Probabilistic conformal blocks and their
properties

Promit Ghosal

MSRI Postdoc Seminar

Joint work with G. Remy (Columbia), X. Sun (UPenn) and Y. Sun (UChicago)

October 1st, 2021



Outline

» Background on Liouville theory

» Construction of probabilistic block

» Main Result

» Proof ideas



Liouville theory and its background
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We develop a formalism for computing sums over random surfaces which arise in all problems containing gauge invariance
(like QCD, three-dimensional Ising model etc.). These sums are reduced to the exactly solvable quantum theory of the two-
dimensional Liouville lagrangian. At D = 26 the string dynamics is that of harmonic oscillators as was predicted earlier by
dual theorists, otherwise it is described by the nonlinear integrable theory.

There are methods and formulae in science, which representation.
serve as master-keys to many apparently different prob- All these considerations had one essential flaw: it
lems. The resources of such things have to be refilled was not known what was exactly meant by the “free
from time to time. In my opinion at the present time string””. It has been clear, that just as the amplitudes of
we have to develop an art of handling sums over ran- free particles are defined as

dom surfaces. These sums replace the old-fashioned

Let ¢ be a Liouville field. Quantization of ¢ is given by

(F(¢)) = Dge 5D F(g),

¢:S—R

where S1(¢) := [5(|0:¢|* + €7?(*))dz is the energy functional
(Liouville action) with fundamental parameter: v € (0, 2).



Bootstrap framework of Liouville CF'T

Belavin, Polyakov, Zamolodchikov’ 84 introduced the conformal
bootsrap program to combine Polyakov’s path integral approach and
the representation theoretic approach towards CFT.



Probabilistic framework for Liouville CFT

1. David-Kupiainen-Rhodes-Vargas '16

Rigorously revived path integral approach of Liouville CFT on
sphere and started the Bootstrap program.
Two main components of their program are

> Gaussian free field (GFF)

» Gaussian multiplicative chaos (GMC)

= Random measure, formally exp(GFF).

2. Kupiainen, Rhodes, Vargas 17 proved the DOZZ formula for
fundamental (structural) constants of Liouville CFT. DOZZ is
named after Dorn, Otto, Zamolodchikov and Zamolodchikov who
originally proposed this formula.

3. Kupiainen, Guillarmou, Rhodes, Vargas '20 proved the conformal
bootstrap on the sphere.



Goal of our talk

Focus on one-point function (e*?()r on the torus T.

Conjectured bootstrap formula:

(e, — /R dP|g|”" C(Q — iP,a, Q +iPYHE p(g)HE p(3)

> (e2?(0))1 defined using probability (GFF + GMC).
» ¢ =¢"7, 7 € His the modular parameter of T.
> C,(Q —iP,a,Q+iP) = DOZZ formula, Q = 3 +

> HS p(g) = conformal block.

2
5

Goal today: understand ”H‘W’ p(q) and its properties using probability.
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Setup, log correlated fields

Log-correlated Gaussian field ¥ on [0, 1]:

E[Y (2)Y (y)] = —2log ¥ — ™

> Y (x) has an infinite variance
» Y lives in the space of distributions

> Series definition, f,, B, iid. N(0,1),

Y(x) = Z \/E<ﬁ" cos(2mnz) + fBn sin(27rna:))

n>1

» Cut-off approximation Yy, truncate the series at N.



Log-correlated fields with 7

LT

Modular parameter 7 € H, g = ¢
Log-correlated field Y; on [0, 1]:

E[Y;(2)Y+(y)] = ~2log|©(z — y)| + 2log ¢"/*n(q)].
Decomposition Y, (z) =Y (z) + F,(z).

For Bp.m, Bn.m i-i.d. N(0,1),

=2 Z (Bn’m cos(27nx) + Br.m sin(27m:r)>.

n,m>1

O, (z) = —2q1/4 Sln(m) szl(l —¢*")(1 — 2 cos(2mz)g*" + ™).

n(g) = g2 [, (1 - ¢*).



Gaussian multiplicative chaos (GMC)

For v € (0,2), define on [0, 1] the measure ez~ () dg

» Cut-off approximation ez Y7~ (®)dy

> E[e?Yr ()] = o FEN )]

2
: ol _ 2
» Renormalized measure: ez Y7~ (@)= FEN-~ (@) gy

Proposition

The following limit holds in probability, for any continuous test
function f, Vv € (0, 2):

1

1
/ e3V"@) f(z)dz := lim o3 Yr N (@)~ FEYE y (2)] f(2)dz
0 N—+o00 0



Probabilistic conformal blocks

> ~ € (0,2), link to the central charge.

» o = weight of marked point.

> P = integration parameter of bootstrap integral.
» 7 € H, modular parameter of T, ¢ = €'"".

Z such that limg 0 HS p(q) = 1, limp oo HS p(q) = 1.



Dotsenko-Fateev integrals for blocks

Let f% =N< ,;% with V € N. Then

1 g
sol@ = 58 |([ 00 F o) ]z
0
5 N N
C I 18— % [[O-(zi)~ 7 e P [ [ da:
O i< i=1 i=1



First principle definition of conformal blocks

Virasoro algebra {L, }nez encoding conformal symmetry:

LnLy — LinLy = (n—m)Lyym + 15— 1)n(n + 1)8,ymol.

Conformal blocks as a formal g-power series

8 p(@) = 4 0(a) Trlara (472272500, (1) ).

» MAa . Verma module; ¢a, (1): primary operator.

> e=1+46Q% Q=343 A=3(Q +P), Aa=5(Q— %)

~v°

Defines a formal series, convergence not known.



Z.amolodchikov’s recursion

From the first principle definition, Zamolodchikov (1987) derived a
recursive algorithm to compute the g-series.

Zamolodchikov’s recursion

The power series in g of HS p(g) is specified by:

Ryn(a
M o) =1+ 3 grmdmnl®) g (),
P —Pmm )

poL%nimy gt mteog o
m,n — I m,n - p— @ k o
TR gy TRy 42D

¢ computation: 7—[37P(q) =1+ QQ%}{‘% R



AGT correspondence

Alday, Gaiotto, Tachikawa (AGT) correspondence.
Equivalence between 2d CFT and 4d SUSY gauge theory.

Nekrasov partition function
Write (q_l/uﬁ(Q))AH?,,P(Q) =1+ 3050, arg®

B4(4,P) = 1@~ By, ) o
ag = Z ]._.[ H 1B S P)(Q z](svp))

| Y1 |+|Y2|=Ek i,j=1 s€Y;

, (Y1,Y2) Young diagrams,
iP(8i=1,j=2 — di=2,5=1) — 3Hy; (s) + 2(Vy,(s) + 1).

Fateev-Litvinov '10 showed the coefficients this series obeys the
Zamolodchikov’s recursion.



Probability catches up with Rep. Theory

Theorem (G., Remy, Sun, Sun)

For v € (0,2), « € (0, % +3), P € R, the g-power series for conformal
block 2 p(g) is convergent for |¢| < C for some C > 3.

Moreover, for g € (0,1),

1

ﬁ,P(Q) =—E

1 —
</ e;YT(:z:)C_)T(x)—a;e'werdx>
A 0

[Remark] The normalization Z has an explicit expression.

| S



Applications

1. Modular Transformations: Talks about some duality between
conformal blocks at 7 and —%

Theorem (G., Remy, Sun, Sun), In Preparation

2
For v € (0,2), o € (O,; S

(P2

P2 ~ — =7 q
N

for a certain explicit modular kernel M, (P, P'), where q = ¢'™"

im

and g =e 7.

This identity for the Nekrasov’s partition function is related to
some quantitative version of celebrated S-duality.

a/y
v P/
function (Work in progress with H. Desiraju and A. Prokhorov).

2. Relation between lim.,_, . 7 log H (¢) and Painlevé tau



Proof strategy of the main result

Tools of CFT:
» BPZ differential equations.

» Operator product expansion (OPE).

Steps of the proof:

» BPZ equations + OPE imply a system of shift equations for
GMC conformal block.

» The g-series defined by Zamolodchikov’s recursion obeys the
same system of shift equations.

» The system has a unique solution.



BPZ equations & OPE

» CFT = Correlation functions / conformal blocks can obey BPZ
differential equations.

_x

» Requirement: “degenerate weight” —2

or 72.
ol

» Study solution space of BPZ equations
= non-trivial relations on GMC.

» OPE = boundary conditions to constrain the solution space.

Summary: BPZ & OPE provides integrability of GMC.



u-deformed conformal blocks

Introduce the observable that will satisfy BPZ equation.

» Let x =3 or

2o

> Let u € C with 0 < Im(u) < 2Im(7).

u-deformed conformal block

w;‘(u7q) = qu(X)@:_( )A2 X)@ ( ) Iy ex Pum

1 S35
([ 3 00u@ %0t a% o) ]
0

for I, = — S + X; and some exponents Aj(x), Aa(x).




BPZ equations and OPE for wi(u, q)

V5 (u, g) obeys the BPZ equation

(Buu — L (I + Dp(u) + 2imx>0r ) g (u, q) = 0.

. ) . . . 2
p(u) = Weierstrass’s elliptic function, I, = —%¢ + X-.

» The above equation is called non-stationary Lamé’s equation
(satisfied by Baxter’s () operator in eight vertex model).

» This is also related to quantum Painlevé VI via a simple change
of variable.



BPZ equations and OPE for wi(u, q)

V5 (u, g) obeys the BPZ equation

(Buu — L (I + Dp(u) + 2imx>0r ) g (u, q) = 0.

. 5 . . . 2
p(u) = Weierstrass’s elliptic function, I, = —%¢ + X-.

» The above equation is called non-stationary Lamé’s equation
(satisfied by Baxter’s () operator in eight vertex model).

» This is also related to quantum Painlevé VI via a simple change
of variable.

OPE: Expansion in u — 0 of ¢¢(u, q)

P2 (u, q) = Cru~ "M X (q) + Cou TRHITX (q) + o(Jul )

for explicit prefactors C; and Cy depending on ~, a, P.



From BPZ to hypergeometric equations

g-expansion + change of variable:

> Y% (u,q) = sin(mu) "xg200 300 6% (w)g"

> w = sin®(7u).
System of inhomogenous hypergeometric equations for ¢3 ,,:
(’I,U(l - w)aww + (C - (1 + A'n, + Bn)w)a'w - A'rzBrL)¢§,n(w)
Ll +1) — o
= DD S )6 i),

=1

OPE = boundary conditions for the solution space.

Ay =% 4iXVP? 120, B, =% —iXJ/P?12n,C =1 1,



System of shift equations for GMC block

Write H?Y"P(q) =1+ E:ﬁ an(a)q".

BPZ equations + OPE + ¢-series expansion implies

an(a + %) = cpan(a — %) + Gn((ar(@))kefo,n-1]) (1)
an (o + %) = Enan(a— %) + G ((ak (@) kefo,n-1]) (2)

where G,,, G,, are explicit linear functions.

Recursively, the system (1) 4+ (2) has a unique solution.

(provided that 72 ¢ Q)



End of proof

Need to show that the g¢-series defined by Zamolodchikov’s recursion
also satisfies the system (1)-+(2).

> Step 1: For -2 =N e N, N < -4,
= GMC block = N-fold integral involving ©..

= g¢-series defined Zamolodchikov’s recursion = N-fold integral
via some integral trick(T).

» Step 2: The g-series defined by Zamolodchikov’s recursion
satisfies shift equation (1) by using (1) and analycity in ~,

. ol . 2
satisfies shift equation (2) by the symmetry 7 « 2.



Outlook and perspectives

Summary:

» Probabilistic construction of 1-point torus Liouville conformal
block.

» Matches with the previous definitions and solve the convergence
problem.

» Explore its analytic properties to prove other important
conjectures.

Future directions:
» Conformal blocks in other geometry.

» Analogue of modular transformation and Nekrasov-Shatasvili
quantization relation in other geometry.

» Sewing of Liouville conformal blocks.



Explicit expression for normalization Z

Z:qﬁ(%+§71>n(q)a2+1f“” e (5)76 ”%Pruf%)%
T3(@- 90903 Q-§ —iPN@§+iP)
I3 (3T (Q —iP)Py(Q+iP)l'1(Q — a)
oo dt B (2-2?2 , 2-%
logI‘w(z)—/O t[ —5 — 3 e ;




Integral form of M, (P, P’)

Ponsot and Teschner’ 01 predicted precise form of the modular
kernel M, (P, P’).

23/2 sin(iryP’/2) sin(2iw P’ /7)
i 7/2(04/2)
/ " SW/.2(1P’/2 +a/2+¢§)
¢ Syp(iP'/)2+Q—a/2+€)
y Sy 2(iP' /2 + /2 =€) e
5.2(P 25 Q- aj2—0)

Ma(P,P') =




