
Part 2: Introduction to SPDE

Yier Lin, Shalin Parekh, Kevin Yang

September 2021, UIRM @ MSRI

Yier Lin, Shalin Parekh, Kevin Yang Part 2: Introduction to SPDE



Outline

1 What are SPDE and why are they
useful/important/interesting?

2 What is space-time white noise? Construction and calculus.

3 Basic linear SPDE and and Duhamel’s principle

4 Chaos expansion and multiplicative SPDE.

5 Martingale methods to identify the law of an SPDE

6 Singular SPDE: regularity computations and local
subcriticality assumptions, pathwise solution theories

7 Markov property and invariant measures for SPDEs; rate of
convergence.

Yier Lin, Shalin Parekh, Kevin Yang Part 2: Introduction to SPDE



What are SPDEs

SPDEs are to PDEs what SDEs are to ODEs. We are going to
focus mainly on evolution SPDEs of the form

∂t f = L(f ) + σ(f )ξ.

where L is some operator (possibly nonlinear) and σ is a linear
operator. Here ξ is Gaussian space-time white noise, to be
explained shortly.

Note the analogy with SDE’s of the form

dXt = L(Xt)dt + σ(Xt)dBt .
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SPDEs

Examples of L we will consider:

1 (SHE / Edwards-Wilkinson) L(f ) = ∂2
x f or more generally

L(f ) = −(−∂2
x )

αf . And σ(f ) = I .

2 (mSHE) L(f ) = ∂2
x f and σ(f )g = fg .

3 (KPZ) L(f ) = ∂2
x f + (∂x f )2 and σ(f ) = I .
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1 (SHE / Edwards-Wilkinson) ∂t f = ∂2
x f + ξ, or more generally

∂t f = −(−∂2
x )

αf + ξ

2 (mSHE) ∂t f = ∂2
x f + f ξ.

3 (KPZ) ∂t f = ∂2
x f + (∂x f )2 + ξ
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Why study these?

They describe the fluctuations of various systems coming from
probability, statistical mechanics.

Simple example: iid random walks or brownian motions.
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What exactly is space-time white noise?

Often space-time white noise is described as a condinuum iid
Gaussian field, i.e.,

E[ξ(t, x)ξ(s, y)] = δ(t − s)δ(x − y).

That’s not rigorous and it needs to be interpreted in an integrated
sense: ξ is a random variable taking values in Schwarz distributions
such that (ξ, f ) is always a Gaussian and

E[(ξ, f )L2(ξ, g)L2 ] = (f , g)L2 ,

where L2 = L2(R+ ×R).
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Construction of STWN

How to prove existence of such a random variable ξ taking values
in S ′(R2)? Similar to construction of Brownian motion. Several
options:

1. Use Kolmogorov’s extension theorem to construct a projective
family of r.v. {(ξ, f )} indexed by f ∈ S such that the convariance
structure of any finite subfamily is as specified.

2. Choose an orthonormal basis {ej} for L2(R+ ×R) and let ξj
be iid N(0,1). Then define

(ξ, f ) := ∑
j

(ej , f )ξj ,

which always converges by L2 martingale convergence theorem.
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Construction of STWN

So far this defines a family (ξ, f ) indexed by f ∈ S (in fact by
f ∈ L2) such that (ξ, f + αg) = (ξ, f ) + α(ξ, g) and such that

E[(ξ, f )2] = ‖f ‖2
L2 .

After this, one still needs to “glue together” or “modify” this
family of variables so that it can actually be realized as a random
element of S ′(R2). This is possible thanks to a Kolmogorov
continuity criterion together with Gaussian tail bounds:

E[|(ξ, f )|p ] .p ‖f ‖pL2 .
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Integration against ξ

Note that (ξ, f )L2(R+×R) is well-defined for all f ∈ L2(R+ ×R).
It’s usually denoted suggestively as∫

R+×R
f (t, x)ξ(t, x)dtdx

or as ∫
R+×R

f (t, x)ξ(dt dx),

though it should be remarked that ξ is a.s. neither a function nor a
measure.
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Linear equations

Let’s return to the additive-noise stochastic heat equation:

∂th(t, x) = ∆xh(t, x) + ξ(t, x),

with x ∈ Rd and t ≥ 0, and h(0, x) some given function.
Rearrange terms and formally apply the operator e−t∆ to both
sides to obtain

∂t(e
−t∆h) = e−t∆∂th− e−t∆∆h = e−t∆ξ.

Integrate both sides from 0 to t, then apply et∆:

e−t∆h(t, ·)− h(0, ·) =
∫ t

0
e−s∆ξ(ds, ·).

h(t, ·) = et∆h(0, ·) +
∫ t

0
e(t−s)∆ξ(ds, ·).
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Linear equations

What exactly is et∆? It’s an operator that denotes the solution at
time t to the solution of the equation

∂th = ∆h.

In other words et∆ is just convolution with the heat kernel:

et∆f (x) =
∫

R
p(t, x − y)f (y)dy ,

where

p(t, x) =
1

(2πt)d/2
e−|x |

2/2t.
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Linear SPDE

Summarizing, we have shown formally that the “solution” of

∂th = ∆h+ ξ

is given by

h(t, x) =
∫

R
p(t, x− y)h(0, y)dy +

∫
R+×Rd

p(t− s, x− y)ξ(ds dy).

The integral in the second term on the RHS is deterministic and in
L2(R+ ×Rd ) when d = 1.
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Linear SPDE

One can retroactively check that this is indeed the solution in the
sense of Schwarz distributions, i.e.,

−(h, ∂tφ) = (h, ∆φ) + (ξ, φ)

a.s. for all smooth space-time Schwarz functions φ.

It turns out that (the derivative of) h describes the fluctuations in
the Brownian Motion picture from earlier. We will prove this later.
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What about d > 1?

The kernel fails to be in L2(R+ ×Rd ) for d > 1.

But intuitively one expects there to be a well-defined fluctuation
field for 2d noninteracting Brownian motions.

It turns out that the only issue is the singularity of the kernel at
the origin.
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What about d > 1?

In particular if φ ∈ S(Rd+1) then one can make sense of the
smoothed out field

h(φ) :=
∫

Rd
pφ(t, x− y)h(0, y)dy +

∫
R+×R2

pφ(t− s, x− y)ξ(ds dy),

where

pφ(t, x) = (p ∗ φ)(t, x) =
∫

R3
p(t − s, x − y)φ(s, y)dsdy .

These random variables h(φ) as φ ranges through all Schwarz
functions, can then be lifted to a random Schwarz distribution on
R+ ×Rd which will solve the SHE in weak form.
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The linear theory for the SHE

Summarizing, the equation

∂th = ∆h+ ξ

is solved by the Duhamel formula

h(t, x) =
∫

R
p(t, x − y)h(0, y)dy +

∫
R+×R

p(t− s, x − y)ξ(dsdy).

One can show that for all d , h(t, ·) can actually be evaluated as an
element of S ′(Rd ) for fixed times t and any initial data in S ′(Rd ).

For fixed t > 0 the field h(t, ·) is locally absolutely continuous
w.r.t Brownian motion when d = 1 and w.r.t the Gaussian free
field when d = 2.
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Remark: What about σ 6= I?

Nothing special about space-time white noise so far. We could
replace it by any (possibly correlated) noise η and the solution is
still given by the Duhamel formula:

h(t, x) =
∫

R
p(t, x− y)h(0, y)dy +

∫
R+×R

p(t− s, x− y)η(s, y)dsdy ,

provided that the integral on the right hand side makes sense
(possibly in a distributional sense). This will not be the case for all
Gaussian noises η but it will be true for example when η = ∂xξ or
η = (−∆x )αξ.
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Moving onto nonlinear SPDE...

So we can integrate deterministic integrands against ξ. What
about random integrands? E.g. can we make sense of iterated
integrals such as ...∫ [ ∫

f (t, x , s, y)ξ(ds dy)

]
ξ(dt dx)

even with deterministic f ? How about k-fold integrals such as∫
· · ·

∫
f (t, x)ξ⊗k(dt, dx)?

And what about things like∫
σ

( ∫
f (t, x , s, y)ξ(ds dy)

)
ξ(dt dx)?
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Motivation: why should we care about these objects?

Consider SPDE’s such as the multiplicative SHE or its
generalizations:

∂t f = ∂2
x f + f ξ.

∂t f = ∂2
x f + σ(f )ξ,

in spatial dimension d = 1.

We’ll focus on the first one. Duhamel’s principle still applies here,
but as opposed to the linear case it gives an iterative relation
rather than a finished solution, e.g.

f (t, x) =
∫

R
p(t, x− y)f (0, y)dy +

∫
R+×R

p(t− s, x− y)f (s, y)ξ(ds, dy),
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Multiplicative SHE

We can (Picard) iterate the previous relation once to obtain

f (t, x) =
∫

R
p(t, x − y)f (0, y)dy

+
∫

R+×R

[ ∫
R
p(t − s, x − y)p(s, y − z)f (0, z)dz

]
ξ(ds, dz)

+
∫

R+×R

∫
R+×R

p(t− s, x− y)p(s−u, y − z)f (u, z)ξ(du, dz)ξ(ds, dy).

Yier Lin, Shalin Parekh, Kevin Yang Part 2: Introduction to SPDE



Keep iterating to obtain:

f (t, x) =
∞

∑
k=1

uk(t, x)

where

uk+1(t, x) =
∫

R+×R
p(t − s, x − y)uk(s, y)ξ(ds, dy)

and u0 is just the heat flow started from h(0, ·).
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The explicit form of uk :

Nonrecursively we have that uk(t, x) is given by

∫
(R+×R)k+1

k+1

∏
i=1

p(ti − ti−1, xi − xi−1)f (0, xk+1)dxk+1ξ⊗k(dt, dx),

with tk+1 = t and x0 = x .
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Integration of adapted processes

The filtration Ft of ξ is defined to be the sigma algebras generated
by (f , ξ) with f supported on [0, t]×R.

A random space time function f (t, x) is called adapted to the
filtration of ξ if f (t, x) is Ft measurable for all t, x .

A random space-time function is called predictable if it lies in the
L2 closure of the linear span of elementary functions: things of the
form f (x , t, ω) = X (ω)1(a,b](t)1E (x) where E ⊂ Rd is Borel and
X is Fa measurable.

Theorem: any adapted continuous function is predictable.
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Integration of adapted random processes

The integral of an elementary process f (t, x) = X · 1(a,b](t)1E (x)
against the noise can be defined in the obvious manner:∫

R+×R
f (t, x)ξ(dt dx) = X · (ξ, 1(a,b]×E ).

One has the Ito-Walsh isometry

E

[( ∫
R+×R

f (t, x)ξ(dt dx)

)2]
=
∫

R+×R
E[f (t, x)2]dtdx ,

which allows us to define integrals for any adapted continuous
function, in particular iterated integrals as we wanted earlier (even
ones which are not supported on a simplex, by symmetrization).
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Properties of stochastic integrals

Note that if f ∈ L2(R+ ×R) then it is not true that

∫
(R+×R)k

k

∏
1

f (ti , xi )ξ
⊗k(dt, dx) = (f , ξ)k .

Rather the right hand side equals Hk((ξ, f )) when ‖f ‖L2 = 1,
where Hk is the kth Hermite polynomial. Again, ξ is not a
measure or a function.

In particular all k-fold iterated integrals are orthogonal to all n-fold
iterated integrals for k 6= n. The set of all k-fold iterated integrals
is called the kth homogeneous chaos of ξ, denoted Hk(Ω,F , P).

Theorem: L2(Ω,F , P) =
⊕

k∈NHk(Ω,F , P).
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Why does this happen?

Think about the simple case k = 2 with just a Brownian motion
instead of white noise. Recall the computation of how∫ 1

0
BtdBt =

1

2
(B2

t − t).

There’s a law of large numbers averaging happening at the second
order. This is referred to as renormalization and tends to become
relevant in all SPDE’s with a nonlinear term such as a product.

For elements X ∈ Hk one has that ‖X‖p ≤ Ck,p‖X‖2 where
optimally one may take Ck,p = (2p − 1)k/2. This can be proved
using Burkholder or hypercontractivity of the OU semigroup.
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Returning to the multiplicative SHE

Recall our formula for the solution of

∂t f = ∂2
x f + f ξ

was given by

f (t, x) =
∞

∑
k=1

uk(t, x)

where

uk+1(t, x) =
∫

R+×R
p(t − s, x − y)uk(s, y)ξ(ds, dy).
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The iteration

So by the Ito isometry we have

E[uk+1(t, x)2] =
∫

R+×R
p(t − s, x − y)2E[uk(s, y)2]dsdy .

One can thus obtain inductive bounds that will show that

∑
k

E[uk(s, y)2] < ∞.

To show this, one however needs fairly stringent assumptions on
initial conditions, e.g.

sup
x∈R

e−a|x |E[f (0, x)2] < ∞.

Also d cannot be larger than 1. And this is not just a purely
technical restriction of functions vs distributions.
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Martingale methods

Given a space-time process defined on some probability space, how
can one identify it as the solution of some SPDE?

First consider SDE. Suppose Xt is a continuous process defined on
some space with the property that

Mt := Xt −
∫ t

0
b(Xs)ds

is a martingale such that

〈M〉t =
∫ t

0
σ(Xs)

2ds,

where b, σ are smooth with σ > 0.

Yier Lin, Shalin Parekh, Kevin Yang Part 2: Introduction to SPDE



Change of topic: Martingale methods

Then Xt must have the same law as the diffusion

dX = b(X )dt + σ(X )dB.

Proof: Let Bt =
∫ t

0 σ(Xs)−1dMs . Note that B is a martingale
with quadratic variation t and therefore is a Brownian motion.
Moreover by construction

Xt −
∫ t

0
b(Xs)ds = Mt =

∫ t

0
σ(Xs)dBs .
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Similar theory for white-noise driven SPDEs

Theorem [Konno-Shiga, ’88]: suppose that (f (t, x))t≥0,x∈R is a
continuous process with the property that the processes

Mt(φ) = (f (t, ·), φ)L2(R) −
∫ t

0
(f (s, ·), φ′′)L2(R)ds

are martingales with respect to the filtration of f and that

〈M(φ)〉t =
∫ t

0
(σ(f (·, s))2φ, φ)L2(R)ds,

for all Schwartz functions φ on R. Then f is distributed as the
solution of

∂t f = ∂2
x f + σ(f )ξ.
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Returning to the Brownian motions picture

Let’s do a computation with the empirical measures.
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The global limit

The global limit is the solution of the SPDE

∂tu = ∂2
xu + ∂x

(√
p(t, x) · ξ

)
which happens to be the spatial derivative of

∂th = ∂2
xh+

√
p(t, x) · ξ,

which looks like SHE (Edwards-Wilkinson) if one zooms in locally
around any deterministic space-time point.
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Change of topic: Singular SPDE

For linear equations it was clear that the Duhamel formula gave
sense to a bona fide weak solution in a pathwise sense.

For the multiplicative SHE, it is questionable what is so intrinsic
about the Duhamel notion of solution to the equation. That is
because f ξ is not defined pathwise.

In recent years a tremendous amount of progress has been made in
terms of giving a intrinsic pathwise notion of solution to equations
with nonlinear terms such as these.

We’ll talk a little bit about KPZ and Φ4
d .
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KPZ and Φ4
d

KPZ : ∂th = ∂2
xh+ (∂xh)

2 + ξ, t ≥ 0, x ∈ R

Hopf-cole transform of multiplicative SHE, canonical model of
interface growth.

Φ4
d : ∂tΦ = ∆Φ−Φ3 + ξ, t ≥ 0, x ∈ Rd .

Important in physics, invariant measure was constructed in
dimensions 2 and 3 as a breakthrough in constructive QFT.
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KPZ

Note that the KPZ equation and mSHE

∂th = ∂2
xh+ (∂xh)

2 + ξ

∂t f = ∂2
x f + f ξ

are formally related by the Hopf-Cole transform h = log(f ).

Thus one may define a Hopf-cole solution of h as being equal to
log(f ) where f solves the mSHE in the Duhamel sense defined
earlier. But the same question of what is so natural or intrinsic of
this notion of solution comes up.
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KPZ

This Hopf-Cole notion of solution is sufficient for many purposes
but one often wants to study finer properties of the solutions, e.g.

1 Prove that space-time mollifications of the noise lead to
classical solutions that converge uniformly on compacts (after
renormalization) to the Hopf-Cole solution.

2 Explore properties of the solution map.

3 Prove that the difference of two solutions (with different
initial data) has better regularity than individual ones.

None of this is possible with the Hopf-Cole notion of solution.
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Regularity and subcriticality

Both KPZ and Φ4
d are nonlinear perturbations of the additive SHE.

In spatial dimension d the additive SHE has “parabolic regularity”
1− d

2 as it is invariant under the scaling ε−1+ d
2 h(ε2t, εx).

Parabolic regularity in this context means space-time Holder
regularity with respect to the parabolic metric

d
(
(t, x), (s, y)

)
= |t − s |1/2 + |x − y |,

where “time counts as two spatial dimensions.” This can all be
made rigorous using parabolic Schauder estimates (convolution
with heat kernel improves parabolic regularity by two) which follow
by studying the singularity of the heat kernel.
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Regularity and subcriticality

The KPZ and Φ4
d (d < 4) equations have subcritical nonlinearities

and thus we expect them to have the same regularity as the
linearized equation. In particular the nonlinearities are ill-posed.

Subcritical nonlinearity: Formally we say that a nonlinearity F is
subcritical if under the scaling which sends u(t, x) to

uε(t, x) := ε−1+ d
2 u(ε2t, εx), the equation

∂tu = ∆u + F (u,∇u) + ξ

gets transformed into

∂tu = ∆u + Fε(u,∇u) + ξ

where Fε → 0 as ε→ 0.
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Subcriticality computation for KPZ and Φ4
d

For the KPZ equation one has F (u,∇u) = (∇u)2 and then one
gets Fε(u,∇u) = ε1/2(∇u)2.

For Φ4
d one has F (u,∇u) = −u3 and then Fε(u,∇u) = −ε4−du3.

Thus we see that the subcriticality assumption fails unless d < 4.
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Pathwise Solution theories

Theorem [Hairer, and independently Gubinelli-Imkeller-Perkowski]:
For the Hopf-Cole solution of KPZ one has a factorization of the
solution map

ξ 7→ ψ(ξ) 7→ h(ξ)

where the first map ψ consists of of a finite number of Gaussian
chaoses and the second map is continuous (locally Lipchitz even)
on some closed subset which supports ψ. All topologies are those
of Holder spaces of the optimal exponents.

The theory can also be used to make sense of Φ4
d as well as

essentially any subcritical nonlinearity.

The continuous map is where the most difficult theory lies. The
first map is easier and will be explained shortly.
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Remark for SDEs

Note that the analogous statement even for SDEs in Rn is not
trivial.

That is, how would one study (even for smooth and bounded b, σ)
structural properties of the solution map that sends B 7→ X where

dX = b(X )dt + σ(X )dB?

The corresponding result for SDEs says that one has a factorization

B 7→
(
B,
∫ •

0
Bi (s)dBj (s)

)
1≤i<j≤n

7→ X

where the first map ic called the “rough path lift of B” and the
second map is continuous (the Ito-Lyons map). See the book on
rough paths by Friz and Hairer.
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Brief idea for Φ4
2

We consider here the dynamical Φ4
2 model (d = 2) with zero i.c.

for simplicity. To make sense of the equation let Φ formally solve

∂tΦ = ∆Φ− φ3 + ξ

and let f solve
∂th = ∆h+ ξ

with the same realization of ξ. Define v = Φ− h and note that v
formally solves

∂tv = ∆v −Φ3

= ∆v − (v + h)3

= ∆v − v3 − 3v2h− 3vh2 − h3.
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Brief idea for Φ4
2

Recall h solves the linearized equation and thus by the Duhamel
formula

h(t, x) =
∫

R+×R2
p(t − s, x − y)ξ(ds dy).

In d = 2 needs to be interpreted by testing both sides against a
Schwarz function. So h does not really exist as a function.

So what exactly do h2 and h3 mean? One needs to interpret these
as iterated integrals:

h:2:(t, x) :=
∫

R+×R2

∫
R+×R2

p(t − s, x − y )p(t − u, x − z)ξ(ds dy)ξ(du dz).

Again this needs to be interpreted by integration against Schwarz functions. Likewise
h:3: may be defined as a threefold iterated integral. Note the renormalization
happening here.
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Brief idea for Φ4
2

Going back to our remainder equation we replace the formal
powers of h by the Wick powers:

∂tv = ∆v − v3 − 3v2h− 3vh:2: − h:3:.

This gives us a fixed point problem for v :

v(t, x) = −
∫

R+×R2
p(t− s, x− y)

(
v3 + 3v2h+ 3vh:2: +h:3:)(s, y)dsdy .

It turns out that this fixed point problem can be sensibly and
globally solved...
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Brief idea for Φ4
2

...in the sense that the map S which sends a triple
(f , g , h) ∈ C−α

w (R+ ×R)3 to the fixed point of the map

v 7→ −p ∗ (v3 + 3v2f + 3vg + h)

on C 2−α
w (R+ ×R), is locally Lipchitz.

In particular we have our factorization

ξ 7→ (h, h:2:, h:3:)
S7→ Φ

because Φ = v + h.

See [Mourrat & Weber, Global well-posedness...] as well as the
original paper [Da Prato & Debussche, Strong solutions...] for
more details.
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Regularity Structures and Paracontrolled Products

The theories of Hairer and Gubinelli-Imkeller-Perkowski build on
these ideas but are more complicated in that the continuous part
of the solution map cannot be built on the entire space but must
rather be built on some nonlinear part of the space in which the
chaoses live.

This requires heavy analytic machinery such as the use of
Daubechies wavelets to patch together local Taylor expansions
(regularity structures) or the use of Littlewood Paley blocks, Bony
paraproducts, and paralinearization formulae for nonlinearities.
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Change of topic: Markov property and equilibrium

Consider the solution of the equation

∂t f = ∆f + σ(f )ξ,

where σ can be some smooth nonlinearity, possibly even
operator-valued.

This process is Markov: by Duhamel formula we have (in
abbreviated form) that

ft = pt ∗ f0 +
∫ t

0
pt−a ∗ (fa · ξ(da)) = pt−s ∗ fs +

∫ t

s
pt−a ∗ (fa · ξ(da)).

Thus one may ask about invariant measures and convergence to
equilibrium.
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Markov property and equilibrium

Even for linear equations σ(f ) ≡ Q the question is nontrivial.
Note that one can view the equation as a gradient flow in L2(R)
with respect to the potential

V (f ) =
∫
|∇f |2.

An equilibrium probability measure doesn’t exist but if we replace
∆ by (say) ∆− αI for α > 0 or any strictly contractive semigroup
S(t) with generator L, then the equilibrium measure is a Gaussian
measure with Cameron martin norm 〈f ,Af 〉 where

A =
∫ ∞

0
S(t)QQ∗S∗(t)dt.

In finite dimensions one can hope to use entropy methods to
control the total variation distance to equilibrium measure.
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Convergence to equilibrium

Hairer and Mattingly found a proof that doesn’t use this (arXiv
0810.2777).

Theorem (Harris)

Let Pt be a Markov semigroup on a Polish space E such that there
exists V : E → [0, ∞) and T > 0 such that

1 PtV (x) ≤ γV (x) +K for some γ ∈ (0, 1) and K > 0.

2 Given C > 0 there exists δ > 0 such that
‖P∗T δx − P∗T δy‖TV < 2− δ for all x , y with
V (x) + V (y) ≤ C.

Then there exists S > 0 such that P∗S is a strict contraction in TV
norm (in particular, there is a unique invariant measure and
exponentially fast convergence to it).

One can leverage this idea to prove exponentially fast convergence to the invariant
measure in case of a linear equation with contractive drift, with V (x) = ‖x‖B . It can
even be adapted to the case of slight nonlinearity.
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Thanks.

Thank You!
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