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Ulam’s problem and Hammersley last passage percolation

L = longest up-right path from (0, 0) to (1, 1)



Ulam’s problem and Hammersley last passage percolation

L is the length of the longest increasing subsequence in a random permutation of SN
with N ∼ Poisson(θ2)

Interest: statistical properties of L when θ → ∞ (e.g. Baik–Deift–Johansson ‘99)



Last passage percolation on Z2

� L initial profile, E point in Z2

� ωi,j ∼ Exp(1), i.i.d. r.v.’s, i , j ∈ Z
� Directed path π composed of → and ↑ s.t. π(0) ∈ L and π(n) = E

� Last passage time: LL→E = max
π:A→E
A∈L

�

1≤k≤n

ωπ(k)

E

L

L

E



Geometries of LPP

LppL→E Lp�L→E

E

L

L

E

L
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LstatL→E

stationary

L = SRW



Scaling limits

We are interested in the scaling limit of last passage time L�L→Eτ (u)
with ending point

Eτ (u) = τN(1, 1) + u (2N)2/3(1,−1) for 0 < τ ≤ 1 and u ∈ R

for � ∈ {pp, p�, stat}

L�N(τ, u):=
L�L→Eτ (u)

− 4τN

24/3N1/3

χ�(τ, u):= lim
N→∞

L�N(τ, u)



Scaling limits

L�N(τ, u):=
L�L→Eτ (u)

− 4τN

24/3N1/3

χ�(τ, u):= lim
N→∞

L�N(τ, u)

We are interested in the scaling limit of last passage time L�L→Eτ (u)
with ending point

Eτ (u) = τN(1, 1) + u (2N)2/3(1,−1) for 0 < τ ≤ 1 and u ∈ R

for � ∈ {pp, p�, stat}

Airy processes

χpp(1, u)=A2(u)− u2

χp�(1, u)=21/3A1(2
−2/3u)

χstat(1, u)=Astat(u)

Prähofer–Spohn ‘02

Sasamoto ‘05

Baik–Ferrari–Péché ‘09

lim
�→0

�−1/2(A�(�x)−A�(0)) =
√
2B(x)

Hägg ‘08, Corwin–Hammond ‘11



Scaling limits
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∼ e−s3 ∼ e−s3/2

FGUE(s) = P
�
A2(0) ≤ s

�

Tracy–Widom ‘94

FGOE(2s) = P
�
A1(0) ≤ s

�

Tracy–Widom ‘96

FBR(s) = P
�
Astat(0) ≤ s

�

Baik–Rains ‘00

Limit distributions of the largest eigenvalue in
Gaussian ensembles of random matrices







Space-time process

Slow decorrelation

(N,N)

(N + u(2N)2/3,N − u(2N)2/3)

(N − Nν ,N − Nν)

Let ν < 1, for any M > 0

lim
N→∞

P
�
|L(N,N)− L(N − Nν ,N − Nν)− 4Nν | ≥ MN1/3

�
= 0

� Non-trivial fluctuations at a distance of order N2/3

from the diagonal

���

We consider the scaled process

L�N(τ, u) :=
L�(τN+u(2N)2/3, τN−u(2N)2/3)−4τN

24/3N1/3



Time-time covariance: universality for short times

Let
χ�(τ) = lim

N→∞
L�N(τ, uτ )

and

Cov (χ�(τ),χ�(1)) = E [χ�(τ)χ�(1)]− E [χ�(τ)]E [χ�(1)]

Takeuchi–Sano ‘12, Ferrari–Spohn ‘16

Theorem (Ferrari–O. ‘19)

As τ → 1, for any δ > 0

Cov (χ�(τ),χ�(1)) =
1

2
Var (ξ�(u1)) +

τ2/3

2
Var

�
ξ�(τ−2/3uτ )

�

− (1− τ)2/3

2
Var

�
ξBR ((1− τ)−2/3(u1 − uτ ))

�
+O(1− τ)1−δ

Lemma (Ferrari–O. ‘19)

For any δ > 0, as τ → 1

Var [χ�(1)− χ�(τ)] = (1− τ)2/3 Var
�
ξBR ((1− τ)−2/3(u1 − uτ ))

�
+O(1− τ)1−δ

with

ξBR (u)
d
= max

v∈R
{
√
2B(v) +A2(v)− (v − u)2}.



LPP concatenation property

Consider two paths with ending points

Eτ = τN(1, 1) + uτ (2N)2/3(1,−1)

and
E1 = N(1, 1) + u1 (2N)2/3(1,−1)

Define I (w) as the intersection point of L�L→E1
with the antidiagonal through Eτ

I (w) = τN(1, 1) + w (2τN)2/3(1,−1)

⇓

L�L→E1
= max

w∈R
{L�L→I (w) + Lpp

I (w)→E1
}

(N,N)

E1

I (w)

Eτ



Path localization

L�L→E1
= max

w∈R
{L�L→I (w) + Lpp

I (w)→E1
}

1 Localization: the probability that the
maximizing path passes through I (w) with

|w | > M is bounded by Ce−cM2
uniformly in N

(obtained via comparison with the stationary
model)

2 Local convergence: convergence of the
covariance on the region |w | ≤ M

(N,N)

E1

I (w)

Eτ



Path localization

L�L→E1
= max

|w|≤M
{L�L→I (w) + Lpp

I (w)→E1
}

1 Localization: the probability that the
maximizing path passes through I (w) with

|w | > M is bounded by Ce−cM2
uniformly in N

(obtained via comparison with the stationary
model)

2 Local convergence: convergence of the
covariance on the region |w | ≤ M

(N,N)

E1

I (w)

Eτ



Covariance behavior as τ → 1

Case uτ = u1 = 0

As τ → 1 Var [χ�(1)− χ�(τ)] = (1− τ)2/3 Var (ξBR ) +O(1− τ)1−δ with

ξBR
d
= max

v∈R
{
√
2B(v) +A2(v)− v2}



Covariance behavior as τ → 1

Case uτ = u1 = 0

As τ → 1 Var [χ�(1)− χ�(τ)] = (1− τ)2/3 Var (ξBR ) +O(1− τ)1−δ with

ξBR
d
= max

v∈R
{
√
2B(v) +A2(v)− v2}

Sketch of the proof

χ�(1)− χ�(τ) =max
w∈R

�
τ1/3

�
A�(τ−2/3w)−A�(0)

�

+ (1− τ)1/3
�
A2

�
(1− τ)−2/3w

�
− (1− τ)−4/3w2

��

=(1− τ)1/3 max
v∈R

��
τ

1−τ

�1/3�A�
��

1−τ
τ

�2/3
v
�
−A�(0)

�

+A2(v)− v2
�

w = (1 − τ)2/3v



Covariance behavior as τ → 1

Case w = 0

As τ → 1 Var [χ�(1)− χ�(τ)] = (1− τ)2/3 Var (ξBR ) +O(1− τ)1−δ with

ξBR
d
= max

v∈R
{
√
2B(v) +A2(v)− v2}

Sketch of the proof

χ�(1)− χ�(τ) =max
w∈R

�
τ1/3

�
A�(τ−2/3w)−A�(0)

�

+ (1− τ)1/3
�
A2

�
(1− τ)−2/3w

�
− (1− τ)−4/3w2

��

=(1− τ)1/3 max
v∈R

��
τ

1−τ

�1/3�A�
��

1−τ
τ

�2/3
v
�
−A�(0)

�

+A2(v)− v2
�

As τ → 1,
�

τ
1−τ

�1/3�A�
��

1−τ
τ

�2/3
v
�
−A�(0)

�
�

√
2B(v)

with an error of order O(1− τ)1−δ , for any δ > 0.



Half-space last passage percolation

� Model in half-space: TASEP on half-line with reservoir in the origin

� Equivalent to LPP on the full space with weights symmetric w. r. t. the diagonal

ωi,j ∼
�
Exp(1), i ≥ j + 1

Exp(α), i = j

Symmetrized LPP with geometric weights
Baik–Rains ’01

Sasamoto–Imamura ‘04

and exponential weights
Baik–Barraquand–Corwin–Suidan ‘18

Exp(1)

Exp(α)

(N,N)



Half-space last passage percolation

Theorem (BBCS ‘18)

a) For α > 1/2,

lim
N→∞

P
�
LN,N − 4N

24/3N1/3
< s

�
= FGSE (s).

b) For α = 1/2,

lim
N→∞

P
�
LN,N − 4N

24/3N1/3
< s

�
= FGOE (s).

c) For α < 1/2 and σ = (1−2α)1/2

α(1−α)

lim
N→∞

P




LN,N − N
α(1−α)

σN1/2
< s


 = G(s).

d) For any κ ∈ (0, 1) and α >
√

κ
1+

√
κ
,

lim
N→∞

P
�
LN,κN − (1 +

√
κ)2N

σN1/3
< s

�
= FGUE (s),

where σ = (1+
√

κ)4/3

κ1/6 .



Stationary half-space LPP

We consider the half-space LPP from the origin to (N,N − n) with the
following weights

ωi,j ∼





Exp( 1
2
+ α) i = j > 1

Exp( 1
2
− α) j = 1, i > 1

0 i = j = 1

Exp(1) otherwise

α ∈ (−1/2, 1/2)

LN,N−n is stationary in the sense of
Balász–Cator–Seppäläinen ‘16,
i.e. it has stationary increments along the
vertical and the horizontal directions

Stationary full-space LPP: Baik–Rains ‘00

(N,N−n)

Exp( 1
2
+ α) Exp(1)

Exp( 1
2
− α)

0



Limit distribution

Theorem (Betea–Ferrari–O. ‘19)

Let δ ∈ R, u > 0. Let

α = 2−4/3δN−1/3, n = u25/3N2/3.

Then

lim
N→∞

P

�
LN,N−n − 4N + 4u(2N)2/3

24/3N1/3
≤ S

�
= F

(δ,u)
0, half (S)

where
F
(δ,u)
0, half (S) = ∂S

�
pf (J −A)Gδ,u(S)

�

with J =
�

0 1
−1 0

�
and

Gδ,u(S) = eδ,u(S)−
�
−gδ,u1 gδ,u2

�����(�− J−1A)−1

�
−hδ,u

1

hδ,u2

��

� A = limN→∞ K is the limit kernel of Sasamoto–Imamura ‘04 and
Baik–Barraquand–Corwin–Suidan ‘18 interpolating between the GOE, GSE, GUE
and Gaussian distributions



A Pfaffian model

Consider the half-space LPP L̃N,N−n with weights

ω̃i,j ∼





Exp( 1
2
+ α) i = j > 1

Exp( 1
2
+ β) j = 1, i > 1

Exp(α+ β) i = j = 1

Exp(1) otherwise

where α ∈ (−1/2, 1/2), β ∈ (0, 1/2) and
α+ β > 0

⇒ the distribution of L̃N,N−n is a Fredholm
pfaffian

P(L̃N,N−n ≤ s) = pf (J − K)L2(s,∞)

where K is a 2×2 matrix kernel

Rains ’00

Baik–Barraquand–Corwin–Suidan ’18

(N,N−n)

Exp( 1
2
+ α) Exp(1)

Exp( 1
2
+ β)

Exp(α+ β)



From integrable to stationary

1 Shift argument: Let L0N,N−n = L̃N,N−n − ω̃1,1. For α+ β > 0,

P(L0N,N−n ≤ s) =

�
�+

1

α+ β
∂s

�
P(L̃N,N−n ≤ s)

GOAL: obtain LN,N−n = limα+β→0 L
0
N,N−n

2 Kernel decomposition: The kernel K of L̃N,N−n splits as

K = K + (α+ β)R

where

R =


|g1�

�
f β+

���−
���f β+
�
�g1|

���f β+
�
�g2|

− |g2�
�
f β+

��� 0




⇒ P(LN,N−n ≤ s) = lim
α+β→0

∂S

�
pf(J − K)

�
1

α+ β
− �Y , (�− G)−1X �

��

with X =

����
0

f β+

�
and Y = �−g1 g2| and G = J−1K

3 Analytic continuation fβ(x) ∼ e−βx is diverging for β < 0 ⇒ determine an
expression of the kernel analytic in (α,β) ∈ (−1/2, 1/2)2



Limit to the Baik–Rains distribution

� Two-parameters family of distributions:

u = distance of the end point from the diagonal

δ = limit strength of the diagonal weights

Theorem (Betea–Ferrari–O. ‘19)

Let S = s + δ(2u + δ) and u + δ = w fixed. Then

lim
u→∞

F
(δ,u)
0, half (S) = FBR,w (s)

where FBR,w (s) is the extended Baik–Rains distribution

FBR,w (s) = ∂s
�
FGUE (s + w2)

�
Rw −

�
Ψw

��(�− K Ai,w )
−1Φw

� ��

with K Ai,w the (shifted) Airy kernel.



LPP with infinite geometry

� equi-distributed-by-diagonal full quarter plane: on i + j = k + 1 (k ≥ 1) each
variable is iid Geom(aqi+j−1) = Geom(aqk )

� P(Geom(u) = n) = un(1− u), n ≥ 0

� L1 = maximal path from (1, 1) → (∞,∞) using down-left steps (orange)

� L2 = maximal path from (∞, 1) → (1,∞) using down-right steps (blue)

� by RSK correspondences L1 and L2 have the same distribution

(1, 1)

Geom(aq)

Geom(aq2)

Geom(aq3)

Geom(aq4)

Geom(aq5)

i

j



Discrete Muttalib–Borodin distribution

P(Λ) ∝ qη left vol
�
aq

η+θ
2

� central vol
qθ right vol

� We consider Λ1,1 the corner (largest) part of a Muttalib–Borodin-distributed plane
partition Λ when η = θ = 1 and M = N = ∞

N M



Main result

Theorem (Betea–O. ‘21)

Fix α ≥ 0. Let q = e−�, a = e−α� and L ∈ {L1, L2,Λ1,1}. We have:

lim
�→0+

P (�L+ 2 log(�) < s) = det(1− Oα)L2(s,∞) := Gα(s)

where Oα(x , y) = e−
x
2
− y

2 Bessα(e−x , e−y ) (Johansson ‘08) and

Bessα(x , y) =
� 1
0 Jα(2

√
tx)Jα(2

√
ty)dt is the RMT Bessel kernel (hard edge of

Laguerre/Jacobi ensembles) with J the Bessel function.

Remark
Gα has interpolating properties (Johansson ‘08):

� G0(s) = e−e−s
is the Gumbel distribution

� limα→∞ Gα(−2 log(2(α− 1)) + (α− 1)−2/3s) = FGUE (s)

Theorem (Betea–O. ‘21)

As q → 1−, L has

� Gumbel fluctuations, if a = 1

� transitional (exponential) hard-edge Bessel fluctuations, if a → 1 critically

� Tracy–Widom fluctuations, if 0 < a < 1 fixed (N1/3 scaling)



Thank you
for your attention!


