finished solution, e.g.

$$
f(t,x)=\int_{\mathbb{R}}\rho(t,x-y)h(0,y)dy+\int_{\mathbb{R}_+\times\mathbb{R}}\rho(t-s,x-y)f(t,x)\xi(ds,dy)
$$

We can (Picard) iterate the previous relation once to obtain

$$
f(t,x) = \int_{\mathbb{R}} p(t,x-y) f(0,y) dy
$$

$$
+ \int_{\mathbb{R}_+ \times \mathbb{R}} \left[\int_{\mathbb{R}} p(t-s, x-y) p(s, y-z) f(0, z) dz \right] \xi(ds, dz)
$$

+
$$
\int_{\mathbb{R}_+ \times \mathbb{R}} \int_{\mathbb{R}_+ \times \mathbb{R}} p(t-s, x-y) p(s-u, y-z) f(u, z) \xi(du, dz) \xi(ds, dy).
$$

つくへ

 \triangleright \rightarrow \exists \triangleright \rightarrow

э

$$
f(t,x) = \sum_{k=1}^{\infty} u_k(t,x)
$$

where

$$
u_{k+1}(t,x)=\int_{\mathbb{R}_+\times\mathbb{R}}p(t-s,x-y)u_k(s,y)\xi(ds,dy)
$$

and u_0 is just the heat flow started from $h(0, \cdot)$.

つくへ

医阿里氏阿里氏

Nonrecursively we have that $u_k(t, x)$ is given by

$$
\int_{(\mathbb{R}_+\times\mathbb{R})^{k+1}}\prod_{i=1}^{k+1}\rho(t_i-t_{i-1},x_i-x_{i-1})f(0,x_{k+1})dx_{k+1}\xi^{\otimes k}(d\mathbf{t},d\mathbf{x}),
$$

with $t_{k+1} = t$ and $x_0 = x$.

つくへ

医阿里氏阿里氏

The filtration \mathcal{F}_t of ζ is defined to be the sigma algebras generated by (f, ξ) with f supported on $[0, t] \times \mathbb{R}$.

A random space time function $f(t, x)$ is called adapted to the filtration of ζ if $f(t, x)$ is \mathcal{F}_t measurable for all t, x.

A random space-time function is called predictable if it lies in the L^2 closure of the linear span of elementary functions: things of the form $f(x,t,\omega) = X(\omega) 1_{(a,b]}(t) 1_E(x)$ where $E \subset \mathbb{R}^d$ is Borel and X is \mathcal{F}_a measurable.

Theorem: any adapted continuous function is predictable.

 \rightarrow 4 \equiv \rightarrow 4 \equiv \rightarrow

The integral of an elementary process $f(t,x) = X \cdot 1_{(a,b]}(t) 1_E(x)$ against the noise can be defined in the obvious manner:

$$
\int_{\mathbb{R}_+\times\mathbb{R}}f(t,x)\xi(dt\ dx)=X\cdot(\xi,1_{(a,b]\times E}).
$$

One has the Ito-Walsh isometry

$$
\mathbb{E}\bigg[\bigg(\int_{\mathbb{R}_+\times\mathbb{R}}f(t,x)\xi(dt\ dx)\bigg)^2\bigg]=\int_{\mathbb{R}_+\times\mathbb{R}}\mathbb{E}[f(t,x)^2]dtdx,
$$

which allows us to define integrals for any adapted continuous function, in particular iterated integrals as we wanted earlier.

Note that if $f \in L^2({\mathbb R}_+ \times {\mathbb R})$ then it is not true that

$$
\int_{(\mathbb{R}_+\times\mathbb{R})^k}\prod_1^kf(t_i,x_i)\xi^{\otimes k}(d\mathbf{t},d\mathbf{x})=(f,\xi)^k.
$$

Rather the right hand side equals $H_k((\xi, f))$ when $||f||_{1^2} = 1$, where H_k is the k^{th} Hermite polynomial. Again, $\tilde{\zeta}$ is **not** a measure or a function.

In particular all k -fold iterated integrals are orthogonal to all n -fold iterated integrals for $k \neq n$. The set of all k-fold iterated integrals is called the k^{th} homogeneous chaos of $\boldsymbol{\zeta},$ denoted $\mathcal{H}^k(\Omega,\mathcal{F},\mathbb{P}).$

Theorem:
$$
L^2(\Omega, \mathcal{F}, \mathbb{P}) = \bigoplus_{k \in \mathbb{N}} \mathcal{H}^k(\Omega, \mathcal{F}, \mathbb{P}).
$$

Think about the simple case $k = 2$ with just a Brownian motion instead of white noise. Recall the computation of how

$$
\int_0^1 B_t dB_t = \frac{1}{2}(B_t^2 - t).
$$

There's a law of large numbers averaging happening at the second order. This is referred to as renormalization and tends to become relevant in all SPDE's with a nonlinear term such as a product.

 Ω

Returning to the multiplicative SHE

Recall our formula for the solution of

$$
\partial_t f = \partial_x^2 f + f \xi
$$

was given by

$$
f(t,x) = \sum_{k=1}^{\infty} u_k(t,x)
$$

where

$$
u_{k+1}(t,x)=\int_{\mathbb{R}_+\times\mathbb{R}}p(t-s,x-y)u_k(s,y)\xi(ds,dy).
$$

 QQ

化重复化重复

The iteration

So by the Ito isometry we have

$$
\mathbb{E}[u_{k+1}(t,x)^2] = \int_{\mathbb{R}_+\times\mathbb{R}} p(t-s,x-y)^2 \mathbb{E}[u_k(s,y)^2] ds dy.
$$

One can thus obtain inductive bounds that will show that

$$
\sum_{k} \mathbb{E}[u_k(s,y)^2] < \infty.
$$

To show this, one however needs fairly stringent assumptions on initial conditions, e.g.

$$
\sup_{x\in\mathbb{R}}e^{-a|x|}\mathbb{E}[f(0,x)^2]<\infty.
$$

Also d cannot be larger than 1.

 QQ

Given a space-time process defined on some probability space, how can one identify it as the solution of some SPDE?

First consider SDE. Suppose X_t is a continuous process defined on some space with the property that

$$
M_t := X_t - \int_0^t b(X_s) ds
$$

is a martingale such that

$$
\langle M \rangle_t = \int_0^t \sigma(X_s)^2 ds,
$$

where *b*, σ are smooth with $\sigma > 0$.

Then X_t must have the same law as the diffusion

$$
dX = b(X)dt + \sigma(X)dB.
$$

Proof: Let $B_t = \int_0^t \sigma(X_s)^{-1} dM_s$. Note that B is a martingale with quadratic variation t and therefore is a Brownian motion. Moreover by construction

$$
X_t - \int_0^t b(X_s) ds = M_t = \int_0^t \sigma(X_s) dB_s.
$$

Theorem [Konno-Shiga, '88]: suppose that $(f(t, x))_{t>0, x \in \mathbb{R}}$ is a continuous process with the property that the processes

$$
M_t(\phi)=(f(t,\cdot),\phi)_{L^2(\mathbb{R})}-\int_0^t(f(s,\cdot),\phi'')_{L^2(\mathbb{R})}ds
$$

are martingales with respect to the filtration of f and that

$$
\langle M(\phi)\rangle_t=\int_0^t(\sigma(f(\cdot,t))^2\phi,\phi)_{L^2(\mathbb{R})}ds,
$$

for all Schwartz functions *φ* on **R**. Then f is distributed as the solution of

$$
\partial_t f = \partial_x^2 f + \sigma(f)\xi.
$$

Returning to the Brownian motions picture

Let's do a computation with the empirical measures.

 \circ

The global limit is the solution of the SPDE

$$
\partial_t u = \partial_x^2 u + \partial_x \left(\sqrt{p(t,x)} \cdot \xi \right)
$$

which happens to be the spatial derivative of

$$
\partial_t h = \partial_x^2 h + \sqrt{p(t,x)} \cdot \xi,
$$

which looks like SHE (Edwards-Wilkinson) if one zooms in locally around any deterministic space-time point.

 200