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Notations and definitions

The n x n Toeplitz and Hankel matrices associated respectively to the symbols ¢
and w, supported on the unit circle T are respectively defined as

Tn[d)ﬂn] = {¢j*k+7‘}7 J»k:07 yn—1, d)k :/H‘Z_k(f)(z)ﬂ

. k)
2miz

and

. _ dz
Hn[w;s} = {wj+k+s}7 ]7k:07 ,TL—]., Wi :/Z kw(z) )
T 2miz

for fixed offset values r,s € Z. If the Hankel symbol w is supported on a subset I
of the real line, then wy, are instead given by

Wy, :/mkw(m)d:p.
I




Introduction

We intended to develop a Riemann-Hilbert approach to the study of the large-n
asymptotics of Toeplitz+Hankel determinants

¢>T + ws ¢r71 + ws41 e ¢r7n+1 + Wstn—1
¢r+1 + Ws41 ¢T‘ + Ws4-2 ce ¢Tfn+2 + Ws4n
det . . . . ’
¢7‘+n71 + Ws4n—1 ¢T+n72 + Ws+tn ce ¢'V' + Ws42n—2

which we denote by Dy, (¢, w;r,s).




Existing results

» P.Deift, A.Its and I.Krasovsky (2011)

Used the Riemann-Hilbert problem for pure Toeplitz determinants under the
following assumptions

e ¢(z) of Fisher-Hartwig type.

o ¢(z) = w(z)

o () = ¢(2)




Existing results

» P.Deift, A.Its and I.Krasovsky (2011)

Used the Riemann-Hilbert problem for pure Toeplitz determinants under the
following assumptions

¢(z) of Fisher-Hartwig type.
6(2) = w(z)
#(z) = ¢(2)

» E.Basor and T.Ehrhardt (2001,2002,2009,2013,2017)

Used operator theory techniques under the following assumptions

#(z) = c(2)$o(2)

e w(z) = c(2)d(z)wo(z)

¢o(z) of Fisher-Hartwig type.

$o(2) = do(2)

a) wo(z) = £¢po(z), b) wo(z) = z¢o(z) and ¢) wo(z) = 7z_1¢>o(z)
c(z), d(z) are not required to be even

d(z)d(z) =1

d(£1) =1




Motivation for a new Riemann-Hilbert approach

Perhaps one of the most important motivations behind studying T+H determinants
is to study the large n asymptotics of the eigenvalues of the Hankel matrix Hy[w]
associated to the symbol w, simply because the characteristic polynomial

det(Hp[w] — AI)

of the Hankel matrix Hyn[w], is indeed a particular Toeplitz+Hankel determinant,
with
P(z) = —A.

Clearly in the case of characteristic polynomial of a Hankel determinant, there is no
relationship between ¢ and w, so to study the asymptotics of this determinant, one
can not refer to the existing results mentioned above. In fact there is a method-
ological issue which has to be addressed at a fundamental level: formulation of a
suitable Riemann-Hilbert problem.




The associated system of orthogonal polynomials

» Hankel symbol supported on the unit circle.
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» Hankel symbol supported on the unit circle. If Dy (¢, w;r, s) # 0, there exists
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for k=0,1,---,n
» Hankel symbol supported on the real line.
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» Hankel symbol supported on the unit circle. If Dy (¢, w;r, s) # 0, there exists
unique monic polynomials Pp(z) = 2™ + - - - satisfying
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for k=0,1,---,n

» Hankel symbol supported on the real line. If Dy, (¢, w;r, s) # 0, there exists
unique monic polynomials Py, (z) = 2™ + - - - satisfying

/Pn kT

for k=0,1,---,n.
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The associated system of orthogonal polynomials

» Hankel symbol supported on the unit circle. If Dy (¢, w;r, s) # 0, there exists
unique monic polynomials Pp(z) = 2™ + - - - satisfying

d
[ Pe@= o) g 4 [ Pa@) () S = e
Tz 2miz

for k=0,1,---,n

» Hankel symbol supported on the real line. If Dy, (¢, w;r, s) # 0, there exists
unique monic polynomials Py, (z) = 2™ + - - - satisfying

X d b
/Pn(z)z_k_""d)(z) z +/ Po(@)2 S w(@)de = hndp g,
T 2miz a

for k=0,1,--- ,n. And in both cases

Dn(¢)7 w; T, S)

hp—1 = .




Existence and uniqueness of OPs

Assuming that Dy (¢, w;r,s) # 0, the existence of the orthogonal polynomials
follows from the explicit construction

_ Dn+l(¢7w§ T75|17(Z)) —

Pn(z) : Do (6, wir5) v(z) = (1,2,---,2"),

where Dy (¢, w;r, s|17(z)) denotes the bordered Toeplitz+Hankel determinant with
the last row given by the vector ¥(z).




Existence and uniqueness of OPs

Assuming that Dy (¢, w;r,s) # 0, the existence of the orthogonal polynomials
follows from the explicit construction

_ Dn+l(¢7w§ r,s|17(z)) —

Pn(z) : Do (6, wir5) v(z) = (1,2,---,2"),

where Dy (¢, w;r, s|17(z)) denotes the bordered Toeplitz+Hankel determinant with
the last row given by the vector ¥(z). The uniqueness of the polynomial
Pn(z) = 2" + an—12""1 + .- + ag satisfying the orthogonality conditions, simply
follows from the fact that one has the following linear system for the coefficients
a;,0<7<n—1

ao _¢7n+r — Wn+s

ai *d)lfnjtr — Wil4n+s

(Tn#;7] + Hnlw; s]) . =

anp—1 7¢71+7' — W2n—1+s




The RHP for OPs, w supporetd on T

Let us consider the following Riemann-Hilbert problem

> RH-Y1 Y is holomorphic in C\ T.
» RH-Y2 For z € T we have

Y (z5n) = YV (z;m),

VP (zn) = YP (z30) + 27100 (2 )y(”(z n) + 214G (2) Y M (z

» RH-Y3 Y(z;n)= I+O ), As z — oo.

in).




The RHP for OPs, w supporetd on T

Theorem 1. The following statements are true.

1. Suppose that Dy, Dp—1 # 0. Then, the Riemann-Hilbert problem RH-Y1
through RH-)Y3 is uniquely solvable and its solution ) is given by

Pa2) /58 >7>n(£ +EHE)Pu(§) de
" E—z 2mi€
£ B(E)Pr-1(§) + £ G(E)Pn-1(§) dE
Tha ) 1/ -2 i€
Moreover,
hp—1=— zll{go Zn_l/y21(z§ n)

2. Suppose that the Riemann-Hilbert problem RH-Y1 through RH-Y3 has a
unique solution. Then D,, # 0, and Pp(z) = V11(z; n).

3 Suppose that the Riemann-Hilbert problem RH-)1 through RH-)3 has a
unique solution. Suppose also that

lim y21(z;n)z7"+1 #0.
Z—> 00
Then, as before, Dy, # 0, Pn(2) = V11(z;n), and, in addition,

Dn1#0, hno1=— lim Yy'(zn)2" 7", Puoi1(2) = —ha—1Y21(2).




The 2 x 4 RHP

10
o
Let us define the 2 X 4 matrix X out of the columns of } as follows
o —~ ~
X(zin) = (YO (z50), YD (2:0), YO (350), TP () -
> RH-/%I K’ is holomorphic in C\ (T U {0}).
> RH-?O(Z For z € T, X’ satisfies
1 0 27 lw(z) —z7"Tle(z)
° o 0o 1 r—17 L —s+1
Xi(zin) =X _(zm) |0 L 2T e —e ()
0o 0 0 1
» RH-X3 As z — oo we have
2" 0 0 0
$(zsm) = (1 +0G:"Y am+0G"h  oEThH Can)+ O<z*1)) o 1 0 o
T oGzTh Co(n) +0(:z"1) 1+0E"YH Cin)+0GE"1) 8 8 z;" (1)
> RH-.}%4 As z — 0 we have
1 0 0 0
Sim = (CLM+0() 1+0() Ca(m+0()  0¢) Y[o =" o0 o
’ Ca(n) + O(2) O(z) Ca(n) +0(z) 1+0(2)) |0 0 1 0|’
0 0 0o 2"

where

C1(n) = Y11(05n),

C3z(n) = Y12(0;n),

C2(n) = Y21(0;n), Ca(n) = Y22(0;n).




Passage to a 4 x 4 RHP 11

Let us assume that r = s = 1, the corresponding 4 x 4 Riemann-Hilbert problem is
» RH-X1 X is holomorphic in the complement of T U {0}.
> RH-X2 1 0 w(z) —¢(z)

n) = a0 1 8 —w(z)
Xy(z;n) = X_(z;n) 0 0 1 0 , zeT.
0 0 0 1
> RH-X'3 z" 0 0 0
_ 0 1 0 0
X(zn) = (I4+0(z"1)) 0 0 = ol° z — 00.
0 O 0 1
> RH-X4 1 0 0 0
0 =z 0 0
X(z;n) = P(n)(I + O(2)) 0o 0 1o | z—0.

0 0 0 z"
The solution of the X-RHP is unique if it exists. Note that the matrix factor P(n)
is not a priori prescribed. But already we can show that

rank (P(n)W — I) = 2, where W =

oo =Oo
oo o
= O OO
o= OO




Connection of the 2 x 4 and the 4 x 4 RHPs 12

Let us consider
o
R(z;n) == X(z;n)X "1 (z;n).

Clearly R has no jumps, its behavior near zero is given by

y_(Ci(n)+0(z) 14+0(z) Cs(n)+0(z) O(z) _
R(zin) = (C;(n)JrO(z) 0G)  Caln)+ O2) 1+(9(z)) P (n),

and thus R is an entire function. The behaviour of R near infinity is

asm = (V5O GUMEOET) 06T G+ ot
T oz Ca(n)+0(z"1) 14+0(:"1) Cu(n)+0(=z"1))"

By Liouville’s theorem we have

. y_ (1 Ci(n) 0 C3(n)

This gives the following linear system for the constants C;

1 Ci(n) 0 Cs(n)
0 Ci(n) 1 Ca(n)
which can be rewritten as

L i) 0 Ca(n
<0 Cégng 1 czgn;)(P(n)W—Ll):o‘

_(Ci(n) 1 C3(n) 0\ ,—
,@%)O£Wlﬁ%w




Solvability of the linear system for C}’s 13

Lemma 1. If the linear system

1 Ci(n) 0 Cs(n)\ _ [(Ci(n) 1 Cs(n) 0Y ,_
(0 Caln) 1 Ci(n))_(C;(n) 0 Ca(n) 1>P '),

has a solution, it has to be unique.

Lemma 2. Assume that at least one of the following six inequalities is true,

Poo(n)Pya(n) — Pa2(n)Paa(n) # 0,

(1 — P21(n))Paz(n) + Pa2(n)Pa1(n) # 0,

(1 — Pag(n))Paz(n) + Pas(n)Paz(n) # 0,

(1 — P21(n))Paa(n) + Pa1(n)Paa(n) # 0,

(1= P21(n))(Pas(n) — 1) + Par(n)Pas(n) # 0,

(1 — Pa3(n))Paa(n) + Pag(n)Paa(n) # 0.

Then, the linear system on Cj’s is uniquely solvable.

Lemma 3. Suppose that the solution of the X-RHP exists. Then, if at least one
of the conditions of Lemma 2 holds, one can uniquely reconstruct the solution of
the Y-RHP.
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The primary opening of lenses

) x,i(2)-

) x1(2

z

= JX,O(




The Z-RHP.

Jxh(z), zequ,
Z(z;n) == X(zn)  Jx,0(2), z € Qa,
I, z€ Qo UQx,

» RH-Z1 Z is holomorphic in C\ T

JX,T(Z)7 S T?
> RH-22 Z,(zn)=2-(zn) Jx,i(z), zeTly,
JX,(,(Z)7 zeTl,.

z" 0 0 0

> RH-Z3 Z(z;n)=I+0(="1) 8 (l) Zgn 8 , z — 0.
0 O 0 1
1 0 0 0
0 2z 0 0

> RH-Z4 Z(z;n) = P(n)(I + O(z)) 0 0 ' E z—=0
0 0 0 2"




The T-RHP

zZ™ 0 0 O
0 1 0 O
o o . ol H>L
0 0o 0 1
T(z;n) = Z(z;
(z;n) (z;n) Lo o 0
0 2" 0 0
o o0 1 NEE lz| < 1.
0O 0 0 z=7
» RH-T1 T is holomorphic in C\T.
» RH-T2 Ty (z;n) =T_(z;n)Jr(z;n), where
:]\(z;n)7 z€T, 200
A 0 2 ()
Jr(z;n) = Jx,i(2), zeTly, where J(z;n) = 0 0 -
Jx,0(2), z€T,, 0 0 0

> RH-T3 As z — oo, we have T'(z;n) = I + O(z71).

16




The T-RHP

We observe that for z € T, Jr can be factorized as follows

Tz = (z—"f_l(z) %) (“1’921(2) <I>0(22)) (an)[fl(z) (}2)

o

= Jr,o(z;n)J(2)Jr,i(2n),

where 02 and I3 are respectively 2 X 2 zero and identity matrices and

*= (50 o)

Note that Jr; is exponentially close to the identity matrix for z inside of the unit
circle and Jr, is exponentially close to the identity matrix for z outside of the unit
circle.

17




The secondary opening of lenses

18




The S-RHP 19

Jii(z;n), z €,
S(z;n) :=T(z;n) X § Jro(z;n), z € Q,
I z€Q/UQIUQo U Qc,

)

> RH-S1 S is holomorphic in C\ (TUT; UL, UL, UTY).
» RH-S2 Si(z;n) = S_(z;n)Js(z;n), where

o

J(z), z €T,

Jri(zn), zeTl,
Js(zin) = § Jro(zn), zeTll,

Jxi(2), zely,

JX,O(Z), z €T,

> RH-5S3 As z — oo, we have S(z;n) = I 4+ O(z71).




The Global Parametrix RHP

o o
> RH-S1 S is holomorphic in C\ (TUT; UT,).

> RH—§2 g'+ (2) = g_(z)Jg(z), where
3(2), zeT,
Jg,(z) = JX’Z'(Z), zely,
Jx,0(2), z€T,.

> RH-§3 As z — oo, we have g’(z) =I+0(:zh.
Now define
o JX’Z'(Z), z € Q1,
A(z) = S(2) x § J3l(2), z€Qa,
1, z€ QoUNo,

20




The model RHP for the pair (¢, w)

A satisfies what we refer to as the model Riemann-Hilbert problem for the pair

(¢, w):
> RH-A1
> RH-A2

> RH-A3

A is holomorphic in C\ T.
Ay (z) = A_(2)Ja(2), for z € T, where

0 0 0
_w(z) 30) — w(z)w(z)
70 B T
Ja(z) = 0 _ ~1 0
?(2) .
1 0 w(z)
¢(2) (=)

As z — oo, we have A(z) = I+ O(z71).

—¢(2)




What if w is supported on the line? 22

Let w be supported on the interval [a,b], 0 < a < b < 1. Consider

(z) HEPa(8) dE
Y(Z) . Pn(Z) / Tr—z d + / -z 27‘1’7,5
B _ Poi(z)zw(x) ¢<s)§rpn 1) de | |”
hn—1 Fro1(2) {/ T—z dot T E—z 27ri§}

where we recall
—k—r dz b k+s
P, (2)z o(z) — + P, (z)z" P w(z)de = hpnbp g, k=0,...,n,
T 2miz a ’

and
Dy (¢, w;r, s)

hpo1 = ——m— .
! Dn71(¢,w;7‘,s)




The RHP for OPs, w supported on [a, ] 23

> RH-Y1
> RH-Y2

and

> RH-Y3

and

> RH-Y4

Y is holomorphic in C\ (T U [a, b]).

For z € T we have

Y (zn) =YV (zn),

Y (zn) = YP (zim) + 271 3(2)Y D (=),

For = € [a, b] we have

Yil)(x;n) = Yﬁl)(x;n)

Y+(2)($; n) = YEQ)(m; n) + 27rixsw(ac)Y£1)(cc; n).

As z — o0

Y(2) = (1 + 0(2)) 2nos,




Outline of RH analysis: w supported on [a, b] 24

Similar to the previous case, we can associate 2 X 4 and 4 x4 RHPs to this Riemann-
Hilbert problem and analyse it for » = 1 and arbitrary s € Z. It is remarkable that
we arrive to the same model problem, now for the pair (¢, —i), where

u(z) = z/b mdt.

t—2z

Figure: Jump contour for the X and T-RHPs.




Outline of RH analysis: w supported on [a, b] 24

It is remarkable that we arrive to the same model problem, now for the pair (¢, —@),

b s—1y
u(z) := z/ Mdt.

where

t—=z

Figure: Jump contour for the S-RHP.




Outline of RH analysis: w supported on [a, b] 24

It is remarkable that we arrive to the same model problem, now for the pair (¢, —@),

where . Ny
t5— t
u(z) :== z/ 7w()dt.
a t—2z

o
Figure: Jump contour for the global parametrix S.




Outline of RH analysis: w supported on [a, b] 24

It is remarkable that we arrive to the same model problem, now for the pair (¢, —@),

where . L
t5— t
u(z) := z/ 7w()dt.
a t—2z

Figure: Jump contour for the model RHP for the pair (¢, —a).




Can we solve the model problem?

» RH-A1 A is holomorphic in C\ T.
> RH-A2 A4(z) =A_(2)Ja(2), for z € T, where

0 0 0
~w(z) 30s) — w(z)w(z)
#(2) e
JIa(z) = 0 _ ~1 0
o(2) _
1 w(z)
é(2) #(2)

> RH-A3 As z — 0o, we have A(z) = I+ O(z71).

—¢(2)
0

0

0

25




Can we solve the model problem?

The answer is yes! at least for the pair (¢, d¢), where ¢ and d are smooth and
nonzero on the unit circle, with zero winding number, and we further require d to
satisfy d(e®®)d(e=*) = 1, 6 € [0,27). For instance, a class of functions satisfying
these conditions is given by

d(z)—ﬁdm so-=(22)" (E5)7. o

z—ay

where a; € C, all factors are defined by their principal branch, and
0<ay <byp <az<bs < <am<bm<1

The last condition on d makes Jj 23 = 0, while the first three conditions on ¢ and
d allow us to factorize them on the unit circle using the Szeg6 functions:

a(z) = exp {L/TMW}, B(2) = exp [i/jrwdﬂ.

2mi T—2z 21 T—2z

By Plemelj-Sokhotskii formula «, 8, & and /5’ satisfy the following jump conditions
on the unit circle:

ot (2) =a(2)¢(2),  Bi(z) = B-(2)d(2),
a-(2) = ar(2)d(2),  B-(2) = B+ (2)d(2).
Now let p be defined on the unit circle by

p(2) = — (B ()B4 ()a—(2)as (=) .

25




Can we solve the model problem?

—B(z) 0 0 0
0 0 ~1 0
a(2)B(z)a(z)
1 000 0 —a(z) 0 0
ilez 1 0 0 0 0 0 —a(z)
A(z) =AY 7 0 1 ol 0 B o 0
0 0o 0 1 1
0 0 0
B(z)a(z)a(z) |,
0 0 a(z) 0
a(z) 0 0 0
where
0 0 0 1
1 0 0 0
-1 _ 1 _ i p(7)
Ay 0 0 m ol> and Cp(2) 27ri/q1-7'—zd
0 a0) 0 0

25




Formulation of the main asymptotic result 26

Recall
_ 1 In(¢(1)) _ 1 In(d(7))
a(z) = exp {% /T jdﬂ'} , B(z) = exp [% /T ﬁdT} ,
and ) .
p(2) = = (B-(2)B+ ()G (D)as (2)) -
Define
Ri,23(z;n) = ﬁ /F, szij(j)du, R1,43(z;n) = i/p %&i[‘)d#’

where the contour I', is a circle, oriented counter-clockwise, with radius ro < 1 so
that the functions ¢ and d are analytic in the annulus {z : 7o < |z] < 1}. Finally

denote
. 2

(0)

which is the leading order term in the asymptotic expansion of

5(71) : R1,43(0; n) — Cp(O)Rng (0; n),

(]. — P21(n))P42(n) + P22(n)P41 (n)




Main Theorem(Szeg6 case)

Theorem. Suppose that ¢(e*?) is smooth and nonzero on the unit circle with zero
winding number which admits an analytic continuation in a neighborhood of the
unit circle. Let w = d¢, where d satisfies all the properties of ¢ in addition to
d(e®)d(e=%®) = 1, for all § € [0,27). Also assume that the exists a C' > 0, such
that for all n sufficiently large

|E(n)| > Cr™, forsomer: ro<r<l,

where 7( is the inner radius of the largest symmetric annulus (outer radius is the
reciprocal of the inner radius) in which both functions d and ¢ are analytic. Then,
for sufficiently large n the determinant Dy, (¢, w;1,1) # 0 and the asymptotics of

Dn(¢,w;1,1)
hpyoy = 20
Dp_1(¢,w;1,1)
is given by
E(n) _
hn—1 = —a(0)—————(1+ O(e™ ")), — 00,
no1 = =00 gp, T (L 0(T), 0o
2
where ¢; = — log (%1) > 0, and rq is any number satisfying the conditions:

r<r; <1 and r%<r.

27




Remaining open questions

1. Derivation of the relevant Christoffel-Darboux formulae and differential
identities.
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Remaining open questions 28

1. Derivation of the relevant Christoffel-Darboux formulae and differential
identities.

. Solving the model Riemann-Hilbert for pairs other than (¢, d¢) with dd = 1.
. Extension of the analysis to general offset values r, s # 1.

Extension of the Riemann-Hilbert analysis for more general choices of 1.

N

Extension to Fisher-Hartwig symbols.

@

. Characterization of generic classes of Szegé-type symbol pairs (¢, d¢), with
dd = 1 on the unit circle.

7. Characteristic polynomial of a Hankel matrix.




Thank you!




	Notations and definitions
	Introduction
	Sketch of the proof
	Main Result

