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The big picture...

3 / 36



Plan

1 Introduction: tau-functions and Conformal blocks

2 tau-function on a torus as a Fredholm determinant

3 Conformal blocks on a torus from the Fredholm determinant

4 Generalisation

5 Connection constant: Work in progress

4 / 36



Plan

1 Introduction: tau-functions and Conformal blocks

2 tau-function on a torus as a Fredholm determinant

3 Conformal blocks on a torus from the Fredholm determinant

4 Generalisation

5 Connection constant: Work in progress

5 / 36



What are tau-functions anyway?

For integrable systems

1. Generators of the Hamiltonians of integrable systems

2. Generator of the solutions of integrable hierarchies/Painlevé equations

3. Zeros of tau-functions = points where Riemann-Hilbert map is invalid =
poles of Painlevé transcendents

For random matrices/statistical physics

1. Partition function of ensembles

2. Generator of transition probabilities
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Conformal blocks
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Figure: (CMR) Confluence diagram for Painlevé equations: GL’16
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A brief history

I Jimbo-Miwa-Ueno (Kyoto school) ’80s : tau-function of Painlevé VI is
the correlator of ’Holonomic quantum fields’.

I Gamayun, Iorogov, Lisovyy (Kiev school) ’12: re-interpreted the
tau-function of Painlevé VI in terms of conformal field theory

I Cafasso, Gavrylenko, Lisovyy, ’16, 17: showed that Painlevé III, V, VI
tau-functions can be written as Fredholm determinants, which in turn
are the discrete Fourier transforms of their respective Conformal
blocks.

H.D ’19, 20: Painlevé II tau-function can be written as a Fredholm
determinant.
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Pictorial summary

Painlevé VI tau-function (GL’16, CGL’17):

One point torus tau-function (F. Del Monte, H.D, P. Gavrylenko ’20):
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Elliptic form of Painlevé VI

Starting from Painlevé VI

u′′ =
1

2
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1

u
+

1

u− 1
+
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u− t

)(
u′
)2 − (1

t
+

1

t− 1
+

1

u− t

)
u′

+
u(u− 1)(u− t)
t2(t− 1)2
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−
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,

do the following change of the dependent variable u→ Q, and the
independent variable t→ τ

Q(t) :=
1

2(e2 − e1)1/2

∫ u

∞

ds√
s(s− 1)(s− t)

, t =
e3(τ)− e1(τ)

e2(τ)− e1(τ)
,

where for i = 0, 1, 2, 3,

ei = ℘(ωi), ω0 = 0, ω1 =
1

2
, ω2 =

1

2
+
τ

2
, ω3 =

τ

2
.
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The elliptic form of Painlevé VI is then

(2πi)2 d
2Q(τ)

dτ2
=

3∑
n=0

αn℘
′(Q(τ) + ωn|τ),

Setting αi = m2

8
, and using that

3∑
n=0

℘′(Q+ ωn|τ) = 8℘′(2Q|τ),

the elliptic form of Painlevé VI reduces to

(2πi)2 d
2Q(τ)

dτ2
= m2℘′(2Q|τ).
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Minimal setup

Consider the equation of motion of nonautonomous Calogero-Moser system

(2πi)2 d
2Q(τ)

dτ2
= m2℘′(2Q|τ),

which arises as the consistency condition of the following system of
equations

∂zY (z, τ) = A(z, τ)Y (z, τ); 2πi∂τY (z, τ) = B(z, τ)Y (z, τ).

For the purposes of this talk we will only need the following information

A(z, τ) = 2πi
dQ(τ)

dτ
σ3 +m

θ′1(0|τ)

θ1(z|τ)

(
0 θ1(z+2Q(τ)|τ)

θ1(−2Q(τ)|τ)
θ1(z−2Q(τ)|τ)
θ1(2Q(τ)|τ)

0

)
.
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tau-function and the Hamiltonian

Isomonodromic tau-function TCM (τ) = generator of the Hamiltonian H:

2πi∂τ log TCM (τ) := H(τ),

where the Hamiltonian of the Calogero-Moser system is the a-cycle contour
integral

H(τ) =

∮
a

dz
1

2
TrA2(z, τ) =

(
2πi

dQ(τ)

dτ

)2

−m2℘(2Q(τ)|τ)+4πim2∂τ log η(τ),

where η(τ) is Dedekind’s eta function

η(τ) :=

(
θ′1(0|τ)

2π

)1/3

.
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2π

)1/3

.

Can TCM be written as a Fredholm determinant?

Yes! In terms of the monodromy data of the system.
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Why a Fredholm determinant?

2� Allows us to write the transcendent Q(τ) explicitly

2� Fredholm determinant = Fourier transform of c = 1 conformal blocks
= charged Nekrasov-Okounkov functions.

2 Connection constant = modular transformation of c = 1 conformal
block on a punctured torus.

2 The distribution of the poles of the transcendent = zero locus of the
Fredholm determinant.
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Monodromy data

The Lax matrix A behaves as

A(z + 1, τ) = A(z, τ), A(z + τ, τ) = e−2πiQ(τ)σ3A(z, τ)e2πiQ(τ)σ3 .

In turn, the monodromies around the a,b-cycles, and the puncture at z = 0
read

Y (z + 1, τ) = Y (z, τ)MA, Y (z + τ, τ) = e2πiQ(τ)σ3Y (z, τ)MB ,

Y (e2πiz, τ) = Y (z, τ)M0,

M0

MB

MA
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1. The monodromy matrices satisfy the constraint

M0 = M−1
A M−1

B MAMB .

2. Explicitly, the monodromies are

MA = e2πiaσ3 , M0 ∼ e2πimσ3 ,

MB = e2πiρ




sinπ(2a−m)
sin 2πa e−iν/2 sinπm

sin 2πa

− sinπm
sin 2πa

sinπ(2a+m)
sin 2πa eiν/2


 .

Note: The parameter

1. m is the parameter in the equation of motion of the Calogero-Moser
system,

2. a, ν give the monodromy data,

3. ρ is a symmetry parameter.
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Pants decomposition

Cutting the torus along its a-cycle gives us a pair of pants T and its
monodromies follow from the relation

MAM0M
−1
B M−1

A MB = 1 = (MA)M0(M−1
B MAMB)−1 := M̃inM̃0M̃out,

and the pair of pants linear system reads

∂zỸ (z) = −2πi

(
Ãin +

Ã0

1− e2πiz

)
Ỹ (z), Ãin ∼ aσ3, Ã0 ∼ mσ3.

M0

T

Cin Cout

(a) 1 point Torus

T

M̃0

M̃in

Cin

M̃out

Cout

(b) Pair of pants

1
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∂zỸ (z) = −2πi

(
Ãin +

Ã0

1− e2πiz
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Ỹ (z), Ãin ∼ aσ3, Ã0 ∼ mσ3.

M0
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(a) 1 point Torus
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Cin
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1

The local solutions of Ỹ (z) are described by hypergeometric functions!
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Cauchy operators

(in cylindrical coordinates)

T

M̃0

M̃in

Cin

M̃out

Cout

1

(P⊕f) (z) :=

∮
Cin∪Cout

Ỹ (z)Ỹ (w)−1

1−e−2πi(z−w) f(w)dw

M0

T

Cin Cout

1

(PΣf) (z) :=

∮

Cin∪Cout

Y (z)Ξ(z, w)Y (w)−1f(w)dw, (1)

the Cauchy kernel on the torus Ξ(z, w) is

Ξ(z, w) =
θ′1(0)

θ1(z − w)
diag

(
θ1(z − w +Q(τ)− ρ)

θ1(Q(τ)− ρ)
,
θ1(z − w −Q(τ)− ρ)

θ1(Q(τ) + ρ)

)
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Explicitly,

P⊕ : f(z) =

(
fin,−
fout,+

)
⊕
(
fin,+
fout,−

)
→
(
fin,−
fout,+

)
⊕
(
a b
c d

)(
fin,−
fout,+

)
,

In terms of the local solutions

Ỹin(z) := Ỹ (z)|Cin , Ỹout(z) := e2πiνσ1Ỹin(−z)σ1,

(ag)(z) =

∮
Cin

dw
Ỹin(z)Ỹin(w)−1 − 1

1− e−2πi(z−w)
g(w), z ∈ Cin,

(bg)(z) =

∮
Cout

dw
Ỹin(z)Ỹout(w)−1

1− e−2πi(z−w)
g(w), z ∈ Cin,

(cg)(z) =

∮
Cin

dw
Ỹout(z)Ỹin(w)−1

1− e−2πi(z−w)
g(w), z ∈ Cout,

(dg)(z) =

∮
Cout

dw
Ỹout(z)Ỹout(w)−1 − 1

1− e−2πi(z−w)
g(w), z ∈ Cout.
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Main statement 1/2: Fredholm determinant

The following statement can be verified

det
H+

[
P−1

Σ P⊕
]

= det
H

[1−K1,1(τ)] := det

[
1−

(
∇−1c ∇−1d∇
a b∇

)]
,

where ∇ is a shift operator

∇g(z) = e2πiρg(z − τ).
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]

= det
H

[1−K1,1(τ)] := det

[
1−

(
∇−1c ∇−1d∇
a b∇

)]
,

where ∇ is a shift operator

∇g(z) = e2πiρg(z − τ).

I The main trick to obtain Fredholm determinants (that applies also to
Riemann-Hilbert problems) is to take the ratio of a global object and a
local object.

I Here, PΣ is the global object and P⊕ is the local object.

I The structure of this determinant generalizes the construction of GL’16
to the torus case.
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Main statement 2/2: Relating to the Hamiltonian

Theorem (F. Del Monte, H.D, P. Gavrylenko; 2020)

The logarithmic derivative of the Fredholm determinant gives back the
Hamiltonian

2πi∂τ log det [1−K1,1] = 2πi∂τ log TCM − (2πi)2a2 − (2πi)2

6

+ 2πi
d

dτ
log

(
θ1(Q− ρ)θ1(Q+ ρ)

η(τ)2

)
.
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2πi∂τ log det [1−K1,1] = 2πi∂τ log TCM − (2πi)2a2 − (2πi)2

6

+ 2πi
d

dτ
log

(
θ1(Q− ρ)θ1(Q+ ρ)

η(τ)2

)
.

The transcendent Q(τ) is then expressed in terms of the Fredholm determi-
nant as

θ3(2Q(τ)|2τ)

θ2(2Q(τ)|2τ)
= ie3iπτ/2

det
(

1−K1,1|ρ= 1
4

+ τ
2

)
det
(

1−K1,1|ρ= 1
4

) .

In this sense, the determinant is the true tau-function of the system.
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Minor expansion

The minor expansion of the Fredholm determinant is a series labelled by
two tuples of charged partitions (~Q, ~Y)

det [1−K1,1] =
∑
~Q

∑
~Y∈Y2

e
2πiτ

[
1
2 (~Q+σ1)2− 1

2
σ2
1+|~Y|

]
−2πi(ρ− τ2−mτ)Q

×(−1)|I1| det

 (a)I1J1 (b)I1I1

(c)J1J1 (d)J1I1


︸ ︷︷ ︸

Z
~Y,~Q
~Y,~Q

(T )

.

1. The ’charge’ of the partition Q is topological in nature and comes into
the picture due to the b-cycle monodromy.

2. Z
~Y,~Q
~Y,~Q

(T ) is c = 1 conformal block = charged Nekrasov-Okounkov

function.
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Combinatorial expression of the tau-function

Theorem (F.Del Monte, H.D, P. Gavrylenko; 2020)

TCM (τ) =

(
η(τ)e−iπτ/12

)2(1−m2)

e−2πi[ρ− τ2 (m+ 1
2 )−m2 ]

θ1

(
Q(τ) + ρ− m(τ+1)

2

)
θ1

(
Q(τ)− ρ+ m(τ+1)

2

)
×
∑
~Q

∑
~Y∈Y2

e2πiτ[ 1
2

(~Q+~a)2+|~Y|]e
2πi
[
~Q·~ν−Q

(
ρ−m(τ+1)

2
− τ

2

)]

×
Zpert

(
~a+ ~Q,~a+ ~Q +m

)
Zpert (~a,~a+m)

Zinst
(
~a+ ~Q,~a+ ~Q +m|~Y, ~Y

)
,

where Zpert, Zinst are combinatorial objects.
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Torus with n punctures

The construction for the 1- point torus can be generalised to a torus with
any number of simple poles

. . .T [1] T [2] T [n]

C[1]
in C[1]

out C[2]
in C[2]

out C[n]
in C[n]

out

and the tau-function will be defined by an operator which is also explicitly
described by hypergeometric functions.

Isomonodromic tau functions on a torus as Fredholm determinants, and
charged partitions. (F. Del Monte, H.D, P. Gavrylenko (2011.06292v2))
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Kernel K1,n

0

0

c[1]

0

0

0

a[1] b[1] 0 0 0

0

b[n]∇
0

0 0 0 ∇−1c[n] ∇−1d[n]∇
0

0U1 V1

W1
0

0

U2

W2

V2

U
n−1

V
n−2

W
n−2

..
.

..
.

. . .

. . .

. . .

. . .

. . .

Uk =

(
0 a[k+1]

d[k] 0

)
, Vk =

(
b[k+1] 0

0 0

)
, Wk =

(
0 0

0 c[k+1]

)
. (2)

The operators a[k], b[k], c[k], d[k] are given by some hypergeometric functions and

∇ is the shift operator.
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Structure of the kernel

0

0

c[1]

0

0

0

a[1] b[1] 0 0 0

0

b[n]∇
0

0 0 0 ∇−1c[n] ∇−1d[n]∇
0

0U1 V1

W1
0

0

U2

W2

V2

U
n

V
n−1

W
n−1

..
.

..
.

. . .

. . .

. . .

. . .

. . .

det[1−2] is the tau-function of Garnier system (sphere with n+ 2
punctures)!
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Main message:

1. We are able to explicitly formulate the isomonodromic tau-function for
genus 1 surfaces.

2. We rigorously establish the connection between isomonodromic
deformations on a torus, c = 1 conformal blocks, and Nekrasov
partition functions.
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Pictorial representation of the connection constant

= T (t→0)
T (t→∞) = connection constant for Painlevé VI

Work in progress (with F. Del Monte, P. Gavrylenko)

= T (τ→i∞)
T (τ→0) = connection constant for 1 pt torus
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More connection constant surprises
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M. Bershtein, P. Gavrylenko, A. Grassi ’20:

1. Heun type equation The scalar form of the ODE

∂zY (z)Y (z)−1 = 2πi
dQ(τ)

dτ
σ3 +m

θ′1(0|τ)

θ1(z|τ)

(
0

θ1(z+2Q(τ)|τ)
θ1(−2Q(τ)|τ)

θ1(z−2Q(τ)|τ)
θ1(2Q(τ)|τ)

0

)

near the zeros of Q(τ?) = 0 gives a Hamiltonian with a Weierstass
potential, which is BPZ equation for a one point torus in the
semiclassical limit!
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1. Heun type equation The scalar form of the ODE
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(
0

θ1(z+2Q(τ)|τ)
θ1(−2Q(τ)|τ)

θ1(z−2Q(τ)|τ)
θ1(2Q(τ)|τ)

0

)

near the zeros of Q(τ?) = 0 gives a Hamiltonian with a Weierstass
potential, which is BPZ equation for a one point torus in the
semiclassical limit!

2. Relation to CFT

T (τ→τ?)
T (τ→i∞) = c→∞ conformal block for 1 pt torus

Work in progress (with P. Ghosal, A. Prokhorov)
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