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Liouville theory and its background

Let φ be a Liouville field. Quantization of φ is given by

〈F (φ)〉 =

∫
φ:S7→R

Dφe−SL(φ)F (φ),

where SL(φ) :=
∫
S(|∂zφ|2 + eγφ(z))dz is the energy functional

(Liouville action) with fundamental parameter: γ ∈ (0, 2).



Bootstrap framework of Liouville CFT

Belavin, Polyakov, Zamolodchikov’ 84 introduced the conformal
bootsrap program to combine Polyakov’s path integral approach and
the representation theoretic approach towards CFT.



Probabilistic framework for Liouville CFT

1. David-Kupiainen-Rhodes-Vargas ’16

Rigorously revived path integral approach of Liouville CFT on
sphere and started the Bootstrap program.

Two main components of their program are
I Gaussian free field (GFF)

I Gaussian multiplicative chaos (GMC)

= Random measure, formally exp(GFF).

2. Kupiainen, Rhodes, Vargas ’17 proved the DOZZ formula for
fundamental (structural) constants of Liouville CFT. DOZZ is
named after Dorn, Otto, Zamolodchikov and Zamolodchikov who
originally proposed this formula.

3. Kupiainen, Guillarmou, Rhodes, Vargas ’20 proved the conformal
bootstrap on the sphere.



Goal of our talk

Focus on one-point function 〈eαφ(0)〉T on the torus T.

Conjectured bootstrap formula:

〈eαφ(0)〉T =

∫
R
dP |q|P

2

Cγ(Q− iP, α,Q+ iP )Hαγ,P (q)Hαγ,P (q)

I 〈eαφ(0)〉T defined using probability (GFF + GMC).

I q = eiπτ , τ ∈ H is the modular parameter of T.

I Cγ(Q− iP, α,Q+ iP ) = DOZZ formula, Q = γ
2 + 2

γ .

I Hαγ,P (q) = conformal block.

Goal today: understand Hαγ,P (q) and its properties using probability.





Setup, log correlated fields

Log-correlated Gaussian field Y on [0, 1]:

E[Y (x)Y (y)] = −2 log |e2iπx − e2iπy|

I Y (x) has an infinite variance

I Y lives in the space of distributions

I Series definition, βn, β̃n i.i.d. N (0, 1),

Y (x) =
∑
n≥1

√
2

n

(
βn cos(2πnx) + β̃n sin(2πnx)

)

I Cut-off approximation YN , truncate the series at N .



Log-correlated fields with τ

Modular parameter τ ∈ H, q = eiπτ .

Log-correlated field Yτ on [0, 1]:

E[Yτ (x)Yτ (y)] = −2 log |Θτ (x− y)|+ 2 log |q1/6η(q)|.

Decomposition Yτ (x) = Y (x) + Fτ (x).

For βn,m, β̃n,m i.i.d. N (0, 1),

Fτ (x) = 2
∑
n,m≥1

qnm√
n

(
βn,m cos(2πnx) + β̃n,m sin(2πnx)

)
.

Θτ (x) = −2q1/4 sin(πx)
∏∞
k=1(1− q2k)(1− 2 cos(2πx)q2k + q4k).

η(q) = q
1
12

∏∞
k=1(1− q2k).



Gaussian multiplicative chaos (GMC)

For γ ∈ (0, 2), define on [0, 1] the measure e
γ
2 Yτ (x)dx

I Cut-off approximation e
γ
2 Yτ,N (x)dx

I E[e
γ
2 Yτ,N (x)] = e

γ2

8 E[Yτ,N (x)2]

I Renormalized measure: e
γ
2 Yτ,N (x)− γ

2

8 E[Yτ,N (x)2]dx

Proposition

The following limit holds in probability, for any continuous test
function f , ∀γ ∈ (0, 2):∫ 1

0

e
γ
2 Yτ (x)f(x)dx := lim

N→+∞

∫ 1

0

e
γ
2 Yτ,N (x)− γ

2

8 E[Y 2
τ,N (x)]f(x)dx



Probabilistic conformal blocks

For γ ∈ (0, 2), q ∈ (0, 1), α ∈ (− 4
γ ,

γ
2 + 2

γ ), P ∈ R,

Hαγ,P (q) :=
1

Z
E

[(∫ 1

0

e
γ
2 Yτ (x)Θτ (x)−

αγ
2 eγπPxdx

)−αγ ]

I γ ∈ (0, 2), link to the central charge.

I α = weight of marked point.

I P = integration parameter of bootstrap integral.

I τ ∈ H, modular parameter of T, q = eiπτ .

Z such that limq→0Hαγ,P (q) = 1, limP→+∞Hαγ,P (q) = 1.



Dotsenko-Fateev integrals for blocks

Let −αγ = N < 4
γ2 with N ∈ N. Then

Hαγ,P (q) =
1

Z
E

[(∫ 1

0

e
γ
2 Yτ (x)Θτ (x)−

αγ
2 eγπPxdx

)−αγ ]
=

C

∫
[0,1]N

∏
1≤i<j≤N

|Θτ (xi − xj)|−
γ2

4

N∏
i=1

Θτ (xi)
−αγ2 eπγPxi

N∏
i=1

dxi



First principle definition of conformal blocks

Virasoro algebra {Ln}n∈Z encoding conformal symmetry:

LnLm − LmLn = (n−m)Ln+m + c
12 (n− 1)n(n+ 1)δn+m,01.

Conformal blocks as a formal q-power series

Hαγ,P (q) = q−
1
12 η(q) Tr|M∆,c

(
q−2∆+2L0φ∆α

(1)
)
.

I M∆,c: Verma module; φ∆α
(1): primary operator.

I c = 1 + 6Q2, Q = γ
2

+ 2
γ

, ∆ = 1
4
(Q2 + P 2), ∆α = α

2
(Q− α

2
).

Defines a formal series, convergence not known.



Zamolodchikov’s recursion

From the first principle definition, Zamolodchikov (1987) derived a
recursive algorithm to compute the q-series.

Zamolodchikov’s recursion

The power series in q of Hαγ,P (q) is specified by:

Hαγ,P (q) = 1 +
∑
n,m≥1

q2nm Rm,n(α)

P 2 − P 2
m,n

Hαγ,P−n,m(q).

Pm,n =
2in

γ
+
imγ

2
, Rm,n(α)=

2
∏m−1
k=−m

∏n−1
l=−n(Q−α

2
− kγ

2
− 2l
γ

)∏m
k=−m+1

∏n
l=−n+1

(
kγ
2

+ 2l
γ

)
.

q2 computation: Hαγ,P (q) = 1 + q2 R1,1(α)

P 2−P 2
1,1

+ · · · .



AGT correspondence

Alday, Gaiotto, Tachikawa (AGT) correspondence.

Equivalence between 2d CFT and 4d SUSY gauge theory.

Nekrasov partition function

Write (q−1/12η(q))∆Hαγ,P (q) = 1 +
∑∞
k=1 akq

2k,

ak =
∑

|Y1|+|Y2|=k

2∏
i,j=1

∏
s∈Yi

(Eij(s, P )− α)(Q− Eij(s, P )− α)

Eij(s, P )(Q− Eij(s, P ))

Q = γ
2

+ 2
γ

, (Y1, Y2) Young diagrams,

Eij(s, P ) = iP (δi=1,j=2 − δi=2,j=1)− γ
2
HYj (s) + 2

γ
(VYi(s) + 1).

Fateev-Litvinov ’10 showed the coefficients this series obeys the
Zamolodchikov’s recursion.



Probability catches up with Rep. Theory

Theorem (G., Remy, Sun, Sun)

For γ ∈ (0, 2), α ∈ (0, 2
γ + γ

2 ), P ∈ R, the q-power series for conformal

block Hαγ,P (q) is convergent for |q| < C for some C > 1
2 .

Moreover, for q ∈ (0, 1),

Hαγ,P (q) =
1

Z
E

[(∫ 1

0

e
γ
2 Yτ (x)Θτ (x)−

αγ
2 eγπPxdx

)−αγ ]
.

[Remark] The normalization Z has an explicit expression.



Applications

1. Modular Transformations: Talks about some duality between
conformal blocks at τ and − 1

τ

Theorem (G., Remy, Sun, Sun), In Preparation

For γ ∈ (0, 2), α ∈ (0, 2
γ + γ

2 ),

q
P2

2 −
c
24Hqγ,P (α) =

∫
R
q̃

(P ′)2
2 − c

24Mα(P, P ′)Hq̃γ,P ′(α)dP ′

for a certain explicit modular kernelMα(P, P ′), where q = eiπτ

and q̃ = e−
iπ
τ .

This identity for the Nekrasov’s partition function is related to
some quantitative version of celebrated S-duality.

2. Relation between limγ→∞ γ2 logHα/γγ,P/γ(q) and Painlevé tau

function (Work in progress with H. Desiraju and A. Prokhorov).



Proof strategy of the main result

Tools of CFT:

I BPZ differential equations.

I Operator product expansion (OPE).

Steps of the proof:

I BPZ equations + OPE imply a system of shift equations for
GMC conformal block.

I The q-series defined by Zamolodchikov’s recursion obeys the
same system of shift equations.

I The system has a unique solution.



BPZ equations & OPE

I CFT ⇒ Correlation functions / conformal blocks can obey BPZ
differential equations.

I Requirement: “degenerate weight” −γ2 or − 2
γ .

I Study solution space of BPZ equations
⇒ non-trivial relations on GMC.

I OPE ⇒ boundary conditions to constrain the solution space.

Summary: BPZ & OPE provides integrability of GMC.



u-deformed conformal blocks

Introduce the observable that will satisfy BPZ equation.

I Let χ = γ
2 or 2

γ .

I Let u ∈ C with 0 < Im(u) < 3
4 Im(τ).

u-deformed conformal block

ψαχ(u, q) := q∆1(χ)Θ′τ (0)∆2(χ)Θτ (u)−lχeχPuπ

× E

[(∫ 1

0

e
γ
2 Yτ (x)Θτ (x)−

αγ
2 Θτ (u+ x)

γχ
2 eπγPxdx

)−αγ +χ
γ

]

for lχ = −αχ2 + χ2

2 and some exponents ∆1(χ), ∆2(χ).



BPZ equations and OPE for ψαχ(u, q)

ψα
χ(u, q) obeys the BPZ equation(

∂uu − lχ(lχ + 1)℘(u) + 2iπχ2∂τ
)
ψαχ(u, q) = 0.

℘(u) = Weierstrass’s elliptic function, lχ = −αχ2 + χ2

2 .

I The above equation is called non-stationary Lamé’s equation
(satisfied by Baxter’s Q operator in eight vertex model).

I This is also related to quantum Painlevé VI via a simple change
of variable.

OPE: Expansion in u→ 0 of ψα
χ(u, q)

ψαχ(u, q) = C1u−lχHα−χγ,P (q) + C2u1+lχHα+χ
γ,P (q) + o(|u|1+lχ)

for explicit prefactors C1 and C2 depending on γ, α, P .



BPZ equations and OPE for ψαχ(u, q)

ψα
χ(u, q) obeys the BPZ equation(

∂uu − lχ(lχ + 1)℘(u) + 2iπχ2∂τ
)
ψαχ(u, q) = 0.

℘(u) = Weierstrass’s elliptic function, lχ = −αχ2 + χ2

2 .

I The above equation is called non-stationary Lamé’s equation
(satisfied by Baxter’s Q operator in eight vertex model).

I This is also related to quantum Painlevé VI via a simple change
of variable.

OPE: Expansion in u→ 0 of ψα
χ(u, q)

ψαχ(u, q) = C1u−lχHα−χγ,P (q) + C2u1+lχHα+χ
γ,P (q) + o(|u|1+lχ)

for explicit prefactors C1 and C2 depending on γ, α, P .



From BPZ to hypergeometric equations

q-expansion + change of variable:

I ψαχ(u, q) = sin(πu)−lχq∆(χ) ∑∞
n=0 φ

α
χ,n(w)qn

I w = sin2(πu).

System of inhomogenous hypergeometric equations for φαχ,n:

(w(1− w)∂ww + (C − (1 +An +Bn)w)∂w −AnBn)φαχ,n(w)

=
lχ(lχ + 1)

4π2

n∑
l=1

℘l(u)φαχ,n−l(w).

OPE ⇒ boundary conditions for the solution space.

An = − lχ
2

+ iχ
2

√
P 2 + 2n, Bn = − lχ

2
− iχ

2

√
P 2 + 2n, C = 1

2
− lχ.



System of shift equations for GMC block

Write Hαγ,P (q) = 1 +
∑+∞
n=1 an(α)qn.

BPZ equations + OPE + q-series expansion implies

an(α+
γ

2
) = cnan(α− γ

2
) +Gn((ak(α))k∈[0,n−1]) (1)

an(α+
2

γ
) = c̃nan(α− 2

γ
) + G̃n((ak(α))k∈[0,n−1]) (2)

where Gn, G̃n are explicit linear functions.

Recursively, the system (1) + (2) has a unique solution.

(provided that γ2 /∈ Q)



End of proof

Need to show that the q-series defined by Zamolodchikov’s recursion
also satisfies the system (1)+(2).

I Step 1: For −αγ = N ∈ N, N < 4
γ2 ,

⇒ GMC block = N -fold integral involving Θτ .

⇒ q-series defined Zamolodchikov’s recursion = N -fold integral
via some integral trick(†).

I Step 2: The q-series defined by Zamolodchikov’s recursion

satisfies shift equation (1) by using (†) and analycity in γ,

satisfies shift equation (2) by the symmetry γ
2 ↔

2
γ .



Outlook and perspectives
Summary:

I Probabilistic construction of 1-point torus Liouville conformal
block.

I Matches with the previous definitions and solve the convergence
problem.

I Explore its analytic properties to prove other important
conjectures.

Future directions:

I Conformal blocks in other geometry.

I Analogue of modular transformation and Nekrasov-Shatasvili
quantization relation in other geometry.

I Sewing of Liouville conformal blocks.



Explicit expression for normalization Z

Hαγ,P (q) =
1

Z
E

[(∫ 1

0

e
γ
2 Yτ (x)Θτ (x)−

αγ
2 eγπPxdx

)−αγ ]
.

Z =q
1
12 (αγ2 +α2

2 −1)η(q)α
2+1−αγ2 e

iπα2

2

(γ
2

) γα
4

e−
παP

2 Γ(1− γ2

4
)
α
γ

×
Γ γ

2
(Q− α

2 )Γ γ
2
( 2
γ + α

2 )Γ γ
2
(Q− α

2 − iP )Γ γ
2
(Q− α

2 + iP )

Γ γ
2
( 2
γ )Γ γ

2
(Q− iP )Γ γ

2
(Q+ iP )Γ γ

2
(Q− α)

.

log Γ γ
2

(z) =

∫ ∞
0

dt

t

[
e−zt − e−

Qt
2

(1− e−
γt
2 )(1− e−

2t
γ )
−

(Q
2
− z)2

2
e−t +

z − Q
2

t

]
.



Integral form of Mα(P, P ′)

Ponsot and Teschner’ 01 predicted precise form of the modular
kernelMα(P, P ′).

Mα(P, P ′) =
23/2

i

sin(iπγP ′/2) sin(2iπP ′/γ)

Sγ/2(α/2)

×
∫
C
dξ

Sγ/2(iP ′/2 + α/2 + ξ)

Sγ/2(iP ′/2 +Q− α/2 + ξ)

×
Sγ/2(iP ′/2 + α/2− ξ)

Sγ/2(iP ′/2 +Q− α/2− ξ)
e−2πPξ


