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Stochastic growth models

The KPZ universality class is conjectured to contain a very broad class of
stochastic growth models.

We will mainly focus on a few limiting, zero-temperature objects.

We will discuss the Brownian structure—the more classical form of
universality—that can be found in them.

But first: is Brownianity independently useful?
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First passage percolation



Example KPZ model: first passage percolation

In FPP, each edge e in Z2 is given an i.i.d. non-negative weight ξe.

A path γ is assigned weight∑e∈γ ξe.

We minimize over all paths between given x, y ∈ Z2 to get the weight Tx,y.
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Curvature and KPZ fluctuation scales

The time constant µ(x) = limn→∞ n–1T0,n(1–x,1+x) is known to exist, conjectured
to have curvature for x ∈ [–1, 1]; equivalent to curvature of limit shape.

FPP is expected to lie in the KPZ class: T0,(n,n) should have fluctuations of
order n1/3, and the natural transversal fluctuation scale for x 7→ T0,(n–x,n+x)
should be n2/3.

??

T 0,(
n−
x,n
+
x)

x
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Predicting KPZ exponents from Brownianity + curvature

Suppose
x 7→ T̃(x) = T0,(n–x,n+x) – µ(x/n)

has “Brownian” fluctuations in x: T̃(x) – T̃(0) ≈ |x|1/2.

Then, with curvature, we can predict the transversal fluctuation scale.

Curvature says

T0,(n–x,n+x) ≈ µ(x/n) · n ≈ µ(0)n + n(x/n)2 = µ(0)n + x2/n.

The gain of x2/n competes with a Brownian fluctuation of |x|1/2.

These are comparable when

|x|3/2 ≈ n =⇒ |x| ≈ n2/3.
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A move to integrability

Unfortunately, we are very far from being able to prove curvature or
Brownianity in any FPP model.

But over the past few decades, several last passage percolation models have
proven tractable due to connections with integrable probability.

The one in which the Brownian structure is most easily seen is Brownian last
passage percolation.
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Brownian last passage percolation &
the parabolic Airy2 process



Brownian last passage percolation

We consider iid Brownian motions, displayed vertically for illustration, and
paths that are directed (unlike in FPP) to be up-right.

The weight B[γ] of a path γ is the sum of increments of the Brownian
motions.

The last passage weight B[(y,n)→ (x, 1)] between points is given by
maximizing over all directed paths between them.

(y,n)

(x, 1)

1

...

n
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It is maybe intuitive that there should be some kind of Brownianity
associated to the weight profile in Brownian LPP.

In fact, it’s very explicit: x 7→ B[(0,n)→ (x, 1)] is distributed as the top line of
Dyson’s Brownian motion!

In other words, non-intersecting Brownian motions.
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Using this representation, it was shown that B[(0,n)→ (x, 1)] (after
appropriate centering and scaling) converges to

P(x) = A(x) – x2,

where A is the Airy2 process: a stationary process with one-point
distribution GUE Tracy-Widom (not Gaussian!).

Nevertheless, forms of local Brownianity hold for the increment:

• ε–1/2(P(x0 + εx) – P(x0)) converges in law to two-sided Brownian motion
as ε → 0 (Hägg ’08).

• P is Hölder- 12
– (Quastel-Remenik ’12).

• P has modulus of continuity δ1/2(log δ–1)1/2 (Corwin-Hammond ’14).
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Unit-order Brownianity

In fact, [CH14] proved a form of qualitative Brownianity on unit order scales:

Theorem (Corwin-Hammond)
P(·) – P(a) is absolutely continuous to BM on any interval [a,b].

This implies all the properties of the previous slide, but also more.
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Geodesic uniqueness and Johansson’s conjecture

Suppose we fix the starting point, but leave the ending point unconstrained.
The geodesic will then pick an ending point x0(n) which maximizes its weight.

(0,n)

(x, 1)

But is the limiting maximizer unique? Or can there be multiple point-to-line
geodesics with different ending points?
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Geodesic uniqueness and Johansson’s conjecture

The geodesic’s endpoint is just the maximizer of P , the limiting weight
profile. So Johansson conjectured that P a.s. has a unique maximizer—the
geodesic has a unique endpoint.

Theorem (Corwin-Hammond)
P almost surely has a unique maximizer on R.

Proof: P has a unique maximizer on [–M,M] for any M by Brownian absolute
continuity. Use bounds on lower tail of GUE Tracy-Widom and parabolic
decay of P to extend to R.

Independent proofs not using Brownianity have also been given by Moreno
Flores-Quastel-Remenik and Pimentel.
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A recent quantification of Brownianity

Brownian absolute continuity says events with probabiltiy zero under BM
have probabiltiy zero for P . What about small probability events?

Theorem (Calvert-Hammond-H.)
Let d ≥ 1, A ⊆ C([–d,d]) measurable, and ε the probability that rate two BM
lies in A. Then

P
(
P(·) – P(–d) ∈ A

)
≤ ε · (subpolynomial-in-ε–1).

In particular, the Radon-Nikodym derivative of P – P(–d) wrt BM lies in all Lp

spaces for 0 < p <∞.

More explicitly, the subpolynomial factor is exp(Gd log(ε–1)5/6).

Message: Upper bounds on BM transfer to P (and A) increments
immediately.
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An example application

Corollary
As t→ ∞,

P

(
sup

x∈[–d,d]
|P(x) – P(–d)| ≥ t

)
≤ exp

(
– t

2

8d (1 + o(1))
)
.

A matching lower bound of exp(– t28d (1 + o(1))) can be obtained separately.

Earlier work of Hammond and Dauvergne-Virág, which did not fully exploit
the Brownianity of the increment, obtained bounds like exp(–ct3/2).

Proof: By the reflection principle of Brownian motion (recall it is rate two),

P

(
sup

x∈[–d,d]
|B(x)| ≥ t

)
= 2 · P

(
|N(0, 2 · 2d)| ≥ t

)
≤ 4 · exp

(
– t

2

8d

)
.
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Other applications

The theorem has also been applied in significantly more sophisticated
situations recently:

• Chaos in dynamical Brownian LPP by Hammond-Ganguly (see Alan’s
talk last Thursday).

• Time correlation exponents in LPP from flat initial data by
Basu-Ganguly-Zhang.

• Construction of extended directed landscape by Dauvergne-Zhang.

• Three-halves variation of directed geodesics in the directed landscape
by Dauvergne-Sarkar-Virág.
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The KPZ fixed point



General initial conditions: the KPZ fixed point

Going back to Brownian LPP, P was the scaling limit of the weight profile
from a fixed starting point. What about other initial conditions?

Let

BLPPn [y→ x] = n–1/3
(
B[(2yn2/3,n)→ (n + 2xn2/3, 1)] – centering terms

)
.

(So BLPPn [0→ x]→ P(x) as n→ ∞.)

(0,n)

h0

(x, 1)
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General initial conditions: the KPZ fixed point

For a general initial condition h0 : R → R ∪ {–∞}, we augment the weight of
a path starting at y by h0(y). Maximizing the augmented weight defines

BLPPn [h0 → x] = sup
y

{
h0(y) + BLPPn [y→ x]

}
.

Taking n→ ∞ gives the KPZ fixed point h1 (i.e., at time 1), first constructed by
Matetski-Quastel-Remenik.

(0,n)

h0

(x, 1)
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History of Brownianity in KPZ fixed point

Various formulations of qualitative local Brownianity are known for the fixed
point for a fairly wide class of initial data.

• ε–1/2(h1(x0 + εx) – h1(x)) converges to two-sided Brownian motion
(Matetski-Quastel-Remenik ’17)

• h1 is Hölder- 12
– almost surely (MQR17).

• The modulus of continuity of h1 is at most of order δ1/2(log δ–1)2/3
(Hammond ’17)

• h1 – h1(a) is absolutely continuous to Brownian motion on any interval
[a,b] (Sarkar-Virág ’20)
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Quantified Brownianity for the fixed point?

Currently, quantitative general Brownian comparisons are not available.

Techniques to transfer Brownian regularity from P to h1 can give some
quantified information in some cases.

For example, combining work of Hammond with the Brownian comparison
for P gives the following.

Theorem (Hammond, Calvert-Hammond-H.)
Fix ε > 0. For a wide class of initial data h0, there exist G and x0 such that, for
|x| < x0,

E
[
|h1(x) – h1(0)|2–ε

]
≤ G|x|

1
2 (2–ε).

(For BM, of course, E[|B(x)|2–ε] is of order |x|
1
2 (2–ε) for all ε≥0.)
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Returning to Johansson’s conjecture

Johansson’s conjecture concerned the uniqueness of the geodesic endpoint
from fixed starting point. The same question can be asked for general initial
condition, i.e., is the maximizer of h1 unique a.s.?

Theorem (Corwin-Hammond-H.-Matetski)
For a wide class of initial data, h1 a.s. has a unique maximizer.

The KPZ fixed point is actually defined as a function-valued process in time,
t 7→ ht [MQR17]. We’ve focused on the t = 1 marginal till now.

In the geodesic picture, varying t varies the height difference between the
starting and ending points.

It is possible that there exist random exceptional times t such that ht has
multiple maximizers.
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Geodesic instability at exceptional times

In addition to endpoint uniqueness, these exceptional times are interesting
from the point of view of the dynamic: they are times of geodesic instability.

exceptional time
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The set of exceptional times

For T > 0, let the “twin peaks” set be

T =
{
t ∈ [0, T] : ht has multiple maximizers

}
.

For fixed t, we know from before that t 6∈ T almost surely, so Leb(T ) = 0 a.s.

But we can understand its sparsity by its fractal (Hausdorff) dimension:

Theorem (Corwin-Hammond-H.-Matetski)
For a wide class of initial data, T 6= ∅ with positive probability. Conditioned
on this event, dim(T ) = 2

3 almost surely.

(The value 2
3 is related to Hölder continuity properties of t 7→ ht, i.e. in time.)
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The role of Brownianity

As might be intuitive, an important ingredient of the proof is to estimate the
probability of having “ε-twin peaks” in ht for fixed t:

ε

> A ht

If ht is locally Brownian in some sense, this probability should be of order ε.

Proposition
There exist t-dependent constants c1(t) and c2(t) such that

c1ε ≤ P
(
ht has ε-twin peaks

)
≤ c2ε.
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The Brownian Gibbs property



Brownian Gibbs property

To understand the source of Brownianity in the theorems presented, we
need the parabolic Airy line ensemble: an infinite collection of random
non-intersecting continuous curves whose top curve is P .

...

This ensemble has the Brownian Gibbs property, essentially inherited from
the prelimiting Dyson’s Brownian motion.

But the existence of the ensemble is very non-trivial, and was done by
Corwin-Hammond.
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Summary

• Many limiting zero-temperature KPZ objects have local Brownian
structure, for various meanings of “local” and “Brownian”.

• The strongest results are available for the parabolic Airy process P
(narrow-wedge initial data), because of the Brownian Gibbs property.

• With work and in some cases, techniques or control of P can be
adapted to the general initial data object, the KPZ fixed point.

• This Brownian regularity is very useful in studying the behaviour of
geodesics, apart from its intrinsic interest.

Thank you!
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