Vanishing of local cohomology modules

Wenliang Zhang

University of Illinois at Chicago

Fellowship of the Ring, September 14, 2021

Wenliang Zhang (UIC) [Vanishing of local cohomology modules](#page-30-0) FOTR, Sept. 14, 2021 1/31

4 0 8 \leftarrow \leftarrow \leftarrow

TELES

 Ω

Takeaway

Studying vanishing of local cohomology modules is a fascinating research area; there have been many remarkable theorems and there are still many interesting problems to work on.

4 0 8

 Ω

Definition

Let *R* be a noetherian commutative ring and *I* be an ideal. Let *Mod^R* denote the category of *R*-modules.

I-torsion functor

The *I*-torsion functor, Γ*^I* : *Mod^R* → *ModR*, is defined by:

 Γ _{*I*}(M) = { $m \in M$ | l ⁿ $m = 0$ for some integer n } \in Obj(Mod_R)

$$
\bullet\ \Gamma_I(M\stackrel{f}{\to} N)=\left(\Gamma_I(M)\stackrel{f_{\Gamma_I(M)}}{\xrightarrow{~~}}\Gamma_I(N)\right)\in\text{Mor}(Mod_R)
$$

Basic property

Γ*I* is a covariant left-exact functor.

Local cohomology

The *j*-th local cohomology supported in *I*, denoted by *H j I* (−), is the *j*-th derived functor of Γ*^I* . That is, *H j* $I^j_l(M) \cong H^j(0 \to \Gamma_l(E^\bullet)),$ where $0 \to M \to E^{\bullet}$ is an injective resolution of M .

Example

Set $R = \mathbb{Z}$ and $I = (2)$. Compute H_i^j $J_{(2)}^{j}(\mathbb{Z}).$ An injective resolution of $\mathbb Z$ is given by

$$
0\to \mathbb{Z}\to \mathbb{Q}\to \mathbb{Q}/\mathbb{Z}\to 0.
$$

Applying $\Gamma_{(2)}$ to $0 \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$, we have

$$
0\to \Gamma_{(2)}(\mathbb{Q})=0\to \Gamma_{(2)}(\mathbb{Q}/\mathbb{Z})\to 0.
$$

Hence *H j* $C_{(2)}^{j}(\mathbb{Z})=0$ for $j\neq 1$ and $H_{(2)}^{1}(\mathbb{Z})\cong \mathsf{\Gamma}_{(2)}(\mathbb{Q}/\mathbb{Z}).$ Since \mathbb{Q}/\mathbb{Z} consists of equivalent classes $[r]$ for rationals $0 \le r < 1$,

$$
H^1_{(2)}(\mathbb{Z}) \cong \Gamma_{(2)}(\mathbb{Q}/\mathbb{Z}) \cong \left\{ \left[\frac{m}{2^n} \right] \middle| 0 \leq m < 2^n, \ n \geq 1 \right\}
$$

Þ

 Ω

Properties of Γ*^I*

- Assume [√] *I* = √ *J*. Then Γ_{*I*}(−) = Γ*_J*(−)
- Since $\{x \in M | I^n x = 0\} \cong \text{Hom}_R(R/I^n, M)$, we have $\Gamma_I(-) \cong \varinjlim_n \mathsf{Hom}_B(B/I^n, -)$. (This shows that Γ_I is left-exact.) And, *H j* \lim_{I} $\left(-\right) \cong \lim_{I \to I} \text{Ext}_{R}^{j}(R/I^{n},-).$
- Since both $\textsf{Hom}_{R}(R/I^{n},-)$ and direct limits commute with flat ring homomorphisms, so does *H j I* (−). I.e.

$$
H^j_I(M)\otimes_R S\cong H^j_{I S}(M\otimes_R S),
$$

for any flat $R \to S$, including localization, henselization, completion, etc.

By the same token, Γ*^I* and hence *H j I* (−) commutes with direct sum. (For instance, if H_I^j $J_I^j(R)=0$, then H_I^j $\mathcal{I}_I^{\prime}(\mathcal{F})=0$ for all free *R*-modules *F*.)

E

 Ω

イロト イ押 トイラト イラトー

Let p be a prime ideal of *R*. Then

$$
\Gamma_I(E(R/\mathfrak{p})) = \begin{cases} E(R/\mathfrak{p}) & I \subseteq \mathfrak{p} \\ 0 & \text{otherwise} \end{cases}
$$

Reason:

- 1 each element in $E(R/\mathfrak{p})$ is killed by a power of \mathfrak{p} ; ² every element in *R* − p acts as an automorphism on *E*(*R*/p).
- *H j* $J^y_I(E) = 0$ for $j > 0$ and injective module E . (For instance, *H j* $\mathcal{G}^{j}_{(2)}(\mathbb{Q})=0$ for all $j>0.$)
- Short exact sequences $0 \to L \to M \to N \to 0$ induce long exact sequence on local cohomology

$$
\cdots \to H^j_I(L) \to H^j_I(M) \to H^j_I(N) \to H^{j+1}_I(L) \to \cdots
$$

 Ω

REPARE

An extension of previous example

Let
$$
R = k[x_1, ..., x_d]
$$
 and $m = (x_1, ..., x_d)$.

$$
0 \rightarrow R \rightarrow \cdots \rightarrow \bigoplus_{\operatorname{ht}(\mathfrak{p})=j} E(R/\mathfrak{p}) \rightarrow \cdots \rightarrow \bigoplus_{\operatorname{ht}(\mathfrak{p})=d} E(R/\mathfrak{p}) \rightarrow 0
$$

Consequently,

$$
H_{\mathfrak{m}}^j(R)=\begin{cases}E(R/\mathfrak{m}) & j=d\\ 0 & j\neq d\end{cases}
$$

Remark

We need more tools to compute *H j I* (*R*).

- **•** Injective resolutions are not easy to construct for non-Gorenstein rings.
- Even in the injective resolution as above, differentials are somewhat mysterious.

Čech complexes

Definition

For each $f \in R$, define $\check{C}(f; R) := (0 \to R \to R_f \to 0)$. Given a sequence of elements f_1, \ldots, f_n , define $\breve{C}(f_1, \ldots, f_n; R) := \otimes_{i=1}^n \breve{C}(f_i; R).$ More explicitly:

$$
0 \to R \to \bigoplus_i R_{f_i} \to \bigoplus_{j < k} R_{f_jf_k} \to \cdots \to R_{f_1...f_n} \to 0.
$$

And
$$
\check{C}(f_1,\ldots,f_n;M):=\check{C}(f_1,\ldots,f_n;R)\otimes_R M.
$$

Example

$$
\check{C}(f_1, f_2; R)=(0 \to R \xrightarrow{d^0} R_{f_1} \oplus R_{f_2} \xrightarrow{d^1} R_{f_1 f_2} \to 0) \text{ where }
$$

$$
d^0(r)=(\frac{r}{1},\frac{r}{1}) \quad d^1(\frac{r_1}{f_1^{n_1}},\frac{r_2}{f_2^{n_2}})=-\frac{r_1}{f_1^{n_1}}+\frac{r_2}{f_2^{n_2}}=\frac{r_2f_1^{n_1}-r_1f_2^{n_2}}{f_1^{n_1}f_2^{n_2}}
$$

Theorem

If
$$
I = (f_1, \ldots, f_n)
$$
, then $H^j_I(M) \cong H^j(\check{C}(f_1, \ldots, f_n; M))$ for all j and all M.

Example

Let
$$
R = \mathbb{Z}
$$
 and $I = (2)$. Then
\n
$$
H_{(2)}^j(\mathbb{Z}) \cong H^j(0 \to \mathbb{Z} \to \mathbb{Z}_2 \to 0)
$$
\nHence $H_{(2)}^j(\mathbb{Z}) = 0$ for $j \neq 1$, and
\n
$$
H_{(2)}^1(\mathbb{Z}) \cong \mathbb{Z}_2/\mathbb{Z} \cong \left\{ \left[\frac{m}{2^n} \right] | 0 \leq m < 2^n, \ n \geq 1 \right\}
$$

重

 299

K ロ ▶ K 御 ▶ K 君 ▶ K 君

Example

Let $R = k[x_1, \ldots, x_d]$ and $\mathfrak{m} = (x_1, \ldots, x_d)$. From the Čech complex $\check{C}(x_1,\ldots,x_d;R)$:

$$
0 \to R \to \bigoplus_i R_{f_i} \to \cdots \to \bigoplus_i R_{x_1 \cdots \hat{x}_i \cdots x_d} \to R_{x_1 \ldots x_d} \to 0
$$

we have

$$
H_{\mathfrak{m}}^d(R) = \operatorname{Coker}\Big(\bigoplus_{i=1}^d R_{x_1\cdots \hat{x}_i\cdots x_d} \rightarrow R_{x_1\cdots x_d}\Big) = \bigoplus_{a_1,\ldots,a_d\geq 1} k[\frac{1}{x_1^{a_1}\cdots x_d^{a_d}}]
$$

This is one way to 'visualize' $E(R/\mathfrak{m}) \cong H^d_\mathfrak{m}(R)$. Similarly, one can compute $(1 \le s \le d)$

$$
H_{(x_1,\ldots,x_s)}^s(R)\cong\bigoplus_{a_1,\ldots,a_s\geq 1}k[x_{s+1},\ldots,x_d][\frac{1}{x_1^{a_1}\cdots x_s^{a_s}}]
$$

 \vee) Q

COL 30

- • ⊕

A consequence from Cech complex

Corollary

If
$$
\sqrt{I} = \sqrt{(t_1, \ldots, t_n)}
$$
, then $H^j_I(R) = 0$ for all $j > n$.

Theorem (Mayer-Vietoris sequence)

Let I and J be two ideals. Then there is a long exact sequence

$$
\cdots \rightarrow H^j_{l+J}(-) \rightarrow H^j_l(-) \oplus H^j_J(-) \rightarrow H^j_{l \cap J}(-) \rightarrow H^{j+1}_{l+J}(-) \rightarrow \cdots
$$

Example

Let $R = k[x, y, u, v]$ and $I = (x, y) \cap (u, v)$. Then *I* can not be generated by 2 elements up to radical since $H^3_I(R)\neq 0$ since

$$
H^3_I(R)\to H^4_{(x,y,u,v)}(R) (\neq 0) \to H^4_{(x,y)}(R)\oplus H^4_{(u,v)}(R) (=0).
$$

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

∍

Connection with sheaf cohomology

Let $I = (f_1, \ldots, f_n)$ be an ideal of *R*. Set $U := \text{Spec}(R) \setminus V(I)$. Then, in algebraic geometry, the complex computing $H^i(U, \mathcal{O}_U)$ corresponding to

$$
0 \to \bigoplus_{i=1}^n R_{f_i} \to \bigoplus_{j < k} R_{f_j f_k} \to \cdots \to R_{f_1 \dots f_n} \to 0.
$$

(*R* is removed and also a shift in homological degree by 1.) $\mathsf{Consequently, } H^i(U,\mathcal{O}_U) \cong H^{i+1}_I$ $I_I^{\prime\prime +1}(R)$ when $I>0$, and

$$
0 \to H^0_I(R) \to R \to H^0(U,{\cal O}_U) \to H^1_I(R) \to 0.
$$

The graded analogue also holds. Consequently, when

$$
R = k[x_0, \ldots, x_n] \text{ and } \mathfrak{m} = (x_0, \ldots, x_n)
$$

$$
H_{\mathfrak{m}}^{n+1}(R) \cong \bigoplus_{\ell \in \mathbb{Z}} H^n(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(\ell))
$$

 Ω

Grothendieck's Problem

Let *R* be a noetherian local ring, *I* be an ideal of *R* and *t* be an integer. Find conditions under which *H j* $J_I^y(M)=0$ for all $j>t$ and all R -modules *M*.

Equivalent formulation

Equivalent to finding conditions under which H_I^j $J_I^y(R) = 0$ for all $j > t$.

Proof sketch of equivalence.

Assume *H j* $J^{\prime}(R) = 0$ for all $j > t$ and $H^{\prime}_{l}(M) \neq 0$ for some M and $i > t$. Let $\ell > t$ be the greatest integer ∃*M* such that $H^\ell_I(M) \neq 0$ (ℓ is finite, next slide). Consider $0 \to N \to F \to M \to 0$ with *F* free. Then $0=H^\ell_I(F)\to H^\ell_I(M)\to H^{\ell+1}_I$ $J_I^{\ell+1}(N)=0$, contradiction. Hence H_I^{ℓ} $\binom{J}{I}(M)=0$ for all $j > t$ and all R -modules M .

Theorem (Grothendieck)

Let (*R*, m) *be a noetherian local ring of dimension d and I be an ideal of R. Then* $H^j_I(R) = 0$ *for all j* $> d$.

An observation

There exist d elements $a_1, \ldots, a_d \in I$ such that $\sqrt{I} = \sqrt{(a_1, \ldots, a_d)}$. Proof idea: use induction to find elements $a_1, \ldots, a_r \in I$ ($r \le d$) such that every prime ideal of height $r - 1$ or less that contains (a_1, \ldots, a_r) must also contain *I*.

Proof sketch.

Our observation asserts there are elements $a_1, \ldots, a_d \in I$ such that $\overline{I} = \sqrt{(\overline{a_1}, \ldots, \overline{a_d})}.$ Hence H_I^j $H^j_I(R)=H^j_I$ $_{(a_1,...,a_d)}^{y}(R)$. Now the Čech complex with respect to a_1, \ldots, a_d finishes the proof.

This solv[e](#page-12-0)s Grothendieck's Problem in the case [wh](#page-14-0)e[n](#page-13-0) $t = \dim(R)$ $t = \dim(R)$.

Wenliang Zhang (UIC) [Vanishing of local cohomology modules](#page-0-0) FOTR, Sept. 14, 2021 14/31

A nonvanishing theorem

Theorem (Grothendieck)

Let (R,\mathfrak{m}) *be a noetherian local ring of dimension d. Then* $H^d_\mathfrak{m}(R) \neq 0.$

Remark

If $d > 0$, then $H_m^d(R)$ is *not* finitely generated.

• Set
$$
g := \text{grade}(I)
$$
. Then $H^j_I(R) = 0$ for all $j < g$ and $H^g_I(R) \neq 0$.

Corollary

*If f*₁ . . . , *f_c is a regular sequence in R, then* $H^j_{(f_1,...,f_c)}(R) \neq 0 \Leftrightarrow j = c.$

Example

Let $R = k[x_1, \ldots, x_d]$ and $I = (x_1, \ldots, x_s)$. Then H_i^j $j_i^y(R) = 0$ when $j \neq s$. We have calculated $H^s_I(R)$.

Theorem (Hartshorne-Lichtenbaum, 1968)

Let (*R*, m) *be a complete local domain of dimension d and I be an ideal of R. The following are equivalent:*

$$
\bullet \ \ H_I^j(R) = 0 \ \text{for all } j > d-1;
$$

$$
\bullet \ \sqrt{l} \neq \mathfrak{m}.
$$

This solves Grothendieck's Problem in the case when $t = \dim(R) - 1$.

Remark

This is a highly non-trivial result, and has found numerous applications.

 Ω

イロト イ押 トイラト イラト

So far we have seen solutions to Grothendieck's Problem in the cases when $t = \dim(R)$ and when $t = \dim(R) - 1$. What about the case when $t = \dim(R) - 2$?

Theorem (Hartshorne's Second Vanishing Theorem, 1968)

Let X be a (geometrically) connected closed subscheme of \mathbb{P}^d_k over a *field k, of dimension* ≥ 1*.Then*

$$
H^{d-1}(\mathbb{P}^d-X,\mathcal{F})=0
$$

for every coherent sheaf F*. Or equivalently, let* $R = k[x_0, \ldots, x_d]$ *where k is separably closed and I be a homogeneous ideal. Assume that* dim(*R*/*I*) ≥ 2 *and* $\operatorname{Spec}(R/I)-\{\mathfrak{m}\}$ *is connected. Then* $H^j_I(R)=0$ *for all j* $>$ dim $(R)-2.$

 \equiv

 Ω

Why separably closed?

Example

Let $R = \mathbb{Q}[[x, y, u, v]]$ and $I = (u^2 - 3x^2, v^2 - 3y^2, uv - 3xy, vx - uy)$. Then *I* is a prime ideal ($R/I \cong \mathbb{Q}[x, x\sqrt{3}, y, y\sqrt{3}]$) and hence Spec(R/I) – {m} is connected. However, in $\overline{R} = \overline{\mathbb{Q}}[[x, y, u, v]]$, we have

$$
I\overline{R}=(u-x\sqrt{3},v-y\sqrt{3})\cap(u+x\sqrt{3},v+y\sqrt{3})
$$

and hence $Spec(\overline{R}/I) - \{m\}$ is disconnected. Or similarly, let $R = \mathbb{O}[x, y, u, v]$ and $\overline{R} = \overline{\mathbb{O}}[x, y, u, v]$ and let *I* be the same. Then Proj (R/I) is connected, but Proj $(\overline{R}/I\overline{R})$ is disconnected.

Remark

If not separably closed, then apply strict henselization (faithfully flat). In local case, after a sequence of strict henselization and completion, one may assume the local ring is complete with separably closed residue field.

Definition

Let (*R*, m) be a complete local ring whose residue field is separably closed. We say that the Second Vanishing Theorem holds for *R*, if the following are equivalent for every ideal *I* of *R*:

$$
\quad \bullet \ \ H^j_I(R) = 0 \text{ for all } j > \dim(R) - 2;
$$

 \bullet dim(R/I) \geq 2 and Spec(R/I) – {m} is connected.

Hartshorne's Problem (1968)

Prove that the Second Vanishing Theorem holds for all complete regular local rings whose residue field is separably closed.

 Ω

Theorem (Peskine-Szpiro, Ogus, 1973)

The Second Vanishing Theorem holds

- *for regular local ring of equi-characteristic p* > 0 *(due to Peskine-Szpiro, 1973), and*
- *for regular local ring of equi-characteristic 0 (due to Ogus, 1973).*

Remark

Huneke-Lyubeznik (1990) discovered a proof that works for all regular local ring of equi-characteristic. (A refinement of a theorem of Faltings (1978); more on this later.)

Question

What about regular local rings of mixed characteristic?

в

 Ω

Theorem (Zhang, 2021)

The Second Vanishing Theorem holds for all **unramified** *regular local rings of mixed characteristic.*

Proof Sketch.

We sketch the proof of one implication. Assume $\dim(R/I) \geq 2$ and Spec(*R*/*I*) − {m} is connected. Hartshorne-Lichtenbaum Vanishing $\mathsf{implies}$ that $H_l^d(R) = 0$ and $\mathsf{Supp}(H_l^{d-1})$ $\mathcal{I}^{a-1}_I(R))\subseteq \{\mathfrak{m}\}.$ A result of Lyubeznik (2000) implies dim*^k* Soc(*H d*−1 $\binom{a-1}{I}(R)) < \infty.$ Combining these two shows *H d*−1 $I_I^{\alpha-1}(R)$ is artinian. Now invoke a remarkable theorem of Peskine-Szpiro (1973): if *H d*−1 *I*^{d−1}(*R*) is artinian then *H*^{d−1} $I_I^{a-1}(R) = 0.$

 Ω

Local cohomological invariant of local rings

Let (*A*, m) be an equi-characteristic local ring. Assume that *A* is a homomorphic image of an equi-characteristic regular local ring (*R*, n) of dimension *n*. Write *A* ≅ *R*/*I*. Consider

$$
\lambda_{i,j}(A) := \dim_{R/\mathfrak{n}} \operatorname{Ext}^i_R(R/\mathfrak{n}, H_l^{n-j}(R)).
$$

Theorem (Lyubeznik, 1993)

With A, R, I, $\lambda_{i,j}(A)$ *as above, we have*

• $\lambda_{i,j}(A)$ *is independent of the choice of R (or the surjection R* \rightarrow *A).*

$$
\bullet \ \lambda_{i,j}(A)=\lambda_{i,j}(\widehat{A}).
$$

Remark

 $\lambda_{i,j}(A)$ are called *Lyubeznik numbers* (of *A*) in the literature.

в

 Ω

Definition

Let *A* be a local ring. Define a graph G_A as follows. The vertices of G_A consists of top-dimensional minimal primes of *A*. Two vertices *P*, *Q* are joined by an edge iff $ht(P+Q) = 1$.

Conjecture (Lyubeznik, 1999)

Let (*A*, m) be a equi-characteristic complete local ring whose residue field is separably closed. Set $d := \dim(A)$. Then $\lambda_{d,d}(A)$ agrees with the number of connected components of a graph *GA*.

Remark

- **If A** is not complete or the residue field is not separably closed, then consider $\widetilde{\bm{A}} = \hat{\bm{A}}^{sh}$ ($\widehat{()}$ =completion; ()^{sh}=strict henselization).
- This conjecture was proved in characteristic *p* by Lyubeznik (2006) and in full generality (equi-charact[eri](#page-21-0)[sti](#page-23-0)[c](#page-21-0)[\) b](#page-22-0)[y](#page-23-0) [Z](#page-0-0)[ha](#page-30-0)[n](#page-0-0)[g \(](#page-30-0)[20](#page-0-0)[07](#page-30-0)).

Example

Let $R = \mathbb{Q}[[x, y, u, v]]$ and $I = (u^2 - 3x^2, v^2 - 3y^2, uv - 3xy, vx - uy)$. Set $A = R/I$ (integral domain, only one minimal prime).

Set $\overline{R} = \overline{\mathbb{Q}}[[x, y, u, v]]$ and $\overline{A} = \overline{R}/I\overline{R}$ (now \overline{A} is complete with a separably closed residue field).

Recall: *IR* = (*u* − *x* √ 3, *v* − *y* √ 3) ∩ (*u* + *x* √ 3, *v* + *y* √ 3) (hence *A* has two top-dim minimal primes).

Then the graph G_A consists of a vertex, while the graph $G_{\overline{A}}$ consists of two vertices with no edge.

It follows that

$$
\lambda_{2,2}(\mathbf{A})=\lambda_{2,2}(\overline{\mathbf{A}})=2.
$$

 Ω

イロト イ押ト イヨト イヨト ニヨ

A similar invariant of local rings, mixed char.

Let (*A*, m, *k*) be a local ring of mixed characteristic that is a homomorphic image of an unramified regular local ring (*R*, n). Set *n* = dim(*R*), *d* = dim(*A*), and write $A \cong R/I$. Consider

$$
\lambda_{i,j}(A) := \dim_k \text{Soc}(H_n^i H_l^{n-j}(R)).
$$

Remark

- $\lambda_{i,j}(A) = \lambda_{i,j}(\hat{A})$
- If (R', n') is another unramified regular local ring of dimension n' such that $A \cong R'/I'$. Then

$$
\dim_k \text{Soc}(H^i_{\mathfrak{n}}H^{n-j}_I(R)) = \dim_k \text{Soc}(H^i_{\mathfrak{n}'}H^{n'-j}_I(R))
$$

That is, $\lambda_{i,j}(A)$ is independent of the choice of *R* (or the surjection $R \rightarrow A$).

Theorem (Zhang, 2021)

Let (*A*, m, *k*) *be a d -dimensional complete local ring of mixed characteristic whose residue field is separably closed. Then* $\lambda_{d,d}(A)$ *agrees with the number of connected components of a graph GA.*

Proof idea

Use 2nd Vanishing to handle dim-2 case, then induction on dimension.

Remark

 \bullet In equi-characteristic,

$$
\dim_K \operatorname{Ext}^i(R/\mathfrak{n},H^{n-j}_I(R))=\dim_K \operatorname{Soc}(H^i_\mathfrak{n} H^{n-j}_I(R))
$$

for all *i*, *j*.

• In mixed characteristic, they may be different.

Question 1

Does the second vanishing theorem hold for **ramified** regular local rings?

Huneke Conjecture (1990)

Let *R* be a regular local ring and *I* an ideal. Then

$$
\dim_{\kappa(\mathfrak{p})}\mathsf{Ext}^i_{R_\mathfrak{p}}(\kappa(\mathfrak{p}),\mathcal{H}^j_I(R)_\mathfrak{p})<\infty
$$

for all *i*, *j*, where p is a prime and $\kappa(\mathfrak{p})$ is the residue field at p.

Remark

Huneke Conjecture remains open for **ramified** regular local rings. To answer Question 1 in the affirmative, it suffices to show that Soc(*H d*−1 p (*R*)) is finite for all primes p of height *d* − 2 (Zhang, 2021).

Theorem (Faltings, 1978)

Let A be a complete local ring containing its residue field. Let I be an ideal of A and set

 $t :=$ emb. dim(A) – min{dim(A /*P*)|*P* is minimal prime of *I*}

Let m > *t be an integer and M be a finitely generated A-module. Assume that, for every integer s with* 0 < *s* < *t and every prime ideal* $\mathfrak{p}\subset A$ *with* dim $(A/\mathfrak{p})>s$, $H_{/\!\!,\mathfrak{p}}^q(M_\mathfrak{p})=0$ *for all* $q≥m-s.$ *Then*

$$
H_I^q(M)=0, \quad \forall q\geq m.
$$

Question 2

Does Faltings Theorem or Huneke-Lyubeznik's refinement hold in mixed characteristic?

Þ

 Ω

イロンス 何 メステンス チン

Lyubeznik's Problem (1999)

Let (*R*, m) be a complete local domain of dimension *d* whose residue field is separably closed

- ¹ Find necessary and sufficient condition on *I* under which *H j I*^{J}_{*l*}(*R*) = 0 for all *j* > *d* − 2.
- 2 Let *I* be a prime ideal. Assume that $ht(I + p) < d$ for every height-1 prime ideal p. Is it true that *H j I* (*R*) = 0 for all *j* > *d* − 2?

 Ω

Example (Hochster-Zhang, 2018)

Let $R = \mathbb{C}[[x, y, z, u, v]]/(x^3 + y^3 + z^3, z^2 - ux - vy)$ and $I = (x, y, z)$. Then

- \bullet dim(R) = 3 and *I* is a prime ideal of height 1;
- ht $(I + p)$ < 3 for every height-1 prime ideal p ;

$$
\bullet \ \ H^2_I(R)\neq 0.
$$

This example answers 2nd part of Lyubeznik's question in the negative.

Remark

1st part of Lyubeznik's question is wide open.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Thank you! Stay safe and healthy!

Wenliang Zhang (UIC) [Vanishing of local cohomology modules](#page-0-0) FOTR, Sept. 14, 2021 31/31

-4 B

 \mathcal{A} E K. Þ

 299

4 0 8 1 \leftarrow \leftarrow \leftarrow