On some models of last passage percolation and their scaling limits

Alessandra Occelli

based on joint works with D. Betea and P. Ferrari

MSRI, Berkeley

September 13th, 2021

Ulam's problem and Hammersley last passage percolation

 $L =$ longest up-right path from $(0, 0)$ to $(1, 1)$

Ulam's problem and Hammersley last passage percolation

L is the length of the longest increasing subsequence in a random permutation of S_N with $N \sim Poisson(\theta^2)$

Interest: statistical properties of L when $\theta \to \infty$ (e.g. Baik–Deift–Johansson '99)

Last passage percolation on \mathbb{Z}^2

- \triangleright $\mathcal L$ initial profile, E point in $\mathbb Z^2$
- $\blacktriangleright \omega_{i,j} \sim Exp(1)$, i.i.d. r.v.'s, $i, j \in \mathbb{Z}$

 \triangleright Directed path π composed of \rightarrow and \uparrow s.t. $\pi(0) \in \mathcal{L}$ and $\pi(n) = E$

Last passage time:
$$
L_{\mathcal{L}\to E} = \max_{\substack{\pi:A\to E\\ A\in \mathcal{L}}} \sum_{1\leq k\leq n} \omega_{\pi(k)}
$$

Geometries of LPP

Scaling limits

We are interested in the scaling limit of last passage time $L_{\mathcal{L}\to E_{\tau}(u)}^{\star}$ with ending point $E_{\tau}(u) = \tau N(1,1) + \mu (2N)^{2/3}(1,-1)$ for $0 < \tau \le 1$ and $u \in \mathbb{R}$

$$
L_N^{\star}(\tau, u) := \frac{L_{\mathcal{L}\to E_{\tau}(u)}^{\star} - 4\tau N}{2^{4/3}N^{1/3}}
$$

$$
\chi^{\star}(\tau, u) := \lim_{N \to \infty} L_N^{\star}(\tau, u)
$$

for $\star \in \{pp, pl, stat\}$

Scaling limits

We are interested in the scaling limit of last passage time $L_{\mathcal{L}\to E_{\tau}(u)}^{\star}$ with ending point $E_{\tau}(u) = \tau N(1,1) + u(2N)^{2/3}(1,-1)$ for $0 < \tau \le 1$ and $u \in \mathbb{R}$

$$
L_N^{\star}(\tau, u) := \frac{L_{\mathcal{L}\to E_{\tau}(u)}^{\star} - 4\tau N}{2^{4/3}N^{1/3}}
$$

$$
\chi^*(\tau, u) := \lim_{N \to \infty} L_N^*(\tau, u)
$$

Airy processes

$$
\chi^{pp}(1, u) = \mathcal{A}_2(u) - u^2
$$

Prähofer-Spohn '02

$$
\chi^{p\ell}(1, u) = 2^{1/3} \mathcal{A}_1(2^{-2/3} u)
$$

Sasamoto '05

$$
\chi^{\textit{stat}}(1, u) \!=\! \mathcal{A}_{\textit{stat}}(u)
$$

Baik-Ferrari-Péché '09

for $\star \in \{pp, pl, stat\}$

$$
\lim_{\epsilon \to 0} \epsilon^{-1/2} (\mathcal{A}_{\star}(\epsilon x) - \mathcal{A}_{\star}(0)) = \sqrt{2}B(x)
$$

Hägg '08, Corwin-Hammond '11

Scaling limits

Space-time process

Slow decorrelation

Time-time covariance: universality for short times

Let

$$
\chi^{\star}(\tau)=\lim_{N\to\infty}L_N^{\star}(\tau,u_{\tau})
$$

and

$$
\mathsf{Cov}\left(\chi^{\star}(\tau),\chi^{\star}(1)\right)=\mathbb{E}\left[\chi^{\star}(\tau)\chi^{\star}(1)\right]-\mathbb{E}\left[\chi^{\star}(\tau)\right]\mathbb{E}\left[\chi^{\star}(1)\right]
$$

Takeuchi–Sano '12, Ferrari–Spohn '16

Theorem (Ferrari–O. '19) As $\tau \to 1$, for any $\delta > 0$ $\mathsf{Cov}\left(\chi^{\star}(\tau),\chi^{\star}(1)\right)=\frac{1}{2}\mathsf{Var}\left(\xi^{\star}(u_1)\right)+\frac{\tau^{2/3}}{2}$ $\textsf{Var}\left(\xi^{\star}(\tau^{-2/3}u_{\tau})\right)$ $-\frac{(1-\tau)^{2/3}}{2}$ ${\sf Var}\left(\xi_{BR}((1-\tau)^{-2/3}(u_1-u_{\tau}))\right)+\mathcal{O}(1-\tau)^{1-\delta}$

Lemma (Ferrari–O. '19)

For any $\delta > 0$, as $\tau \to 1$

$$
\mathsf{Var}\left[\chi^\star(1) - \chi^\star(\tau)\right] = (1-\tau)^{2/3}\,\mathsf{Var}\left(\xi_{BR}((1-\tau)^{-2/3}(u_1-u_\tau))\right) + \mathcal{O}(1-\tau)^{1-\delta}
$$

with

$$
\xi_{BR}(u)\stackrel{d}{=} \max_{v\in\mathbb{R}}\{\sqrt{2}B(v)+\mathcal{A}_2(v)-(v-u)^2\}.
$$

LPP concatenation property

Consider two paths with ending points

$$
E_{\tau} = \tau N(1,1) + u_{\tau} (2N)^{2/3}(1,-1)
$$

and

 $E_1 = N(1,1) + u_1 (2N)^{2/3}(1,-1)$

Define $I(w)$ as the intersection point of L^*_{ℓ} $\mathcal{L}\rightarrow\mathsf{E}_1$ with the antidiagonal through E_{τ}

$$
I(w) = \tau N(1,1) + w (2\tau N)^{2/3}(1,-1)
$$

$$
\Downarrow
$$

$$
L_{\mathcal{L}\to E_1}^{\star} = \max_{w\in\mathbb{R}} \{L_{\mathcal{L}\to I(w)}^{\star} + L_{I(w)\to E_1}^{pp}\}
$$

Path localization

$$
L_{\mathcal{L}\to E_1}^{\star} = \max_{w\in\mathbb{R}} \{L_{\mathcal{L}\to I(w)}^{\star} + L_{I(w)\to E_1}^{pp}\}
$$

0 Localization: the probability that the maximizing path passes through $I(w)$ with $|w| > M$ is bounded by Ce^{-cM^2} uniformly in N

(obtained via comparison with the stationary model)

² Local convergence: convergence of the covariance on the region $|w| \leq M$

Path localization

$$
L_{\mathcal{L}\rightarrow E_1}^{\star} = \max_{|w| \leq M} \{L_{\mathcal{L}\rightarrow I(w)}^{\star} + L_{I(w)\rightarrow E_1}^{pp}\}
$$

0 Localization: the probability that the maximizing path passes through $I(w)$ with $|w| > M$ is bounded by Ce^{-cM^2} uniformly in N

(obtained via comparison with the stationary model)

² Local convergence: convergence of the covariance on the region $|w| \leq M$

Covariance behavior as $\tau \rightarrow 1$

Case $u_{\tau} = u_1 = 0$

As $\tau \to 1$ Var $[\chi^*(1) - \chi^*(\tau)] = (1 - \tau)^{2/3}$ Var $(\xi_{BR}) + \mathcal{O}(1 - \tau)^{1-\delta}$ with

$$
\xi_{BR} \stackrel{d}{=} \max_{v \in \mathbb{R}} \{ \sqrt{2}B(v) + A_2(v) - v^2 \}
$$

Covariance behavior as $\tau \rightarrow 1$

Case $u_{\tau} = u_1 = 0$ As $\tau \to 1$ Var $[\chi^*(1) - \chi^*(\tau)] = (1 - \tau)^{2/3}$ Var $(\xi_{BR}) + \mathcal{O}(1 - \tau)^{1-\delta}$ with $\xi_{BR} \stackrel{d}{=} \max_{\mathbf{m} \in \mathbb{R}^m}$ v∈R $\{\sqrt{2}B(v) + A_2(v) - v^2\}$

Sketch of the proof

$$
\chi^{\star}(1) - \chi^{\star}(\tau) = \max_{w \in \mathbb{R}} \left\{ \tau^{1/3} \left[\mathcal{A}^{\star}(\tau^{-2/3}w) - \mathcal{A}^{\star}(0) \right] + (1 - \tau)^{1/3} \left[\mathcal{A}_{2} \left((1 - \tau)^{-2/3}w \right) - (1 - \tau)^{-4/3}w^{2} \right] \right\}
$$

$$
= (1 - \tau)^{1/3} \max_{v \in \mathbb{R}} \left\{ \left(\frac{\tau}{1 - \tau} \right)^{1/3} \left[\mathcal{A}^{\star} \left(\left(\frac{1 - \tau}{\tau} \right)^{2/3}v \right) - \mathcal{A}^{\star}(0) \right] + \mathcal{A}_{2}(v) - v^{2} \right\}
$$

Covariance behavior as $\tau \rightarrow 1$

Case $w = 0$

As $\tau \to 1$ Var $[\chi^*(1) - \chi^*(\tau)] = (1 - \tau)^{2/3}$ Var $(\xi_{BR}) + \mathcal{O}(1 - \tau)^{1-\delta}$ with $\xi_{BR} \stackrel{d}{=} \max_{v \in \mathbb{R}} \{ \sqrt{2}B(v) + A_2(v) - v^2 \}$

Sketch of the proof

$$
\chi^*(1) - \chi^*(\tau) = \max_{w \in \mathbb{R}} \left\{ \tau^{1/3} \left[\mathcal{A}^*(\tau^{-2/3}w) - \mathcal{A}^*(0) \right] + (1 - \tau)^{1/3} \left[\mathcal{A}_2 \left((1 - \tau)^{-2/3}w \right) - (1 - \tau)^{-4/3}w^2 \right] \right\}
$$

$$
= (1 - \tau)^{1/3} \max_{v \in \mathbb{R}} \left\{ \left(\frac{\tau}{1 - \tau} \right)^{1/3} \left[\mathcal{A}^*(\left(\frac{1 - \tau}{\tau} \right)^{2/3}v \right) - \mathcal{A}^*(0) \right] + \mathcal{A}_2(v) - v^2 \right\}
$$

As $\tau \rightarrow 1$,

$$
\left(\frac{\tau}{1-\tau}\right)^{1/3}\left[\mathcal{A}^{\star}\left(\left(\frac{1-\tau}{\tau}\right)^{2/3}v\right)-\mathcal{A}^{\star}(0)\right]\simeq\sqrt{2}B(v)
$$

with an error of order $\mathcal{O}(1-\tau)^{1-\delta}$, for any $\delta > 0$.

Half-space last passage percolation

- ▶ Model in half-space: TASEP on half-line with reservoir in the origin
- ▶ Equivalent to LPP on the full space with weights symmetric w. r. t. the diagonal

$$
\omega_{i,j} \sim \begin{cases} \text{Exp}(1), & i \geq j+1 \\ \text{Exp}(\alpha), & i = j \end{cases}
$$

Symmetrized LPP with geometric weights Baik–Rains '01 Sasamoto–Imamura '04

and exponential weights Baik–Barraquand–Corwin–Suidan '18

Half-space last passage percolation

Theorem (BBCS '18) a) For $\alpha > 1/2$. lim $N\rightarrow\infty$ \mathbb{P} $\left(\frac{L_{N,N}-4N}{2}\right)$ $\frac{2^{4/3}N^{1/3}}{2^{4/3}N^{1/3}} < s$ λ $= F_{GSE}(s).$ b) For $\alpha = 1/2$, lim $N\rightarrow\infty$ \mathbb{P} $\left(\frac{L_{N,N}-4N}{2}\right)$ $\frac{2^{4/3}N^{1/3}}{2^{4/3}N^{1/3}} < s$ λ $= F_{GOE}(s).$ **c)** For $\alpha < 1/2$ and $\sigma = \frac{(1-2\alpha)^{1/2}}{\alpha(1-\alpha)}$ $\alpha(1-\alpha)$ lim $N\rightarrow\infty$ \mathbb{P} $\sqrt{ }$ \mathbf{I} $\frac{\mathcal{L}_{N,N}-\frac{N}{\alpha(1-\alpha)}}{\sigma N^{1/2}}<\mathsf{s}$ \setminus $= G(s).$ **d)** For any $\kappa \in (0,1)$ and $\alpha >$ $\sqrt{\kappa}$ $\frac{\sqrt{\kappa}}{1+\sqrt{\kappa}}$, lim $N\rightarrow\infty$ \mathbb{P} $\left(\frac{L_{N,\kappa N}-(1+\sqrt{\kappa})^2N}{\kappa}\right)$ $\frac{(-1)^{1/3}}{\sigma N^{1/3}} < s$ λ $= F_{GUE}(s),$ where $\sigma = \frac{(1+\sqrt{\kappa})^{4/3}}{1/6}$ $\frac{(\sqrt{\kappa})^{\frac{1}{\kappa}}}{\kappa^{1/6}}$.

Stationary half-space LPP

We consider the half-space LPP from the origin to $(N, N - n)$ with the following weights

$$
\omega_{i,j} \sim \begin{cases} \n\frac{Exp(\frac{1}{2} + \alpha)}{1} & i = j > 1 \\ \n\frac{Exp(\frac{1}{2} - \alpha)}{1} & j = 1, i > 1 \\ \n0 & i = j = 1 \\ \n\frac{Exp(1)}{1} & \text{otherwise} \n\end{cases}
$$

 $\alpha \in (-1/2, 1/2)$

 $L_{N,N-n}$ is stationary in the sense of Balász–Cator–Seppäläinen '16, i.e. it has stationary increments along the vertical and the horizontal directions

Stationary full-space LPP: Baik–Rains '00

Limit distribution

Theorem (Betea–Ferrari–O. '19)

Let $\delta \in \mathbb{R}$, $u > 0$. Let

$$
\alpha = 2^{-4/3} \delta N^{-1/3}, \quad n = u 2^{5/3} N^{2/3}.
$$

Then

$$
\lim_{N\to\infty} \mathbb{P}\left(\frac{L_{N,N-n}-4N+4u(2N)^{2/3}}{2^{4/3}N^{1/3}}\leq S\right)=F_{0,\,half}^{(\delta,u)}(S)
$$

where

$$
F_{0,\,half}^{(\delta,u)}(S) = \partial_S \left\{ pf(J-\overline{A})G_{\delta,u}(S) \right\}
$$

with $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and

$$
G_{\delta,u}(S) = e^{\delta,u}(S) - \left\langle -g_1^{\delta,u} \quad g_2^{\delta,u} \right| (1 - J^{-1}\overline{A})^{-1} \left(\begin{array}{c} -h_1^{\delta,u} \\ h_2^{\delta,u} \end{array} \right) \right\rangle
$$

 $\blacktriangleright \overline{\mathcal{A}} = \lim_{N \to \infty} \overline{K}$ is the limit kernel of Sasamoto–Imamura '04 and Baik–Barraquand–Corwin–Suidan '18 interpolating between the GOE, GSE, GUE and Gaussian distributions

A Pfaffian model

Consider the half-space LPP $\tilde{L}_{N,N-n}$ with weights

$$
\tilde{\omega}_{i,j} \sim \begin{cases} \n\frac{Exp(\frac{1}{2} + \alpha)}{E \times p(\frac{1}{2} + \beta)} & i = j > 1 \\ \n\frac{Exp(\alpha + \beta)}{E \times p(\alpha + \beta)} & i = j = 1 \\ \n\frac{Exp(1)}{E \times p(1)} & \text{otherwise} \n\end{cases}
$$

where $\alpha \in (-1/2, 1/2)$, $\beta \in (0, 1/2)$ and $\alpha + \beta > 0$

 \Rightarrow the distribution of $\tilde{L}_{N,N-n}$ is a Fredholm pfaffian

$$
\mathbb{P}(\tilde{L}_{N,N-n}\leq s)=\mathit{pf}(J-K)_{L^2(s,\infty)}
$$

where K is a 2×2 matrix kernel Rains '00 Baik–Barraquand–Corwin–Suidan '18 $Exp(\alpha + \beta)$

From integrable to stationary

9 Shift argument: Let
$$
L^0_{N,N-n} = \tilde{L}_{N,N-n} - \tilde{\omega}_{1,1}
$$
. For $\alpha + \beta > 0$,

$$
\mathbb{P}(L^0_{N,N-n}\leq s)=\left(\mathbb{1}+\frac{1}{\alpha+\beta}\partial_s\right)\mathbb{P}(\tilde{L}_{N,N-n}\leq s)
$$

GOAL: obtain $L_{N,N-n} = \lim_{\alpha+\beta\to 0} L^0_{N,N-n}$

2 Kernel decomposition: The kernel K of $\tilde{L}_{N,N-n}$ splits as

$$
K=\overline{K}+(\alpha+\beta)R
$$

where

$$
R = \begin{pmatrix} |g_1\rangle \left\langle f_+^\beta \middle| - \left| f_+^\beta \right\rangle \left\langle g_1 \middle| & \left| f_+^\beta \right\rangle \left\langle g_2 \middle| \right\rangle \right. \\ \left. \left. - \left| g_2 \right\rangle \left\langle f_+^\beta \middle| & 0 \right\rangle \right. \end{pmatrix}
$$

\n
$$
\Rightarrow \mathbb{P}(L_{N,N-n} \leq s) = \lim_{\alpha + \beta \to 0} \partial_s \left\{ \mathsf{pf}(J - \overline{K}) \left(\frac{1}{\alpha + \beta} - \langle Y, (\mathbb{1} - \overline{G})^{-1} X \rangle \right) \right\}
$$

\nwith $X = \begin{vmatrix} 0 \\ f_+^\beta \end{vmatrix}$ and $Y = \langle -g_1 \quad g_2 \vert$ and $\overline{G} = J^{-1} \overline{K}$

3 Analytic continuation $f_\beta(x) \sim e^{-\beta x}$ is diverging for $\beta < 0$ ⇒ determine an expression of the kernel analytic in $(\alpha, \beta) \in (-1/2, 1/2)^2$

Limit to the Baik–Rains distribution

� Two-parameters family of distributions:

 $u =$ distance of the end point from the diagonal

 $\delta =$ limit strength of the diagonal weights

Theorem (Betea–Ferrari–O. '19) Let $S = s + \delta(2u + \delta)$ and $u + \delta = w$ fixed. Then

$$
\lim_{u\to\infty}F_{0,\;half}^{(\delta,u)}(S)=F_{BR,w}(s)
$$

where $F_{BR,w}(s)$ is the extended Baik–Rains distribution

$$
F_{BR,w}(s) = \partial_s \left[F_{GUE}(s+w^2) \left(\mathcal{R}_w - \langle \Psi_w | (\mathbb{1} - \mathcal{K}_{Ai,w})^{-1} \Phi_w \rangle \right) \right]
$$

with $K_{Ai,w}$ the (shifted) Airy kernel.

LPP with infinite geometry

▶ equi-distributed-by-diagonal full quarter plane: on $i + j = k + 1$ $(k \ge 1)$ each variable is iid $Geom(aq^{i+j-1}) = Geom(aq^k)$

$$
\blacktriangleright \mathbb{P}(\textit{Geom}(u) = n) = u^n(1-u), n \geq 0
$$

- ▶ L₁ = maximal path from $(1, 1) \rightarrow (\infty, \infty)$ using down-left steps (orange)
- ▶ $L_2 =$ maximal path from $(\infty, 1) \rightarrow (1, \infty)$ using down-right steps (blue)
- by RSK correspondences L_1 and L_2 have the same distribution

Discrete Muttalib–Borodin distribution

$$
\mathbb{P}(\Lambda) \propto q^{\eta \text{ left vol}} \left(a q^{\frac{\eta+\theta}{2}} \right)^{\text{ central vol}} q^{\theta \text{ right vol}}
$$

 \blacktriangleright We consider $\Lambda_{1,1}$ the corner (largest) part of a Muttalib–Borodin-distributed plane partition Λ when $\eta = \theta = 1$ and $M = N = \infty$

Main result

Theorem (Betea–O. '21) Fix $\alpha \geq 0$. Let $q = e^{-\epsilon}$, $a = e^{-\alpha \epsilon}$ and $L \in \{L_1, L_2, \Lambda_{1,1}\}$. We have:

$$
\lim_{\epsilon\to 0+}\mathbb{P}\left(\epsilon\mathsf{L}+2\log(\epsilon)
$$

where $O_\alpha(x,y)=e^{-\frac{x}{2}-\frac{y}{2}}B\textup{ess}_\alpha(e^{-x},e^{-y})$ (Johansson '08) and $Bess_{\alpha}(x, y) = \int_0^1 J_{\alpha}(2\sqrt{tx})J_{\alpha}(2\sqrt{ty})dt$ is the RMT Bessel kernel (hard edge of Laguerre/Jacobi ensembles) with J the Bessel function.

Remark

 G_{α} has interpolating properties (Johansson '08):

- ▶ $G_0(s) = e^{-e^{-s}}$ is the Gumbel distribution
- \triangleright lim_{α→∞} G_α (-2 log(2(α 1)) + (α 1)^{-2/3}s) = $F_{GUE}(s)$

Theorem (Betea–O. '21)

As $q \rightarrow 1-$, L has

- \triangleright Gumbel fluctuations, if $a = 1$
- \blacktriangleright transitional (exponential) hard-edge Bessel fluctuations, if a \rightarrow 1 critically
- **•** Tracy–Widom fluctuations, if $0 < a < 1$ fixed ($N^{1/3}$ scaling)

Thank you for your attention!