Vanishing of local cohomology modules

Wenliang Zhang

University of Illinois at Chicago

Fellowship of the Ring, September 14, 2021

Wenliang Zhang (UIC)

Vanishing of local cohomology modules

FOTR, Sept. 14, 2021 1/3

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Takeaway

Studying vanishing of local cohomology modules is a fascinating research area; there have been many remarkable theorems and there are still many interesting problems to work on.

.

Definition

Let *R* be a noetherian commutative ring and *I* be an ideal. Let Mod_R denote the category of *R*-modules.

I-torsion functor

The *I*-torsion functor, $\Gamma_I : Mod_R \to Mod_R$, is defined by:

• $\Gamma_I(M) = \{m \in M | I^n m = 0 \text{ for some integer } n\} \in \operatorname{Obj}(Mod_R)$

•
$$\Gamma_{I}(M \xrightarrow{f} N) = \left(\Gamma_{I}(M) \xrightarrow{f_{\Gamma_{I}(M)}} \Gamma_{I}(N)\right) \in \operatorname{Mor}(Mod_{R})$$

Basic property

 Γ_I is a covariant left-exact functor.

Local cohomology

The *j*-th local cohomology supported in *I*, denoted by $H_I^j(-)$, is the *j*-th derived functor of Γ_I . That is, $H_I^j(M) \cong H^j(0 \to \Gamma_I(E^{\bullet}))$, where $0 \to M \to E^{\bullet}$ is an injective resolution of *M*.

Example

Set $R = \mathbb{Z}$ and I = (2). Compute $H^{j}_{(2)}(\mathbb{Z})$. An injective resolution of \mathbb{Z} is given by

$$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0.$$

Applying $\Gamma_{(2)}$ to $0\to \mathbb{Q}\to \mathbb{Q}/\mathbb{Z}\to 0,$ we have

$$0 \to \Gamma_{(2)}(\mathbb{Q}) = 0 \to \Gamma_{(2)}(\mathbb{Q}/\mathbb{Z}) \to 0.$$

Hence $H_{(2)}^{j}(\mathbb{Z}) = 0$ for $j \neq 1$ and $H_{(2)}^{1}(\mathbb{Z}) \cong \Gamma_{(2)}(\mathbb{Q}/\mathbb{Z})$. Since \mathbb{Q}/\mathbb{Z} consists of equivalent classes [*r*] for rationals $0 \leq r < 1$,

$$H^1_{(2)}(\mathbb{Z}) \cong \Gamma_{(2)}(\mathbb{Q}/\mathbb{Z}) \cong \left\{ [\frac{m}{2^n}] | 0 \le m < 2^n, \ n \ge 1 \right\}$$

< ロ > < 同 > < 回 > < 回 >

Properties of Γ_I

- Assume $\sqrt{I} = \sqrt{J}$. Then $\Gamma_I(-) = \Gamma_J(-)$
- Since $\{x \in M | I^n x = 0\} \cong \operatorname{Hom}_R(R/I^n, M)$, we have $\Gamma_I(-) \cong \varinjlim_n \operatorname{Hom}_R(R/I^n, -)$. (This shows that Γ_I is left-exact.) And, $H_I^j(-) \cong \varinjlim_n \operatorname{Ext}_R^j(R/I^n, -)$.
- Since both Hom_R(R/Iⁿ, -) and direct limits commute with flat ring homomorphisms, so does H^j_l(-). I.e.

$$H^j_I(M)\otimes_R S\cong H^j_{IS}(M\otimes_R S),$$

for any flat $R \rightarrow S$, including localization, henselization, completion, etc.

By the same token, Γ_l and hence H^j_l(-) commutes with direct sum. (For instance, if H^j_l(R) = 0, then H^j_l(F) = 0 for all free *R*-modules *F*.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Properties of Γ_I , continued

• Let p be a prime ideal of R. Then

$$\Gamma_I(E(R/\mathfrak{p})) = \begin{cases} E(R/\mathfrak{p}) & I \subseteq \mathfrak{p} \\ 0 & \text{otherwise} \end{cases}$$

Reason:

- each element in $E(R/\mathfrak{p})$ is killed by a power of \mathfrak{p} ;
- 2 every element in $R \mathfrak{p}$ acts as an automorphism on $E(R/\mathfrak{p})$.
- $H_l^j(E) = 0$ for j > 0 and injective module *E*. (For instance, $H_{(2)}^j(\mathbb{Q}) = 0$ for all j > 0.)
- Short exact sequences 0 → L → M → N → 0 induce long exact sequence on local cohomology

$$\cdots \to H^{j}_{I}(L) \to H^{j}_{I}(M) \to H^{j}_{I}(N) \to H^{j+1}_{I}(L) \to \cdots$$

< ロ > < 同 > < 回 > < 回 >

An extension of previous example

Let
$$R = k[x_1, ..., x_d]$$
 and $\mathfrak{m} = (x_1, ..., x_d)$.

$$0 \to R \to \cdots \to \bigoplus_{\mathsf{ht}(\mathfrak{p})=j} E(R/\mathfrak{p}) \to \cdots \to \bigoplus_{\mathsf{ht}(\mathfrak{p})=d} E(R/\mathfrak{p}) \to 0$$

Consequently,

$$H^{j}_{\mathfrak{m}}(R) = \begin{cases} E(R/\mathfrak{m}) & j = d \\ 0 & j \neq d \end{cases}$$

Remark

We need more tools to compute $H_l^j(R)$.

- Injective resolutions are not easy to construct for non-Gorenstein rings.
- Even in the injective resolution as above, differentials are somewhat mysterious.

Čech complexes

Definition

For each $f \in R$, define $\check{C}(f; R) := (0 \to R \to R_f \to 0)$. Given a sequence of elements f_1, \ldots, f_n , define $\check{C}(f_1, \ldots, f_n; R) := \bigotimes_{i=1}^n \check{C}(f_i; R)$. More explicitly:

$$0 \to \boldsymbol{R} \to \bigoplus_{i} \boldsymbol{R}_{f_i} \to \bigoplus_{j < k} \boldsymbol{R}_{f_j f_k} \to \cdots \to \boldsymbol{R}_{f_1 \dots f_n} \to 0$$

And
$$\check{C}(f_1,\ldots,f_n;M) := \check{C}(f_1,\ldots,f_n;R) \otimes_R M.$$

Example

$$\check{C}(f_1, f_2; R) = (0 \to R \xrightarrow{d^0} R_{f_1} \oplus R_{f_2} \xrightarrow{d^1} R_{f_1 f_2} \to 0)$$
 where

$$d^{0}(r) = (\frac{r}{1}, \frac{r}{1}) \quad d^{1}(\frac{r_{1}}{f_{1}^{n_{1}}}, \frac{r_{2}}{f_{2}^{n_{2}}}) = -\frac{r_{1}}{f_{1}^{n_{1}}} + \frac{r_{2}}{f_{2}^{n_{2}}} = \frac{r_{2}f_{1}^{n_{1}} - r_{1}f_{2}^{n_{2}}}{f_{1}^{n_{1}}f_{2}^{n_{2}}}$$

Theorem

If
$$I = (f_1, \ldots, f_n)$$
, then $H^j_I(M) \cong H^j(\check{C}(f_1, \ldots, f_n; M))$ for all j and all M .

Example

Let
$$R = \mathbb{Z}$$
 and $I = (2)$. Then
 $H_{(2)}^{j}(\mathbb{Z}) \cong H^{j}(0 \to \mathbb{Z} \to \mathbb{Z}_{2} \to 0)$
Hence $H_{(2)}^{j}(\mathbb{Z}) = 0$ for $j \neq 1$, and
 $H_{(2)}^{1}(\mathbb{Z}) \cong \mathbb{Z}_{2}/\mathbb{Z} \cong \left\{ [\frac{m}{2^{n}}] | 0 \leq m < 2^{n}, n \geq 1 \right\}$

イロト イ団ト イヨト イヨト

Example

Let $R = k[x_1, ..., x_d]$ and $\mathfrak{m} = (x_1, ..., x_d)$. From the Čech complex $\check{C}(x_1, ..., x_d; R)$:

$$0 \to R \to \bigoplus_{i} R_{f_i} \to \cdots \to \bigoplus_{i} R_{x_1 \cdots \hat{x}_i \cdots x_d} \to R_{x_1 \dots x_d} \to 0$$

we have

$$H^d_{\mathfrak{m}}(R) = \operatorname{Coker}\left(\bigoplus_{i=1}^d R_{x_1\cdots\hat{x}_i\cdots x_d} \to R_{x_1\cdots x_d}\right) = \bigoplus_{a_1,\dots,a_d \ge 1} k[\frac{1}{x_1^{a_1}\cdots x_d^{a_d}}]$$

This is one way to 'visualize' $E(R/\mathfrak{m}) \cong H^d_\mathfrak{m}(R)$. Similarly, one can compute $(1 \le s \le d)$

$$H^s_{(x_1,\ldots,x_s)}(R) \cong \bigoplus_{a_1,\ldots,a_s \ge 1} k[x_{s+1},\ldots,x_d][\frac{1}{x_1^{a_1}\cdots x_s^{a_s}}]$$

A consequence from Čech complex

Corollary

If
$$\sqrt{I} = \sqrt{(f_1, \ldots, f_n)}$$
, then $H_I^j(R) = 0$ for all $j > n$.

Theorem (Mayer-Vietoris sequence)

Let I and J be two ideals. Then there is a long exact sequence

$$\cdots \to H^{j}_{l+J}(-) \to H^{j}_{l}(-) \oplus H^{j}_{J}(-) \to H^{j}_{l\cap J}(-) \to H^{j+1}_{l+J}(-) \to \cdots$$

Example

Let R = k[x, y, u, v] and $I = (x, y) \cap (u, v)$. Then *I* can not be generated by 2 elements up to radical since $H_I^3(R) \neq 0$ since

$$H^3_l(R) o H^4_{(x,y,u,v)}(R)(
eq 0) o H^4_{(x,y)}(R) \oplus H^4_{(u,v)}(R)(=0).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Connection with sheaf cohomology

Let $I = (f_1, ..., f_n)$ be an ideal of R. Set $U := \text{Spec}(R) \setminus V(I)$. Then, in algebraic geometry, the complex computing $H^i(U, \mathcal{O}_U)$ corresponding to

$$0 \to \bigoplus_{i=1}^{\prime\prime} R_{f_i} \to \bigoplus_{j < k} R_{f_j f_k} \to \cdots \to R_{f_1 \dots f_n} \to 0.$$

(*R* is removed and also a shift in homological degree by 1.) Consequently, $H^i(U, \mathcal{O}_U) \cong H^{i+1}_I(R)$ when i > 0, and

$$0
ightarrow H^0_I(R)
ightarrow R
ightarrow H^0(U, \mathcal{O}_U)
ightarrow H^1_I(R)
ightarrow 0.$$

The graded analogue also holds. Consequently, when

$$R = k[x_0, \ldots, x_n]$$
 and $\mathfrak{m} = (x_0, \ldots, x_n)$

$$H^{n+1}_{\mathfrak{m}}(R)\cong igoplus_{\ell\in\mathbb{Z}} H^n(\mathbb{P}^n,\mathcal{O}_{\mathbb{P}^n}(\ell))$$

12/31

イロト イ押ト イヨト イヨト

Grothendieck's Problem

Let *R* be a noetherian local ring, *I* be an ideal of *R* and *t* be an integer. Find conditions under which $H_{I}^{j}(M) = 0$ for all j > t and all *R*-modules *M*.

Equivalent formulation

Equivalent to finding conditions under which $H_l^j(R) = 0$ for all j > t.

Proof sketch of equivalence.

Assume $H_l^{\ell}(R) = 0$ for all j > t and $H_l^{i}(M) \neq 0$ for some M and i > t. Let $\ell > t$ be the greatest integer $\exists M$ such that $H_l^{\ell}(M) \neq 0$ (ℓ is finite, next slide). Consider $0 \to N \to F \to M \to 0$ with F free. Then $0 = H_l^{\ell}(F) \to H_l^{\ell}(M) \to H_l^{\ell+1}(N) = 0$, contradiction. Hence $H_l^{i}(M) = 0$ for all j > t and all R-modules M.

Theorem (Grothendieck)

Let (R, \mathfrak{m}) be a noetherian local ring of dimension d and I be an ideal of R. Then $H_{I}^{j}(R) = 0$ for all j > d.

An observation

There exist d elements $a_1, \ldots, a_d \in I$ such that $\sqrt{I} = \sqrt{(a_1, \ldots, a_d)}$. Proof idea: use induction to find elements $a_1, \ldots, a_r \in I$ ($r \leq d$) such that every prime ideal of height r - 1 or less that contains (a_1, \ldots, a_r) must also contain *I*.

Proof sketch.

Our observation asserts there are elements $a_1, \ldots, a_d \in I$ such that $\sqrt{I} = \sqrt{(a_1, \ldots, a_d)}$. Hence $H_I^j(R) = H_{(a_1, \ldots, a_d)}^j(R)$. Now the Čech complex with respect to a_1, \ldots, a_d finishes the proof.

This solves Grothendieck's Problem in the case when $t = \dim(R)$.

Wenliang Zhang (UIC)

Vanishing of local cohomology modules

A nonvanishing theorem

Theorem (Grothendieck)

Let (R, \mathfrak{m}) be a noetherian local ring of dimension d. Then $H^d_{\mathfrak{m}}(R) \neq 0$.

Remark

- If d > 0, then $H^d_{\mathfrak{m}}(R)$ is *not* finitely generated.
- Set $g := \operatorname{grade}(I)$. Then $H_I^j(R) = 0$ for all j < g and $H_I^g(R) \neq 0$.

Corollary

If $f_1 \dots, f_c$ is a regular sequence in R, then $H^j_{(f_1,\dots,f_c)}(R) \neq 0 \Leftrightarrow j = c$.

Example

Let $R = k[x_1, ..., x_d]$ and $I = (x_1, ..., x_s)$. Then $H_i^j(R) = 0$ when $j \neq s$. We have calculated $H_i^s(R)$.

Theorem (Hartshorne-Lichtenbaum, 1968)

Let (R, \mathfrak{m}) be a complete local domain of dimension d and I be an ideal of R. The following are equivalent:

•
$$H_{l}^{l}(R) = 0$$
 for all $j > d - 1$;

•
$$\sqrt{l} \neq \mathfrak{m}$$
.

This solves Grothendieck's Problem in the case when $t = \dim(R) - 1$.

Remark

This is a highly non-trivial result, and has found numerous applications.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

So far we have seen solutions to Grothendieck's Problem in the cases when $t = \dim(R)$ and when $t = \dim(R) - 1$. What about the case when $t = \dim(R) - 2$?

Theorem (Hartshorne's Second Vanishing Theorem, 1968)

Let X be a (geometrically) connected closed subscheme of \mathbb{P}_k^d over a field k, of dimension ≥ 1 . Then

$$\mathcal{H}^{d-1}(\mathbb{P}^d-X,\mathcal{F})=0$$

for every coherent sheaf \mathcal{F} . Or equivalently, let $R = k[x_0, ..., x_d]$ where k is separably closed and I be a homogeneous ideal. Assume that $\dim(R/I) \ge 2$ and $\operatorname{Spec}(R/I) - \{\mathfrak{m}\}$ is connected. Then $H_I^j(R) = 0$ for all $j > \dim(R) - 2$.

3

17/31

Why separably closed?

Example

Let $R = \mathbb{Q}[[x, y, u, v]]$ and $I = (u^2 - 3x^2, v^2 - 3y^2, uv - 3xy, vx - uy)$. Then *I* is a prime ideal $(R/I \cong \mathbb{Q}[x, x\sqrt{3}, y, y\sqrt{3}])$ and hence Spec $(R/I) - \{\mathfrak{m}\}$ is connected. However, in $\overline{R} = \overline{\mathbb{Q}}[[x, y, u, v]]$, we have

$$\overline{IR} = (u - x\sqrt{3}, v - y\sqrt{3}) \cap (u + x\sqrt{3}, v + y\sqrt{3})$$

and hence $\text{Spec}(\overline{R}/I) - \{\mathfrak{m}\}$ is disconnected. Or similarly, let $R = \mathbb{Q}[x, y, u, v]$ and $\overline{R} = \overline{\mathbb{Q}}[x, y, u, v]$ and let *I* be the same. Then Proj(R/I) is connected, but $\text{Proj}(\overline{R}/I\overline{R})$ is disconnected.

Remark

If not separably closed, then apply strict henselization (faithfully flat). In local case, after a sequence of strict henselization and completion, one may assume the local ring is complete with separably closed residue field.

Definition

Let (R, \mathfrak{m}) be a complete local ring whose residue field is separably closed. We say that the Second Vanishing Theorem holds for R, if the following are equivalent for every ideal I of R:

•
$$H^{j}_{l}(R) = 0$$
 for all $j > \dim(R) - 2;$

• dim $(R/I) \ge 2$ and Spec $(R/I) - \{\mathfrak{m}\}$ is connected.

Hartshorne's Problem (1968)

Prove that the Second Vanishing Theorem holds for all complete regular local rings whose residue field is separably closed.

19/31

Theorem (Peskine-Szpiro, Ogus, 1973)

The Second Vanishing Theorem holds

- for regular local ring of equi-characteristic p > 0 (due to Peskine-Szpiro, 1973), and
- for regular local ring of equi-characteristic 0 (due to Ogus, 1973).

Remark

Huneke-Lyubeznik (1990) discovered a proof that works for all regular local ring of equi-characteristic. (A refinement of a theorem of Faltings (1978); more on this later.)

Question

What about regular local rings of mixed characteristic?

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Zhang, 2021)

The Second Vanishing Theorem holds for all **unramified** regular local rings of mixed characteristic.

Proof Sketch.

We sketch the proof of one implication. Assume dim $(R/I) \ge 2$ and Spec $(R/I) - \{m\}$ is connected. Hartshorne-Lichtenbaum Vanishing implies that $H_I^d(R) = 0$ and Supp $(H_I^{d-1}(R)) \subseteq \{m\}$. A result of Lyubeznik (2000) implies dim_k Soc $(H_I^{d-1}(R)) < \infty$. Combining these two shows $H_I^{d-1}(R)$ is artinian. Now invoke a remarkable theorem of Peskine-Szpiro (1973): if $H_I^{d-1}(R)$ is artinian then $H_I^{d-1}(R) = 0$.

21/31

Local cohomological invariant of local rings

Let (A, \mathfrak{m}) be an equi-characteristic local ring. Assume that A is a homomorphic image of an equi-characteristic regular local ring (R, \mathfrak{n}) of dimension n. Write $A \cong R/I$. Consider

$$\lambda_{i,j}(\boldsymbol{A}) := \dim_{\boldsymbol{R}/\mathfrak{n}} \operatorname{Ext}_{\boldsymbol{R}}^{i}(\boldsymbol{R}/\mathfrak{n}, \boldsymbol{H}_{I}^{n-j}(\boldsymbol{R})).$$

Theorem (Lyubeznik, 1993)

With $A, R, I, \lambda_{i,j}(A)$ as above, we have

• $\lambda_{i,j}(A)$ is independent of the choice of R (or the surjection $R \rightarrow A$).

•
$$\lambda_{i,j}(\mathbf{A}) = \lambda_{i,j}(\widehat{\mathbf{A}}).$$

Remark

 $\lambda_{i,j}(A)$ are called *Lyubeznik numbers* (of A) in the literature.

Wenliang Zhang (UIC)

э

Definition

Let *A* be a local ring. Define a graph G_A as follows. The vertices of G_A consists of top-dimensional minimal primes of *A*. Two vertices *P*, *Q* are joined by an edge iff ht(P + Q) = 1.

Conjecture (Lyubeznik, 1999)

Let (A, \mathfrak{m}) be a equi-characteristic complete local ring whose residue field is separably closed. Set $d := \dim(A)$. Then $\lambda_{d,d}(A)$ agrees with the number of connected components of a graph G_A .

Remark

- If A is not complete or the residue field is not separably closed, then consider \$\tilde{A} = \hildred{A^{sh}}\$ (()=completion; ()^{sh}=strict henselization).
- This conjecture was proved in characteristic *p* by Lyubeznik (2006) and in full generality (equi-characteristic) by Zhang (2007).

Example

Let $R = \mathbb{Q}[[x, y, u, v]]$ and $I = (u^2 - 3x^2, v^2 - 3y^2, uv - 3xy, vx - uy)$. Set A = R/I (integral domain, only one minimal prime).

Set $\overline{R} = \overline{\mathbb{Q}}[[x, y, u, v]]$ and $\overline{A} = \overline{R}/I\overline{R}$ (now \overline{A} is complete with a separably closed residue field).

Recall: $I\overline{R} = (u - x\sqrt{3}, v - y\sqrt{3}) \cap (u + x\sqrt{3}, v + y\sqrt{3})$ (hence \overline{A} has two top-dim minimal primes).

Then the graph G_A consists of a vertex, while the graph $G_{\overline{A}}$ consists of two vertices with no edge.

It follows that

$$\lambda_{2,2}(A) = \lambda_{2,2}(\overline{A}) = 2.$$

A similar invariant of local rings, mixed char.

Let (A, \mathfrak{m}, k) be a local ring of mixed characteristic that is a homomorphic image of an unramified regular local ring (R, \mathfrak{n}) . Set $n = \dim(R)$, $d = \dim(A)$, and write $A \cong R/I$. Consider

$$\lambda_{i,j}(\boldsymbol{A}) := \dim_k \operatorname{Soc}(H^i_{\mathfrak{n}} H^{n-j}_{l}(\boldsymbol{R})).$$

Remark

- $\lambda_{i,j}(\mathbf{A}) = \lambda_{i,j}(\hat{\mathbf{A}})$
- If (R', n') is another unramified regular local ring of dimension n' such that A ≅ R'/I'. Then

$$\dim_k \operatorname{Soc}(H^i_{\mathfrak{n}} H^{n-j}_{l}(R)) = \dim_k \operatorname{Soc}(H^j_{\mathfrak{n}'} H^{n'-j}_{l'}(R))$$

That is, $\lambda_{i,j}(A)$ is independent of the choice of *R* (or the surjection $R \rightarrow A$).

Theorem (Zhang, 2021)

Let (A, \mathfrak{m}, k) be a d-dimensional complete local ring of mixed characteristic whose residue field is separably closed. Then $\lambda_{d,d}(A)$ agrees with the number of connected components of a graph G_A .

Proof idea

Use 2nd Vanishing to handle dim-2 case, then induction on dimension.

Remark

In equi-characteristic,

$$\dim_k \operatorname{Ext}^i(R/\mathfrak{n}, H^{n-j}_l(R)) = \dim_k \operatorname{Soc}(H^i_\mathfrak{n} H^{n-j}_l(R))$$

for all *i*, *j*.

In mixed characteristic, they may be different.

Questions

Question 1

Does the second vanishing theorem hold for **ramified** regular local rings?

Huneke Conjecture (1990)

Let R be a regular local ring and I an ideal. Then

$$\dim_{\kappa(\mathfrak{p})}\operatorname{Ext}^{i}_{R_{\mathfrak{p}}}(\kappa(\mathfrak{p}),H^{j}_{l}(R)_{\mathfrak{p}})<\infty$$

for all *i*, *j*, where p is a prime and $\kappa(p)$ is the residue field at p.

Remark

Huneke Conjecture remains open for **ramified** regular local rings. To answer Question 1 in the affirmative, it suffices to show that $Soc(H_{\mathfrak{p}}^{d-1}(R))$ is finite for all primes \mathfrak{p} of height d - 2 (Zhang, 2021).

Theorem (Faltings, 1978)

Let A be a complete local ring containing its residue field. Let I be an ideal of A and set

 $t := \text{emb. dim}(A) - \min\{\dim(A/P)|P \text{ is minimal prime of } I\}$

Let m > t be an integer and M be a finitely generated A-module. Assume that, for every integer s with 0 < s < t and every prime ideal $\mathfrak{p} \subset A$ with $\dim(A/\mathfrak{p}) > s$, $H^q_{IA_\mathfrak{p}}(M_\mathfrak{p}) = 0$ for all $q \ge m - s$. Then

$$H^q_I(M) = 0, \quad \forall q \ge m.$$

Question 2

Does Faltings Theorem or Huneke-Lyubeznik's refinement hold in mixed characteristic?

Wenliang Zhang (UIC)

FOTR, Sept. 14, 2021 28/31

э

Lyubeznik's Problem (1999)

Let (R, \mathfrak{m}) be a complete local domain of dimension *d* whose residue field is separably closed

- Find necessary and sufficient condition on *I* under which $H_l^j(R) = 0$ for all j > d 2.
- 2 Let *I* be a prime ideal. Assume that ht(I + p) < d for every height-1 prime ideal p. Is it true that $H_I^j(R) = 0$ for all j > d 2?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example (Hochster-Zhang, 2018)

Let $R = \mathbb{C}[[x, y, z, u, v]]/(x^3 + y^3 + z^3, z^2 - ux - vy)$ and I = (x, y, z). Then

- $\dim(R) = 3$ and *I* is a prime ideal of height 1;
- ht(*I*+p) < 3 for every height-1 prime ideal p;
- $H_l^2(R) \neq 0$.

This example answers 2nd part of Lyubeznik's question in the negative.

Remark

1st part of Lyubeznik's question is wide open.

Thank you! Stay safe and healthy!

Wenliang Zhang (UIC)

Vanishing of local cohomology modules

FOTR, Sept. 14, 2021

31/31