A Riemann-Hilbert approach to asymptotic analysis of Toeplitz+Hankel determinants

Roozbeh Gharakhloo Colorado State University

Joint work with Alexander Its

MSRI - Riemann-Hilbert open problem session

September 13, 2021

The $n \times n$ Toeplitz and Hankel matrices associated respectively to the symbols ϕ and w, supported on the unit circle $\mathbb T$ are respectively defined as

$$T_n[\phi;r] := \{\phi_{j-k+r}\}, \qquad j,k = 0, \cdots, n-1, \qquad \phi_k = \int_{\mathbb{T}} z^{-k} \phi(z) \frac{dz}{2\pi i z},$$

and

$$H_n[w;s] := \{w_{j+k+s}\}, \qquad j,k = 0, \cdots, n-1, \qquad w_k = \int_{\mathbb{T}} z^{-k} w(z) \frac{dz}{2\pi i z},$$

for fixed offset values $r, s \in \mathbb{Z}$. If the Hankel symbol w is supported on a subset I of the real line, then w_k are instead given by

$$w_k = \int_I x^k w(x) dx.$$

We intended to develop a Riemann-Hilbert approach to the study of the large-n asymptotics of Toeplitz+Hankel determinants

$$\det \begin{pmatrix} \phi_r + w_s & \phi_{r-1} + w_{s+1} & \cdots & \phi_{r-n+1} + w_{s+n-1} \\ \phi_{r+1} + w_{s+1} & \phi_r + w_{s+2} & \cdots & \phi_{r-n+2} + w_{s+n} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{r+n-1} + w_{s+n-1} & \phi_{r+n-2} + w_{s+n} & \cdots & \phi_r + w_{s+2n-2} \end{pmatrix},$$

which we denote by $D_n(\phi, w; r, s)$.

Existing results

▶ P.Deift, A.Its and I.Krasovsky (2011)

Used the Riemann-Hilbert problem for pure Toeplitz determinants under the following assumptions

- $\phi(z)$ of Fisher-Hartwig type.
- $\phi(z) = w(z)$
- $\phi(z) = \tilde{\phi}(z)$

Existing results

▶ P.Deift, A.Its and I.Krasovsky (2011)

Used the Riemann-Hilbert problem for pure Toeplitz determinants under the following assumptions

- $\phi(z)$ of Fisher-Hartwig type.
- $\phi(z) = \underset{\tilde{z}}{w(z)}$
- $\phi(z) = \tilde{\phi}(z)$

▶ E.Basor and T.Ehrhardt (2001,2002,2009,2013,2017)

Used operator theory techniques under the following assumptions

- $\phi(z) = c(z)\phi_0(z)$
- $w(z) = c(z)d(z)w_0(z)$
- $\phi_0(z)$ of Fisher-Hartwig type.
- $\phi_0(z) = \tilde{\phi}_0(z)$
- a) $w_0(z) = \pm \phi_0(z)$, b) $w_0(z) = z\phi_0(z)$ and c) $w_0(z) = -z^{-1}\phi_0(z)$
- c(z), d(z) are not required to be even
- $d(z)\tilde{d}(z) \equiv 1$
- $d(\pm 1) = 1$

Perhaps one of the most important motivations behind studying T+H determinants is to study the large n asymptotics of the eigenvalues of the Hankel matrix $H_n[w]$ associated to the symbol w, simply because the characteristic polynomial

$$\det(H_n[w] - \lambda I)$$

of the Hankel matrix ${\cal H}_n[w],$ is indeed a particular $\mathit{Toeplitz+Hankel}$ determinant, with

$$\phi(z) \equiv -\lambda.$$

Clearly in the case of characteristic polynomial of a Hankel determinant, there is no relationship between ϕ and w, so to study the asymptotics of this determinant, one can not refer to the existing results mentioned above. In fact there is a methodological issue which has to be addressed at a fundamental level: formulation of a suitable Riemann-Hilbert problem.

▶ Hankel symbol supported on the unit circle.

▶ Hankel symbol supported on the unit circle. If $D_n(\phi, w; r, s) \neq 0$, there exists unique monic polynomials $\mathcal{P}_n(z) = z^n + \cdots$ satisfying

$$\int_{\mathbb{T}} \mathcal{P}_n(z) z^{-k-r} \phi(z) \frac{dz}{2\pi i z} + \int_{\mathbb{T}} \mathcal{P}_n(z) z^{k+s} \tilde{w}(z) \frac{dz}{2\pi i z} = h_n \delta_{n,k},$$

for $k = 0, 1, \dots, n$.

▶ Hankel symbol supported on the unit circle. If $D_n(\phi, w; r, s) \neq 0$, there exists unique monic polynomials $\mathcal{P}_n(z) = z^n + \cdots$ satisfying

$$\int_{\mathbb{T}} \mathcal{P}_n(z) z^{-k-r} \phi(z) \frac{dz}{2\pi i z} + \int_{\mathbb{T}} \mathcal{P}_n(z) z^{k+s} \tilde{w}(z) \frac{dz}{2\pi i z} = h_n \delta_{n,k},$$

for $k = 0, 1, \dots, n$.

▶ Hankel symbol supported on the real line.

▶ Hankel symbol supported on the unit circle. If $D_n(\phi, w; r, s) \neq 0$, there exists unique monic polynomials $\mathcal{P}_n(z) = z^n + \cdots$ satisfying

$$\int_{\mathbb{T}} \mathcal{P}_n(z) z^{-k-r} \phi(z) \frac{dz}{2\pi i z} + \int_{\mathbb{T}} \mathcal{P}_n(z) z^{k+s} \tilde{w}(z) \frac{dz}{2\pi i z} = h_n \delta_{n,k},$$

for $k = 0, 1, \dots, n$.

▶ Hankel symbol supported on the real line. If $D_n(\phi, w; r, s) \neq 0$, there exists unique monic polynomials $P_n(z) = z^n + \cdots$ satisfying

$$\int_{\mathbb{T}} P_n(z) z^{-k-r} \phi(z) \frac{dz}{2\pi i z} + \int_a^b P_n(x) x^{k+s} w(x) dx = h_n \delta_{n,k},$$

for $k = 0, 1, \dots, n$.

▶ Hankel symbol supported on the unit circle. If $D_n(\phi, w; r, s) \neq 0$, there exists unique monic polynomials $\mathcal{P}_n(z) = z^n + \cdots$ satisfying

$$\int_{\mathbb{T}} \mathcal{P}_n(z) z^{-k-r} \phi(z) \frac{dz}{2\pi i z} + \int_{\mathbb{T}} \mathcal{P}_n(z) z^{k+s} \tilde{w}(z) \frac{dz}{2\pi i z} = h_n \delta_{n,k},$$

for $k = 0, 1, \dots, n$.

▶ Hankel symbol supported on the real line. If $D_n(\phi, w; r, s) \neq 0$, there exists unique monic polynomials $P_n(z) = z^n + \cdots$ satisfying

$$\int_{\mathbb{T}} P_n(z) z^{-k-r} \phi(z) \frac{dz}{2\pi i z} + \int_a^b P_n(x) x^{k+s} w(x) dx = h_n \delta_{n,k},$$

for $k = 0, 1, \dots, n$. And in both cases

$$h_{n-1} \equiv \frac{D_n(\phi, w; r, s)}{D_{n-1}(\phi, w; r, s)}.$$

Assuming that $D_n(\phi, w; r, s) \neq 0$, the existence of the orthogonal polynomials follows from the explicit construction

$$\mathcal{P}_n(z) := \frac{D_{n+1}(\phi, w; r, s | \vec{v}(z))}{D_n(\phi, w; r, s)}, \qquad \vec{v}(z) = (1, z, \cdots, z^n),$$

where $D_n(\phi, w; r, s | \vec{v}(z))$ denotes the bordered Toeplitz+Hankel determinant with the last row given by the vector $\vec{v}(z)$.

Assuming that $D_n(\phi, w; r, s) \neq 0$, the existence of the orthogonal polynomials follows from the explicit construction

$$\mathcal{P}_n(z) := \frac{D_{n+1}(\phi, w; r, s | \vec{v}(z))}{D_n(\phi, w; r, s)}, \qquad \vec{v}(z) = (1, z, \cdots, z^n),$$

where $D_n(\phi, w; r, s | \vec{v}(z))$ denotes the bordered Toeplitz+Hankel determinant with the last row given by the vector $\vec{v}(z)$. The uniqueness of the polynomial $\mathcal{P}_n(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ satisfying the orthogonality conditions, simply follows from the fact that one has the following linear system for the coefficients $a_j, 0 \leq j \leq n-1$:

$$(T_n[\phi; r] + H_n[w; s]) \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} -\phi_{-n+r} - w_{n+s} \\ -\phi_{1-n+r} - w_{1+n+s} \\ \vdots \\ -\phi_{-1+r} - w_{2n-1+s} \end{pmatrix}$$

Let us consider the following Riemann-Hilbert problem

- ▶ **RH-** \mathcal{Y} **1** \mathcal{Y} is holomorphic in $\mathbb{C} \setminus \mathbb{T}$.
- ▶ **RH-** \mathcal{Y} **2** For $z \in \mathbb{T}$ we have

$$\begin{aligned} \mathcal{Y}_{+}^{(1)}(z;n) &= \mathcal{Y}_{-}^{(1)}(z;n), \\ \mathcal{Y}_{+}^{(2)}(z;n) &= \mathcal{Y}_{-}^{(2)}(z;n) + z^{-1+s}\tilde{w}(z)\mathcal{Y}_{-}^{(1)}(z;n) + z^{-1+r}\tilde{\phi}(z)\mathcal{Y}_{-}^{(1)}(z^{-1};n). \end{aligned}$$

$$\blacktriangleright \mathbf{RH} \cdot \mathcal{Y}\mathbf{3} \quad \mathcal{Y}(z;n) &= \left(I + \mathcal{O}(z^{-1})\right) \begin{pmatrix} z^n & 0\\ 0 & z^{-n} \end{pmatrix}, \quad \text{As } z \to \infty. \end{aligned}$$

The RHP for OPs, w supported on \mathbb{T}

Theorem 1. The following statements are true.

1. Suppose that $D_n, D_{n-1} \neq 0$. Then, the Riemann-Hilbert problem **RH**- $\mathcal{Y}\mathbf{1}$ through **RH**- $\mathcal{Y}\mathbf{3}$ is uniquely solvable and its solution \mathcal{Y} is given by

$$\begin{pmatrix} \mathcal{P}_n(z) & \int_{\mathbb{T}} \frac{\xi^s \tilde{w}(\xi) \mathcal{P}_n(\xi) + \xi^r \tilde{\phi}(\xi) \tilde{\mathcal{P}}_n(\xi)}{\xi - z} \frac{d\xi}{2\pi i \xi} \\ -\frac{1}{h_{n-1}} \mathcal{P}_{n-1}(z) & -\frac{1}{h_{n-1}} \int_{\mathbb{T}} \frac{\xi^s \tilde{w}(\xi) \mathcal{P}_{n-1}(\xi) + \xi^r \tilde{\phi}(\xi) \tilde{\mathcal{P}}_{n-1}(\xi)}{\xi - z} \frac{d\xi}{2\pi i \xi} \end{pmatrix}$$

Moreover,

$$h_{n-1} = -\lim_{z \to \infty} z^{n-1} / \mathcal{Y}_{21}(z; n).$$

- 2. Suppose that the Riemann-Hilbert problem **RH**- $\mathcal{Y}\mathbf{1}$ through **RH**- $\mathcal{Y}\mathbf{3}$ has a unique solution. Then $D_n \neq 0$, and $\mathcal{P}_n(z) = \mathcal{Y}_{11}(z; n)$.
- 3 Suppose that the Riemann-Hilbert problem $RH-\mathcal{Y}1$ through $RH-\mathcal{Y}3$ has a unique solution. Suppose also that

$$\lim_{z \to \infty} \mathcal{Y}_{21}(z; n) z^{-n+1} \neq 0.$$

Then, as before, $D_n \neq 0$, $\mathcal{P}_n(z) = \mathcal{Y}_{11}(z; n)$, and, in addition,

$$D_{n-1} \neq 0, \quad h_{n-1} = -\lim_{z \to \infty} \mathcal{Y}_{21}^{-1}(z;n) z^{n-1}, \quad \mathcal{P}_{n-1}(z) = -h_{n-1} \mathcal{Y}_{21}(z).$$

The 2×4 RHP

Let us define the 2 \times 4 matrix $\stackrel{\circ}{\mathcal{X}}$ out of the columns of $\mathcal Y$ as follows

$$\overset{\circ}{\mathcal{X}}(z;n) := \left(\mathcal{Y}^{(1)}(z;n), \widetilde{\mathcal{Y}}^{(1)}(z;n), \mathcal{Y}^{(2)}(z;n), \widetilde{\mathcal{Y}}^{(2)}(z;n)\right).$$

▶ **RH**- $\overset{\circ}{\mathcal{X}}$ **1** $\overset{\circ}{\mathcal{X}}$ is holomorphic in $\mathbb{C} \setminus (\mathbb{T} \cup \{0\})$.

▶ **RH**- $\overset{\circ}{\mathcal{X}}$ **2** For $z \in \mathbb{T}$, $\overset{\circ}{\mathcal{X}}$ satisfies

$$\overset{\circ}{\mathcal{X}}_{+}(z;n) = \overset{\circ}{\mathcal{X}}_{-}(z;n) \begin{pmatrix} 1 & 0 & z^{s-1}\tilde{w}(z) & -z^{-r+1}\phi(z) \\ 0 & 1 & z^{r-1}\tilde{\phi}(z) & -z^{-s+1}w(z) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

•
$$\mathbf{RH}$$
- $\overset{\circ}{\mathcal{X}}\mathbf{3}$ As $z \to \infty$ we have

$$\overset{\circ}{\mathcal{X}}(z;n) = \begin{pmatrix} 1 + \mathcal{O}(z^{-1}) & C_1(n) + \mathcal{O}(z^{-1}) & \mathcal{O}(z^{-1}) & C_3(n) + \mathcal{O}(z^{-1}) \\ \mathcal{O}(z^{-1}) & C_2(n) + \mathcal{O}(z^{-1}) & 1 + \mathcal{O}(z^{-1}) & C_4(n) + \mathcal{O}(z^{-1}) \end{pmatrix} \begin{pmatrix} z^n & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & z^{-n} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} .$$

▶ **RH**- $\overset{\circ}{\mathcal{X}}$ **4** As $z \to 0$ we have

$$\overset{\circ}{\mathcal{X}}(z;n) = \begin{pmatrix} C_1(n) + \mathcal{O}(z) & 1 + \mathcal{O}(z) & C_3(n) + \mathcal{O}(z) & \mathcal{O}(z) \\ C_2(n) + \mathcal{O}(z) & \mathcal{O}(z) & C_4(n) + \mathcal{O}(z) & 1 + \mathcal{O}(z) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & z^{-n} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & z^n \end{pmatrix},$$

where

$$C_1(n) = \mathcal{Y}_{11}(0;n), \quad C_3(n) = \mathcal{Y}_{12}(0;n), \quad C_2(n) = \mathcal{Y}_{21}(0;n), \quad C_4(n) = \mathcal{Y}_{22}(0;n).$$

Passage to a 4×4 RHP

Let us assume that r = s = 1, the corresponding 4×4 Riemann-Hilbert problem is

▶ **RH**- \mathcal{X} **1** \mathcal{X} is holomorphic in the complement of $\mathbb{T} \cup \{0\}$.

► RH-
$$\mathcal{X}$$
2
 $\mathcal{X}_+(z;n) = \mathcal{X}_-(z;n) \begin{pmatrix} 1 & 0 & \tilde{w}(z) & -\phi(z) \\ 0 & 1 & \tilde{\phi}(z) & -w(z) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad z \in \mathbb{T}.$

► **RH**-
$$\mathcal{X}$$
3
 $\mathcal{X}(z;n) = (I + \mathcal{O}(z^{-1})) \begin{pmatrix} z^n & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & z^{-n} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad z \to \infty.$
► **RH**- \mathcal{X} **4**

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -z^n & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{X}(z;n) = P(n)(I + \mathcal{O}(z)) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & z^{-n} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & z^n \end{pmatrix}, \qquad z \to 0.$$

The solution of the \mathcal{X} -RHP is unique if it exists. Note that the matrix factor P(n) is not a priori prescribed. But already we can show that

rank
$$(P(n)W - I_4) = 2$$
, where $W = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Connection of the 2×4 and the 4×4 RHPs

Let us consider

$$\Re(z;n) := \overset{\circ}{\mathcal{X}}(z;n)\mathcal{X}^{-1}(z;n).$$

Clearly \Re has no jumps, its behavior near zero is given by

$$\Re(z;n) = \begin{pmatrix} C_1(n) + \mathcal{O}(z) & 1 + \mathcal{O}(z) & C_3(n) + \mathcal{O}(z) & \mathcal{O}(z) \\ C_2(n) + \mathcal{O}(z) & \mathcal{O}(z) & C_4(n) + \mathcal{O}(z) & 1 + \mathcal{O}(z) \end{pmatrix} P^{-1}(n),$$

and thus \mathfrak{R} is an entire function. The behaviour of \mathfrak{R} near infinity is

$$\Re(z;n) = \begin{pmatrix} 1 + \mathcal{O}(z^{-1}) & C_1(n) + \mathcal{O}(z^{-1}) & \mathcal{O}(z^{-1}) & C_3(n) + \mathcal{O}(z^{-1}) \\ \mathcal{O}(z^{-1}) & C_2(n) + \mathcal{O}(z^{-1}) & 1 + \mathcal{O}(z^{-1}) & C_4(n) + \mathcal{O}(z^{-1}) \end{pmatrix}.$$

By Liouville's theorem we have

$$\mathfrak{R}(z;n) = egin{pmatrix} 1 & C_1(n) & 0 & C_3(n) \ 0 & C_2(n) & 1 & C_4(n) \end{pmatrix}$$

This gives the following linear system for the constants C_j

$$\begin{pmatrix} 1 & C_1(n) & 0 & C_3(n) \\ 0 & C_2(n) & 1 & C_4(n) \end{pmatrix} = \begin{pmatrix} C_1(n) & 1 & C_3(n) & 0 \\ C_2(n) & 0 & C_4(n) & 1 \end{pmatrix} P^{-1}(n),$$

which can be rewritten as

$$\begin{pmatrix} 1 & C_1(n) & 0 & C_3(n) \\ 0 & C_2(n) & 1 & C_4(n) \end{pmatrix} (P(n)W - I_4) = 0.$$

Lemma 1. If the linear system

$$\begin{pmatrix} 1 & C_1(n) & 0 & C_3(n) \\ 0 & C_2(n) & 1 & C_4(n) \end{pmatrix} = \begin{pmatrix} C_1(n) & 1 & C_3(n) & 0 \\ C_2(n) & 0 & C_4(n) & 1 \end{pmatrix} P^{-1}(n),$$

has a solution, it has to be unique.

Lemma 2. Assume that at least one of the following six inequalities is true,

$$P_{22}(n)P_{44}(n) - P_{42}(n)P_{24}(n) \neq 0,$$

$$(1 - P_{21}(n))P_{42}(n) + P_{22}(n)P_{41}(n) \neq 0,$$

$$(1 - P_{43}(n))P_{22}(n) + P_{23}(n)P_{42}(n) \neq 0,$$

$$(1 - P_{21}(n))P_{44}(n) + P_{41}(n)P_{24}(n) \neq 0,$$

$$(1 - P_{21}(n))(P_{43}(n) - 1) + P_{41}(n)P_{23}(n) \neq 0,$$

$$(1 - P_{43}(n))P_{24}(n) + P_{23}(n)P_{44}(n) \neq 0.$$

Then, the linear system on C_j 's is uniquely solvable.

Lemma 3. Suppose that the solution of the \mathcal{X} -RHP exists. Then, if at least one of the conditions of Lemma 2 holds, one can uniquely reconstruct the solution of the \mathcal{Y} -RHP.

The primary opening of lenses

The \mathcal{Z} -RHP.

$$\mathcal{Z}(z;n) := \mathcal{X}(z;n) \begin{cases} J_{\mathcal{X},i}^{-1}(z), & z \in \Omega_1, \\ J_{\mathcal{X},o}(z), & z \in \Omega_2, \\ I, & z \in \Omega_0 \cup \Omega_\infty, \end{cases}$$

$$\begin{array}{l} \blacktriangleright \mbox{ RH-}\mathcal{Z}\mathbf{1} \quad \mathcal{Z} \mbox{ is holomorphic in } \mathbb{C}\setminus\Gamma. \\ \label{eq:RH-} \mathbb{R}\mathbf{H}\text{-}\mathcal{Z}\mathbf{2} \quad \mathcal{Z}_{+}(z;n) = \mathcal{Z}_{-}(z;n) \begin{cases} J_{\mathcal{X},\mathbb{T}}(z), & z\in\mathbb{T}, \\ J_{\mathcal{X},i}(z), & z\in\Gamma_{i}, \\ J_{\mathcal{X},o}(z), & z\in\Gamma_{o}. \end{cases} \\ \begin{tabular}{l} \mathbb{R}\mathbf{H}\text{-}\mathcal{Z}\mathbf{3} \quad \mathcal{Z}(z;n) = (I+\mathcal{O}(z^{-1})) \begin{pmatrix} z^{n} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & z^{-n} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad z \to \infty. \end{cases} \\ \begin{tabular}{l} \mathbb{R}\mathbf{H}\text{-}\mathcal{Z}\mathbf{4} \ \mathcal{Z}(z;n) = P(n)(I+\mathcal{O}(z)) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & z^{-n} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & z^{n} \end{pmatrix}, \qquad z \to 0. \end{cases}$$

$$T(z;n) := \mathcal{Z}(z;n) \begin{cases} \begin{pmatrix} z^{-n} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & z^n & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, & |z| > 1, \\ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & z^n & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & z^{-n} \end{pmatrix}, & |z| < 1. \end{cases}$$

• **RH-**T**1** T is holomorphic in $\mathbb{C} \setminus \Gamma$.

▶ **RH-***T***2** $T_+(z;n) = T_-(z;n)J_T(z;n)$, where

$$J_T(z;n) = \begin{cases} \widehat{J}(z;n), & z \in \mathbb{T}, \\ J_{\mathcal{X},i}(z), & z \in \Gamma_i, \\ J_{\mathcal{X},o}(z), & z \in \Gamma_o, \end{cases} \quad \text{where} \quad \widehat{J}(z;n) = \begin{pmatrix} z^n & 0 & 0 & -\phi(z) \\ 0 & z^n & \bar{\phi}(z) & 0 \\ 0 & 0 & z^{-n} & 0 \\ 0 & 0 & 0 & z^{-n} \end{pmatrix}$$

▶ **RH-***T***3** As $z \to \infty$, we have $T(z; n) = I + O(z^{-1})$.

We observe that for $z \in \mathbb{T}$, J_T can be factorized as follows

$$\begin{split} \hat{J}(z;n) &= \begin{pmatrix} I_2 & 0_2 \\ z^{-n} \Phi^{-1}(z) & I_2 \end{pmatrix} \begin{pmatrix} 0_2 & \Phi(z) \\ -\Phi^{-1}(z) & 0_2 \end{pmatrix} \begin{pmatrix} I_2 & 0_2 \\ z^n \Phi^{-1}(z) & I_2 \end{pmatrix} \\ &\equiv J_{T,o}(z;n) \overset{\circ}{J}(z) J_{T,i}(z;n), \end{split}$$

where 0_2 and I_2 are respectively 2×2 zero and identity matrices and

$$\Phi(z) = \begin{pmatrix} 0 & -\phi(z) \\ \tilde{\phi}(z) & 0 \end{pmatrix}$$

Note that $J_{T,i}$ is exponentially close to the identity matrix for z inside of the unit circle and $J_{T,o}$ is exponentially close to the identity matrix for z outside of the unit circle.

The secondary opening of lenses

The S-RHP

$$S(z;n) := T(z;n) \times \begin{cases} J_{T,i}^{-1}(z;n), & z \in \Omega'_1, \\ J_{T,o}(z;n), & z \in \Omega'_2, \\ I, & z \in \Omega''_1 \cup \Omega''_2 \cup \Omega_0 \cup \Omega_\infty, \end{cases}$$

▶ **RH-**S1 S is holomorphic in $\mathbb{C} \setminus (\mathbb{T} \cup \Gamma_i \cup \Gamma_o \cup \Gamma'_i \cup \Gamma'_o)$.

▶ **RH-**S2 $S_+(z;n) = S_-(z;n)J_S(z;n)$, where

$$J_{S}(z;n) = \begin{cases} \overset{\circ}{J}(z), & z \in \mathbb{T}, \\ J_{T,i}(z;n), & z \in \Gamma'_{i}, \\ J_{T,o}(z;n), & z \in \Gamma'_{o}, \\ J_{\mathcal{X},i}(z), & z \in \Gamma_{i}, \\ J_{\mathcal{X},o}(z), & z \in \Gamma_{o}. \end{cases}$$

▶ **RH-**S3 As $z \to \infty$, we have $S(z; n) = I + O(z^{-1})$.

▶ **RH**-
$$\mathring{S}$$
1 \mathring{S} is holomorphic in $\mathbb{C} \setminus (\mathbb{T} \cup \Gamma_i \cup \Gamma_o)$.

▶ **RH**-
$$\overset{\circ}{S}$$
2 $\overset{\circ}{S}_+(z) = \overset{\circ}{S}_-(z)J_{\overset{\circ}{S}}(z)$, where

$$J_{\overset{\circ}{S}}(z) = \begin{cases} \overset{\circ}{J}(z), & z \in \mathbb{T}, \\ J_{\mathcal{X},i}(z), & z \in \Gamma_i, \\ J_{\mathcal{X},o}(z), & z \in \Gamma_o. \end{cases}$$

• **RH-**
$$\overset{\circ}{S}$$
3 As $z \to \infty$, we have $\overset{\circ}{S}(z) = I + \mathcal{O}(z^{-1})$.

Now define

$$\Lambda(z) := \overset{\circ}{S}(z) \times \begin{cases} J_{\mathcal{X},i}(z), & z \in \Omega_1, \\ J_{\mathcal{X},o}^{-1}(z), & z \in \Omega_2, \\ I, & z \in \Omega_0 \cup \Omega_{\infty}, \end{cases}$$

A satisfies what we refer to as the model Riemann-Hilbert problem for the pair (ϕ, w) :

- ▶ **RH-** Λ **1** Λ is holomorphic in $\mathbb{C} \setminus \mathbb{T}$.
- ▶ **RH-** Λ **2** $\Lambda_+(z) = \Lambda_-(z) J_{\Lambda}(z)$, for $z \in \mathbb{T}$, where

$$J_{\Lambda}(z) = \begin{pmatrix} 0 & 0 & 0 & -\phi(z) \\ -\frac{w(z)}{\phi(z)} & 0 & \tilde{\phi}(z) - \frac{w(z)\tilde{w}(z)}{\phi(z)} & 0 \\ 0 & -\frac{1}{\tilde{\phi}(z)} & 0 & 0 \\ \frac{1}{\phi(z)} & 0 & \frac{\tilde{w}(z)}{\phi(z)} & 0 \end{pmatrix}$$

▶ **RH-** Λ **3** As $z \to \infty$, we have $\Lambda(z) = I + \mathcal{O}(z^{-1})$.

What if w is supported on the line?

Let w be supported on the interval [a, b], 0 < a < b < 1. Consider

$$Y(z) := \begin{pmatrix} P_n(z) & \int_a^b \frac{P_n(x)x^s w(x)}{x-z} dx + \int_{\mathbb{T}} \frac{\tilde{\phi}(\xi)\xi^r \tilde{P}_n(\xi)}{\xi-z} \frac{d\xi}{2\pi i\xi} \\ -\frac{1}{h_{n-1}} P_{n-1}(z) & -\frac{1}{h_{n-1}} \left\{ \int_a^b \frac{P_{n-1}(x)x^s w(x)}{x-z} dx + \int_{\mathbb{T}} \frac{\tilde{\phi}(\xi)\xi^r \tilde{P}_{n-1}(\xi)}{\xi-z} \frac{d\xi}{2\pi i\xi} \right\} \end{pmatrix}$$

where we recall

$$\int_{\mathbb{T}} P_n(z) z^{-k-r} \phi(z) \frac{dz}{2\pi i z} + \int_a^b P_n(x) x^{k+s} w(x) dx = h_n \delta_{n,k}, \quad k = 0, \dots, n,$$

and

$$h_{n-1} \equiv \frac{D_n(\phi, w; r, s)}{D_{n-1}(\phi, w; r, s)}.$$

,

- ▶ **RH-Y1** *Y* is holomorphic in $\mathbb{C} \setminus (\mathbb{T} \cup [a, b])$.
- ▶ **RH-Y2** For $z \in \mathbb{T}$ we have

$$Y_{+}^{(1)}(z;n) = Y_{-}^{(1)}(z;n),$$

and

$$Y^{(2)}_{+}(z;n) = Y^{(2)}_{-}(z;n) + z^{r-1}\tilde{\phi}(z)Y^{(1)}_{-}(z^{-1};n).$$

▶ **RH-Y3** For $x \in [a, b]$ we have

$$Y_{+}^{(1)}(x;n) = Y_{-}^{(1)}(x;n)$$

and

$$Y_{+}^{(2)}(x;n) = Y_{-}^{(2)}(x;n) + 2\pi i x^{s} w(x) Y_{-}^{(1)}(x;n).$$

▶ **RH-Y4** As $z \to \infty$

$$Y(z) = \left(I + O(\frac{1}{z})\right) z^{n\sigma_3}$$

Outline of RH analysis: w supported on [a, b]

Similar to the previous case, we can associate 2×4 and 4×4 RHPs to this Riemann-Hilbert problem and analyse it for r = 1 and arbitrary $s \in \mathbb{Z}$. It is remarkable that we arrive to the *same* model problem, now for the pair $(\phi, -\tilde{u})$, where

$$u(z) := z \int_a^b \frac{t^{s-1}w(t)}{t-z} dt.$$

Figure: Jump contour for the X and T-RHPs.

Outline of RH analysis: w supported on [a, b]

It is remarkable that we arrive to the same model problem, now for the pair $(\phi, -\tilde{u})$, where

$$u(z) := z \int_a^b \frac{t^{s-1}w(t)}{t-z} dt.$$

Figure: Jump contour for the S-RHP.

Outline of RH analysis: w supported on [a, b]

It is remarkable that we arrive to the same model problem, now for the pair $(\phi, -\tilde{u})$, where

$$u(z) := z \int_a^b \frac{t^{s-1}w(t)}{t-z} dt.$$

It is remarkable that we arrive to the same model problem, now for the pair $(\phi, -\tilde{u})$, where

Figure: Jump contour for the model RHP for the pair $(\phi, -\tilde{u})$.

Can we solve the model problem?

- **RH-** Λ **1** Λ is holomorphic in $\mathbb{C} \setminus \mathbb{T}$.
- ▶ **RH-** Λ **2** $\Lambda_+(z) = \Lambda_-(z)J_{\Lambda}(z)$, for $z \in \mathbb{T}$, where

$$J_{\Lambda}(z) = \begin{pmatrix} 0 & 0 & 0 & -\phi(z) \\ -\frac{w(z)}{\phi(z)} & 0 & \tilde{\phi}(z) - \frac{w(z)\tilde{w}(z)}{\phi(z)} & 0 \\ 0 & -\frac{1}{\tilde{\phi}(z)} & 0 & 0 \\ \frac{1}{\phi(z)} & 0 & \frac{\tilde{w}(z)}{\phi(z)} & 0 \end{pmatrix}$$

▶ **RH-** Λ **3** As $z \to \infty$, we have $\Lambda(z) = I + \mathcal{O}(z^{-1})$.

Can we solve the model problem?

The answer is yes! at least for the pair $(\phi, d\phi)$, where ϕ and d are smooth and nonzero on the unit circle, with zero winding number, and we further require d to satisfy $d(e^{i\theta})d(e^{-i\theta}) = 1, \theta \in [0, 2\pi)$. For instance, a class of functions satisfying these conditions is given by

$$d(z) = \prod_{j=1}^{m} d_j(z), \qquad d_j(z) = \pm \left(\frac{z - b_j}{z - a_j}\right)^{\alpha_j} \left(\frac{a_j z - 1}{b_j z - 1}\right)^{\alpha_j}, \tag{1}$$

where $\alpha_j \in \mathbb{C}$, all factors are defined by their principal branch, and

$$0 < a_1 < b_1 < a_2 < b_2 < \dots < a_m < b_m < 1.$$

The last condition on d makes $J_{\Lambda,23} = 0$, while the first three conditions on ϕ and d allow us to factorize them on the unit circle using the Szegő functions:

$$\alpha(z) = \exp\left[\frac{1}{2\pi i} \int_{\mathbb{T}} \frac{\ln(\phi(\tau))}{\tau - z} d\tau\right], \qquad \beta(z) = \exp\left[\frac{1}{2\pi i} \int_{\mathbb{T}} \frac{\ln(d(\tau))}{\tau - z} d\tau\right].$$

By Plemelj-Sokhotskii formula α , β , $\tilde{\alpha}$ and $\tilde{\beta}$ satisfy the following jump conditions on the unit circle:

$$\begin{split} &\alpha_+(z)=\alpha_-(z)\phi(z),\qquad \beta_+(z)=\beta_-(z)d(z),\\ &\tilde\alpha_-(z)=\tilde\alpha_+(z)\tilde\phi(z),\qquad \tilde\beta_-(z)=\tilde\beta_+(z)\tilde d(z). \end{split}$$

Now let ρ be defined on the unit circle by

$$\rho(z) = -\left(\tilde{\beta}_{-}(z)\beta_{+}(z)\tilde{\alpha}_{-}(z)\alpha_{+}(z)\right)^{-1}$$

Can we solve the model problem?

$$\Lambda(z) = \Lambda_{\infty}^{-1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\tilde{\alpha}(z)\tilde{\beta}(z)\alpha(z)} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \times \begin{cases} \begin{pmatrix} -\beta(z) & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\tilde{\alpha}(z)\tilde{\beta}(z)\alpha(z)} \\ 0 & 0 & 0 & -\alpha(z) \end{pmatrix}, & |z| < 1, \\ \begin{pmatrix} 0 & \beta(z) & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\tilde{\beta}(z)\tilde{\alpha}(z)\alpha(z)} \\ 0 & 0 & \tilde{\beta}(z) & 0 & 0 \\ \alpha(z) & 0 & 0 & 0 \end{pmatrix}, & |z| > 1, \end{cases}$$

where

$$\Lambda_{\infty}^{-1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\alpha(0)} & 0 \\ 0 & \alpha(0) & 0 & 0 \end{pmatrix},$$

and
$$C_{\rho}(z) = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{\rho(\tau)}{\tau - z} d\tau.$$

Recall

$$\alpha(z) = \exp\left[\frac{1}{2\pi i}\int_{\mathbb{T}}\frac{\ln(\phi(\tau))}{\tau-z}d\tau\right], \qquad \beta(z) = \exp\left[\frac{1}{2\pi i}\int_{\mathbb{T}}\frac{\ln(d(\tau))}{\tau-z}d\tau\right],$$

and

$$\rho(z) = -\left(\tilde{\beta}_{-}(z)\beta_{+}(z)\tilde{\alpha}_{-}(z)\alpha_{+}(z)\right)^{-1}$$

Define

$$g_{23}(z) = -\frac{\alpha(0)\tilde{d}(z)\beta(z)}{\tilde{\alpha}(z)}, \qquad g_{43}(z) = -\alpha^2(0)\beta(z)\left(\frac{\alpha(z)}{\tilde{\phi}(z)} + \frac{\tilde{d}(z)C_{\rho}(z)}{\tilde{\alpha}(z)}\right),$$

$$R_{1,23}(z;n) = \frac{1}{2\pi i} \int_{\Gamma'_i} \frac{\mu^n g_{23}(\mu)}{\mu - z} d\mu, \qquad R_{1,43}(z;n) = \frac{1}{2\pi i} \int_{\Gamma'_i} \frac{\mu^n g_{43}(\mu)}{\mu - z} d\mu,$$

where the contour Γ'_i is a circle, oriented counter-clockwise, with radius $r_0 < 1$ so that the functions ϕ and d are analytic in the annulus $\{z : r_0 \leq |z| < 1\}$. Finally denote

$$\mathcal{E}(n) := \frac{2}{\alpha(0)} R_{1,43}(0;n) - C_{\rho}(0) R_{1,23}(0;n),$$

which is the leading order term in the asymptotic expansion of

$$(1 - P_{21}(n))P_{42}(n) + P_{22}(n)P_{41}(n).$$

Theorem. Suppose that $\phi(e^{i\theta})$ is smooth and nonzero on the unit circle with zero winding number which admits an analytic continuation in a neighborhood of the unit circle. Let $w = d\phi$, where d satisfies all the properties of ϕ in addition to $d(e^{i\theta})d(e^{-i\theta}) = 1$, for all $\theta \in [0, 2\pi)$. Also assume that the exists a C > 0, such that for all n sufficiently large

$$|\mathcal{E}(n)| \ge Cr^n$$
, for some $r: r_0 \le r < 1$,

where r_0 is the inner radius of the largest symmetric annulus (outer radius is the reciprocal of the inner radius) in which both functions d and ϕ are analytic. Then, for sufficiently large n the determinant $D_n(\phi, w; 1, 1) \neq 0$ and the asymptotics of

$$h_{n-1} \equiv \frac{D_n(\phi, w; 1, 1)}{D_{n-1}(\phi, w; 1, 1)},$$

is given by

$$h_{n-1} = -\alpha(0) \frac{\mathcal{E}(n)}{\mathcal{E}(n-1)} (1 + \mathcal{O}(e^{-c_1 n})), \qquad n \to \infty,$$

where $c_1 = -\log\left(\frac{r_1^2}{r}\right) > 0$, and r_1 is any number satisfying the conditions:

 $r < r_1 < 1$ and $r_1^2 < r$.

- 1. Derivation of the relevant Christoffel-Darboux formulae and differential identities.
- 2. Solving the model Riemann-Hilbert for pairs other than $(\phi, d\phi)$ with $d\tilde{d} \equiv 1$.

- 1. Derivation of the relevant Christoffel-Darboux formulae and differential identities.
- 2. Solving the model Riemann-Hilbert for pairs other than $(\phi, d\phi)$ with $d\tilde{d} \equiv 1$.
- 3. Extension of the analysis to general offset values $r, s \neq 1$.

- 2. Solving the model Riemann-Hilbert for pairs other than $(\phi, d\phi)$ with $d\tilde{d} \equiv 1$.
- 3. Extension of the analysis to general offset values $r, s \neq 1$.
- 4. Extension of the Riemann-Hilbert analysis for more general choices of I.

- 2. Solving the model Riemann-Hilbert for pairs other than $(\phi, d\phi)$ with $d\tilde{d} \equiv 1$.
- 3. Extension of the analysis to general offset values $r,s\neq 1.$
- 4. Extension of the Riemann-Hilbert analysis for more general choices of I.
- 5. Extension to Fisher-Hartwig symbols.

- 2. Solving the model Riemann-Hilbert for pairs other than $(\phi, d\phi)$ with $d\tilde{d} \equiv 1$.
- 3. Extension of the analysis to general offset values $r,s\neq 1.$
- 4. Extension of the Riemann-Hilbert analysis for more general choices of I.
- 5. Extension to Fisher-Hartwig symbols.

6. Characterization of generic classes of Szegő-type symbol pairs $(\phi, d\phi)$, with $d\tilde{d} \equiv 1$ on the unit circle.

- 2. Solving the model Riemann-Hilbert for pairs other than $(\phi, d\phi)$ with $d\tilde{d} \equiv 1$.
- 3. Extension of the analysis to general offset values $r,s\neq 1.$
- 4. Extension of the Riemann-Hilbert analysis for more general choices of I.
- 5. Extension to Fisher-Hartwig symbols.
- 6. Characterization of generic classes of Szegő-type symbol pairs $(\phi, d\phi)$, with $d\tilde{d} \equiv 1$ on the unit circle.
- 7. Characteristic polynomial of a Hankel matrix.

Thank you!