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Connections

Paradigmatic model in the study of extrema of log-correlated fields– see Ofer’s talk

from 9/1.

• Random matrix theory

• Statistics of Riemann zeta function

• GFF and GMC

• Cover times of random walks

• PDEs (F-KPP equation)

• . . .
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Model Definition

Fix the dimension d ≥ 1.

• Start: a single particle v at 0 performs Brownian motion in Rd (iid 1d BM’s in

each coordinate)

X
(v)
s = (W

1,(v)
s , . . . ,W

d,(v)
s ) ∈ Rd

• After exp(1) distributed time, the particle splits into two particles, which carry on

independently.

• Repeat.

Fig: 2D BBM (left) and its modulus as a function of time (right)
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Model Definition

Fix the dimension d ≥ 1.

• Start: a single particle v at 0 performs Brownian motion in Rd (iid 1d BM’s in

each coordinate)

X
(v)
s = (W

1,(v)
s , . . . ,W

d,(v)
s ) ∈ Rd

• After an exp(1) distributed time, the particle splits into two particles, which

perform independent (d-dim) BM’s from that point forward and carry their own

exponential clocks

• Repeat.

Notation.

• Let Nt := set of particles at time t.

• X (v)
. := the d-dim BM path of v .

Quick facts.

• E[Nt ] = et

• For coordinate indices i , j ∈ {1, . . . , d},
Cov(X

(v)
t (i),X

(w)
t (j)) = time of the most

recent common ancestor of v and w
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d = 1 Results on the Extrema: convergence of maximum

We will write R∗t := maxv∈Nt ‖X
(v)
t ‖.

Dimension 1 results:

• Bramson: found centering term mt(1) =
√

2t − 3
2
√

2
log t, and showed

R∗t −mt(1) converges in law via connection to F-KPP equation.

Theorem (Bramson ’77, ’83)

limt→∞ P(R∗t −mt(1) ≤ y) = w(y), where 1
2
w ′′ +

√
2w ′ + w2 − w = 0.

• Idea from physics: the distribution of the max. of log-correlated fields should still

resemble classical (iid) extreme value distributions

• Lalley-Selke: characterization of the limiting law as a randomly shifted Gumbel,

where the random shift comes from the behavior of the particles at the beginning

of the process (more on this later).

Theorem (Lalley-Selke ’87)

There exists a random variable Z, called the derivative martingale, and a constant

C > 0 such that

lim
t→∞

P(R∗t −mt(1) ≤ y) = E
[

exp
(
− e−

√
2(y−CZ)

)]
, ∀y ∈ R .
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d = 1 Results on the Extrema: point process

What about the point process formed by all particles “near the maximum”: the

extremal point process?

Et :=
∑
v∈Nt

δ
‖X (v)

t ‖−mt (1)
.

• The limit was identified independently by Aidekon-Berestycki-Brunet-Shi and

Arguin-Bovier-Kistler as a randomly shifted, decorated Poisson point process

• The shift is given by the log of the derivative martingale Z .

Theorem (ABBS/ABK 2011)

Let
∑

i∈N δηi have law PPP(C
√

2e−
√

2xdx). Let {D(i)}i∈N be a family of iid point

processes with an explicit “decoration law.” Then Et converges in law as t →∞ to

E :=
∞∑
i=1

∑
ξj∈D(i)

δηi+ξj+log Z .
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d = 1 Results on the Extrema: point process

• Lots of further work: extending convergence to include genealogical info

(Bovier-Hartung 2016), structure of extreme level sets (Cortines-Hartung-Louidor

2017), etc.
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Main results

Does the maximum modulus R∗t in d ≥ 2 also converge in distribution, after

re-centering, to some perturbation of a classical extreme value distribution?

Yes!

Theorem (K.-Lubetzky-Zeitouni 2021)

Let mt :=
√

2t + d−4
2
√

2
log t. There exists a non-degenerate, positive random variable

Z∞ and a constant Cd > 0 such that

lim
t→∞

P(R∗t ≤ mt + y) = E
[

exp
(
− Cde

−
√

2(y− 1√
2

log Z∞)
)]
, ∀y ∈ R .

Time permitting, we will also discuss forthcoming work describing the limiting law of

the extremal point process as a randomly shifted, decorated PPP on Rd .

Previous work:

• Biggins ’95: R∗t /
√

2t → 1 a.s.

• Mallein 2015: {R∗t −mt}t>0 is tight.
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The (branching) Bessel process and the Girsanov transform

• Recall that the norm of a d-dimensional Brownian motion is a d-dimensional

Bessel process.

SDE for Bessel process

dRt =
d − 1

2Rt
dt + dWt

• Note: Markov process on R, but not shift-invariant.

• We study the d-dim. branching Bessel process {R(v)
s }s>0,v∈Ns .

• The Girsanov transform gives us the R-N derivative of the law PR of a Bessel

process w.r.t. the law PW of Brownian motion W .

Girsanov transform from Bessel to BM

dPR
∣∣
Ft

=

(
Wt

W0

) d−1
2

︸ ︷︷ ︸
start/endpoint

dependence

exp
(∫ t

0

cd

W 2
u

du
)
1{Wu>0, u∈[0,t]}︸ ︷︷ ︸

pathwise dependence

dPW
∣∣
Ft
,

where cd > 0 for d ≥ 3 and cd < 0 for d = 2.
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Trajectories of the extremal particles

• Let L, ` be parameters that we send to infinity after t (think: constants wrt t).

Extremal particle trajectories

W.h.p., all particles v ∈ Nt that reach height mt at time t did the following:

• at time L, passed through the “window”
√

2L− [L1/6, L2/3]

• at time t − `, passed through the “window” mt
t

(t − `)− [`1/3, `2/3]

• on [L, t − `], stayed within the “banana”

10
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Proof of Main Result

Say we have a particle v ∈ NL such that R
(v)
L = r ∈

√
2L− [L1/6, L2/3].

What is the probability that v produces a descendant in Nt that exceeds height mt?

(Markov) = Pr (R∗t−L > mt , Banana+Window event)

= Pr

( ⋃
u∈Nt−L−`

BW (u)
)

∼ et−L−`Pr
(
BW (u)

)
∼ Cd r

− d−1
2 (
√

2L− r)e−
√

2(
√

2L−r)

.

Remarks:

(1) The fact that this asymptotic has no t-dependence means that

mt :=
√

2t + d−4
2
√

2
log t is the right centering term!
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√
2L− [L1/6, L2/3].

What is the probability that v produces a descendant in Nt that exceeds height mt?
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(1) The fact that this asymptotic has no t-dependence means that

mt :=
√

2t + d−4
2
√

2
log t is the right centering term.

(2) A lot actually goes into showing the highlighted ∼:

We show that, on the Banana+Window event, at most one u ∈ Nt−L−` produces

a descendant that exceeds height mt . Done via a “modified” second moment

method, inspired by the work of Bramson-Ding-Zeitouni (2013) establishing

convergence of the re-centered maximum of the 2d discrete GFF.
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(
BW (u)

)
∼ Cd r

− d−1
2 (
√

2L− r)e−
√

2(
√

2L−r) =: Cd f (r) .

Proof of main result:

P(R∗t ≤ mt + y) = E
[ ∏
v∈NL

P
R

(v)
L

(R∗t−L ≤ mt + y)
]

= E
[ ∏
v∈NL

(
1− P

R
(v)
L

(R∗t−L > mt + y)
)]

≈ E
[ ∏
v∈NL

(
1− Cd f (R

(v)
L )e−y

√
2
)]
≈ E

[
exp

(
− Cd

∑
v∈NL

f (R
(v)
L )e−y

√
2
)]

→ E
[

exp
(
− CdZ∞e−y

√
2
)]

• Note the LHS has no L dependence, while the RHS has no t dependence ⇒ both

sides converge!

• Z∞ is the limit in distribution of
∑

v∈NL
f (R

(v)
L ) . Convergence in P forthcoming

work with J. Berestycki, B. Mallein.
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Interpretation of Z∞ by Lalley-Selke

Theorem (Berestycki-K.-Lubetzky-Mallein-Zeitouni 2021)

P
(
R∗t −mt ≤ y

∣∣ FL

) p−−−−→
t→∞,
L→∞

exp
(
− CdZ∞e−

√
2y
)

Figure 2: Left: initial particles veer to the left. Right: initial particles veer far to the right.

In both pictures, we see how the initial behavior permanently shifts the maximum. (Image from

Éric Brunet).
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Main Results: The Extremal Point Process in Rd

• Stasiński, Berestycki, and Mallein (2020) constructed a random measure D∞(·)
on Sd−1, which is the a.s., a.e. limit of an “angular” derivative martingale. So,

Z∞ and D∞(Sd−1) have the same law.

• D∞ is a.s. absolutely continuous wrt Leb.

• It turns out that
∑

v∈NL
f (R

(v)
L ) converges in probability to cdD∞(Sd−1), for

some constant cd > 0.

• Let the point process
∑∞

i=1 δ(ηi ,θi )
on R× Sd−1 have law

PPP
(
CdD∞(Sd−1)e−

√
2xdx × D∞(θ)

D∞(Sd−1)
dθ
)

.

• Let Et :=
∑

v∈Nt
δ(‖Xt‖−mt ,Xt/‖Xt‖) denote the extremal point process of BBM in

dimension d .

Theorem

Let {D(i)}i∈N be a collection of iid point processes with the same law as the

decorations from the 1D BBM case. Then Et converges in law as t →∞ to

E :=
∑
i∈N

∑
ξj∈D(i)

δ(ηi+ξj ,θi )
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Thank you!
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