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Introduction and background

The N x N Toeplitz matrix associated to the symbol ¢ is defined as

o) -1 o d_N11
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ON-1 PIN-—2 - N

where ¢;’s are the Fourier coefficients of ¢
_ dz
oK = / z k¢(z)7
T 2miz

Let
DN [(f)} = det TN [¢]

The large-N asymptotics of the Toeplitz determinants are well known and given by
the Szeg6-Widom theorem by
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Gl¢] = exp ([logglo) and E(¢) =exp | > nllogglallog ¢]—n
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7§ — k7 Biorthogonal polynomials on the unit circle

Let Qn and @n be respectively defined by
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7§ — k7 Biorthogonal polynomials on the unit circle

Let Qn and Qp be respectively defined by

ol o1 - b—n
. 1 b0 P—nt1
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Dn Dn . . . .
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One can readily observe that {Qn}22 , and {@n 2o form the bi-orthogonal

n=0
system of polynomials on the unit circle with respect to the weight ¢ :
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/TQn(Z)@n(Z’l)qb(Z) b mk=0,1,2, .




RHP for BOPUC

It is due to J.Baik, P.Deift and K.Johansson that the following matrix-valued
function constructed out of the polynomials Q. and Qn,

1 1 [ Qn(Q) ¢(O)d¢
o K Qu(2) wnt [ S
z;in) = -
_ n-17 1y Qn-1(¢71) ¢(0)d¢
Kn—12""1Qn-1(27") Kn—1 =2 2niC

satisfies the following Riemann-Hilbert problem for BOPUC, which in the
subsequent parts of this text will occasionally be referred to as the X-RHP:

» RH-X1 X :C\T — C?*2 is analytic,

> RH-X2 The limits of X({) as ¢ tends to z € T from the inside and
outside of the unit circle exist, and are denoted X+ (2) respectively and are
related by

X1 (2) = X_(2) (é Z_"fs(z)) . zeT,

> RH-X3 As 2z — oo




The two-dimensional Ising model

Let us first recall the two-dimensional Ising model,solved by Onsager. In this model
a 2M x 2N rectangular lattice is considered with an associated spin variable Ok
taking the values 1 and —1 at each vertex (j,k), -M < j < M -1, —N <
k < N —1. There are 2*MN possible spin configurations {o} of the lattice (a
configuration corresponds to values of all 0, fixed). By Jj, and J, we respectively
denote the horizontal and vertical nearest neighbor coupling constants and with
each configuration we associate its nearest-neighbor coupling energy given by

M—-1 N-1

E({o}) = Z Z (Jn0j k0 k1 + Jv0j k0j41,k) 5 JIh, Jv > 0.
—ME=—N

The probability of a spin configuration {c} is given by

where kp is the Boltzmann’s constant and Z(7T') denotes the partition function and

is naturally defined as
E
- S (~ELDY,
kT
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The two-dimensional Ising model

The spin-spin correlation function between the vertices (m/,n’) and (m,n) is
defined as the following thermodynamic limit

E(o)).

() =l o > R

The quantity lim (00,00m,n) is referred to as the long-range order in the
m24n2—oc0

lattice at a temperature 7. Indeed, the spontaneous magnetization M is defined

as square of the large-n limit of diagonal correlations

M :=,/ lim (00,00n,n)-
n— o0

Let us introduce the notations,

S}, = sinh L Sy = sinh 2Jv s
BT kT

2
C}, = cosh L C, = cosh Jv R
kT kT

k= SpSy.

and




The two-dimensional Ising model

It is famously known that, unlike the one-dimensional case, the two-dimensional
Ising model exhibits a phase transition in the spontaneous magnetization at some
temperature T, characterized by

k=1

In this talk I will focus on
k>1,

which corresponds to the low temperature regime T' < T.

For the diagonal correlations (00,00 n,n) and the horizontal correlations
(00,000,N), one has Toeplitz determinant representations. Indeed, for the diagonal
correlations we have

~ ~ [1— k=11
(00,00n,N) = Dnlo ], () = ll—T?z

and for the horizontal correlations

= =N 1—o12)(1 —agz—1?
(00w = Dlil. () = [Tt ],

where a1 and ag are given by

zn (1 — zo) 1— 2y Jh v
a1 = T ag=——— Zh.» = tanh .
14 2y zn(1 4 zv) ’ kT




The two-dimensional Ising model

In the low temperature regime, the symbols $ and 7 enjoy the regularity properties
required by the strong Szegd limit theorem and the diagonal and horizontal long-
range orders

Mp = lim (oo,00n,n) and Mg :=,/ lim (00,000,N),
N —o0 ’ N —oco ’

both evaluate to
(1 _ k72)1/8'

In an interesting development, It was shown by Au-Yang and Perk in 1987 that the
next-to-diagonal two point correlation function is given by the following bordered
Toeplitz determinant, o

(00,00n—1,8) = DE[¢, 9],

where $ is the symbol for diagonal correlations, and

_ Cvza(z) +Ch

~ Sh
P(z) = Su(z — o)

s with Cx = 7S—v.




Bordered Toeplitz Determinants

The bordered Toeplitz determinant, DE [¢;¢], is defined as

%0 1 s ON—2 YN
o1 on) o ON-3 YN-2
D[] :=det | Lo S I ST
$2-N  P3-N - ®0 P1
$1-N P2-N - P-1 Yo

We have the following elementary properties of bordered Toeplitz determinants:

Jj=1 Jj=1

DR [¢,¢] = Dn|[4],
and
DE¢.1] = Dn_1[4].

Now, let us recall the Szegé function of the symbol ¢:

a(z) i= exp [i / Mdr] .

27 T—Z




A general result

Theorem 1. Let D& [¢;9] be the bordered Toeplitz determinant with
Y = q1¢ + q2, where

b T bz b
q(z) =ao+arz+—+ Y —L—, and gqa(z) =do+arz+— + y_
R = S

where all parameters are complex and the c; are nonzero and do not lie on the
unit circle, and ¢ of Szeg6 type. Then, as N — oo

D]%’ (¢, 9] = G[¢]NE[¢)] (F[(;ﬁ7 W] + O(e—cN)) i

where ¢ > 0,

G[¢] = exp ([log plo) and E(¢) = exp (Z n[log ¢]n[log ¢]_n) ,

n>1

and F[¢; ] is given by

Fl¢;9] = ao+boflog pli+ > b; O;((Cg))‘*‘ﬁ ao — aifloggl 1 — Y %Q(Cj)
j=1 j=1 7

0<\Cj\<1 lejl>1
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Ising next-to-diagonal correlations 11

Theorem 2. Let (00,00n—1,N) be the next-to-diagonal two point correlation
function in the Ising model. Then, in the low-temperature regime, the long-range
order in the next-to-diagonal direction for the anisotropic square lattice Ising
model is the same as of the diagonal and horizontal ones, i.e. is described as
follows
lim <UO,00'N71,N> = (1 — k‘_2)1/4.

N—o0
Theorem 3. The next-to-diagonal two point correlation function has, in the
low-temperature regime k > 1, the N — oo asymptotics

1 1 1
(1 .—231/4 e —2,-2N -1
(oo = 1=k (14 ot (g + )N (10 ) )

For comparison, asymptotics of the diagonal correlation function is given by

_ —241/4 1 —2,-2N 1
<O’0,0UN,N>—(1—]{: ) / (1+mN k? <1+O(N )) y

as N — oo.




A more general result

Theorem 4. Suppose that 1(z) admits an analytic continuation in a
neighborhood of the unite circle and let ¢ be of Szegé type. Then

DX [6,9] = Glo1V Elg] (Flgi vl + O(e=N)) ,

where

n>1

Gl¢] = exp ([log¢lo) and E(¢) = exp (Zn[log¢]n[log¢]_n

and F[¢; )] is given by

) 7[11,11)]0:# o (0w dw
Flgw) = ? = o [ ac@ypw) g

and ¢ is some positive constant.

)
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BOPUC RHP and Bordered Toeplitz determinants

The bordered Toeplitz determinants Df+1[¢ T] and D"_H[d), . f c} are
encoded into X-RHP data described by
9] = 0, lef <1,
”JFI Tz— B _CinilD"[(b]Xll(c; TL), |C| > 17
and 1 1
n+1[¢7 — } 72Dn+1[¢]+2Dn[¢]X12(C,TL), C7é0:
B 81 _pB
n [¢7 ;] - = n+1[¢1 Z}?
(n)
X11(z;m) — 2™ K,
B o . 11\~ — n—1
DElo.a] = Dulg] Jim (FHENZE) = p gL,
(n)1 L n)
Xi11(z;n) — 2" — T ro
B 27 . ) K _ n—2
Di4al¢, 27 = Dnl¢] lim 2 = D"[(MT

and so on. Note that

n+1[¢7 }* ) kGZ\{O,1,~~~n}.

13




A more general approach

Let & = (20,1, - ,an—1)7 and ¢ = (UN—1,¥N-2,- o) T
Cramer’s rule to the linear system T}, [¢]Z = 1) gives
EA SR S
J 01 b0 o O_N43
TN—1 = —= det . . .
Dy 4] : : :
¢N—1 SN-2 - b1
%0 ¢1 o ON-2
1 -1 ¢ - bN-3
= det . .
Dy 4] :
$-1

P1-N ¢2;N

Therefore

N-1
DF[6:¢] = Dldlan—1 = Dnlél Y (T5'161)
£=0

. Applying the

YN-1

PN -2
o
YN-1

YN_2

%o

» YN_1-¢

14




T—l

n

[¢] and the RHP for BOPUC

(T 16)), 5, = 0x + (REP[F],29),  0<jk<n—1,

where §,;, is the Kronecker delta function,

(F(2),9(2 / P 5,

’Rgf) : f(2) f—)/R,(fb)(z, w) f(w)dw
T

is the Resolvent operator with the kernel

XD ()X (w) = X1 () X (2) p(w) — 1

R (2,w) = o
z—w 2miwn™
Using this approach we can show
DF [¢.4] = GV E[@IFss 9] (1+0(™™)), >0
where F[¢; 1] is given by
[a—v]o 1 dw

Flgsy] = = —— | a_(w)p(w)

a(0) a(0) Jr 2miw

15




2j — k and j — 2k systems: Introduction 16

Let G(2N) represent one of USp(2N), SO(2N), or O~ (2N). For A € G(2N), let
A4 (z) = det (I — Az) denote its characteristic polynomial and consider the k-th

moment of qum) (1):

M (G(2N), m) ::/ (A<m)(1))de,

G(2N)
where dA is the Haar measure on G(2N). In

S. A. Altug, S. Bettin, I. Petrow, Rishikesh, and I. Whitehead. A recursion
formula for moments of derivatives of random matriz polynomials.

the authors study large-N asymptotics of My, (G(2N), m). Here is where the
2j — k determinants come into the picture. Let

Ti,e(u) = det (f2j—k+e(w))

f(z;u) = exp (z + z%)




2j — k and j — 2k systems: Introduction 17

Then
K245k K243k
Mi(USp(2N),2) = b (USp(2N),2) - (2N) 2 +O(N 2 ),
where .
k245K d
b (USp(2N),2) =27 2 dfk(e"n,omu)) .
u u=0
2 2
My (SO(2N),2) = bp(SO(2N),2) - (2N) 5" + O(N"“ ),
where .
_ k% 4k d “
bi(SO(2N),2) =27 =2 T (" Th,—1(2u))
U u=0
K245k K243k
M (O™ (2N),3) = b, (O™ (2N),3) - 2N) = +O(N ),
where

2 dk
be(O~(2N),3) =3.2 5" T (e“Tx,0(2u))
u

u=0




2j — k and j — 2k systems: Introduction 18

For a general symbol w we consider the 2j — k and j — 2k determinants with
offsets r, s € Z:

D(T> = det Wtk
no= g det  (wisaik)
Wy Wyr—1 Wy —2 t Wr—n+1
Wr4-2 Wr+41 Wy Wr—n+3
= det . . . . . )
Wr42n—2 Wr42n—3 Wr42n—4 te Wr+4n—1
E<s) = det Wgtj—2k
" 0<j,k<n—1 (st j21)
Ws Ws—2 Ws—4 s Ws—2n+2
Ws+1 Ws—1 Ws—3 Ws—2n+3
= det
Ws4n—1 Ws4n—3 Ws4+n—5 e Ws—n+1




Multiple Integral representation

dén

1 dG déa
Dn[f(()] T nl /]1, 27Ti<1 /]1- 27Ti<2

and

J

27in i

dln

d¢ d¢a
Ealf(O):= 5 /T 2miCy /T omiCs

h

Dy [w(¢)¢"] = DY)

)

27i(n, =1

and

chj

chj

Enfw(C)¢

I1

(=G (G2 =672,

1<j<k<n

[1

1<j<k<n

(GG =G

75] = E7(LS)-

19




2j — k and j — 2k BOPUC 20

or each offset value r € Z, let us consider two sequences of monic polynomials
{Pn(z;7)}52 g and {Qn(z;7)}52 ), deg Pn(z;1) = deg Qn(z;7) = n, with the
biorthogonality condition:

d .
/ Pm(c;r)Qn<<—2;r)c:—*—;(.o = 18 S,
T mi¢

Similarly, for each offset value s € Z, we consider two sequences of monic

polynomials {Rn(z;$)}52 o and {Sn(2;5)}22 ), deg Rn(z;s) = deg Sn(z;s) = n,
with the following biorthogonality condition:

d S
T i




Existence and Uniqueness of OPs

Theorem
If Dy’ # 0, the polynomials Py (z;7) and Qn(2;7) exist and are uniquely given by

Wy Wr—1 Wr—2 T Wr—n
Wr+4-2 Wr+1 Wy ce Wr—n+2
1
Pn(z;r)zwdet : : : ,
DL . . . .
Wr42n—2 Wr42n—-3 Wr42n—4 - Wr4n—2
1 z 22 s zZ"
and
Wr Wr—1 Wr—2 c Wr—n+1 1
Wr4-2 Wr+1 Wy cee Wr—n+3 z
2
w w w e Wy — z
Qn(z§ T‘) — o) det r+4 r+3 r4+2 r—n+5 ,
Dr, : : - : : :
Wr42n Wr42n—1 Wr42n—2 e Wr4n+1 2"

from which one can observe that h,(f) exists and can be written as

D(’")
D =l penNufoy, DY =1
DY




Existence and Uniqueness of OPs

Theorem
If Ey) # 0, the polynomials Ry (z;s) and Sn(z;s) exist and are uniquely given by

Ws Ws—2 Ws—4 t Ws—2n
Ws41 Ws—1 Ws—3 e Ws—2n+1
1
Rn(z;s) = F det : ,
n
Ws+n—1 Ws+n—3 Ws4+n—5 e Ws—n—1
1 z 22 e z"
and
Ws Ws—2 Ws—4 ce Ws—2n+2 1
Ws41 Ws—1 Ws—3 s Ws—2n+3 z
1 w w. Wg— e Wg— 22
Sn(Z§ s) — o) det 542 s s—2 s—2n+4 ,
Er, : : - : : :
Ws+n Ws4n—2 Ws4n—4 s Ws—n+2 z"

from which one can observe that gy(ls) exists and can be written as
E<5>
o) =t penNu{o}, EY=1.
B




Recurrence Relations

Theorem
The pure-degree recurrence relations for the 25 — k polynomials are given by

Paya(zir) — (60) 5 + 600 Paga(z5m)+

(§(T 1)6<T> Q)Pn+1(z§ T) + (6n'r> + n’slr72))z2pn(z; T) =0

n+1 n+1

and

Qha(zm) = (14 BY)02)Q% 1o (2 )+ (B +aliH) + 80D +aTH)2Q0 41 (57)

—(BY + el TNED + ol ) () = 0

n+1
where
§(r) hgf‘fl) " D(T+2)D(T_1)
n = ) ™ = N (21
hy) Dw_lD(T“)
" _ hglr+2) "y D(r—l)D(r+2)
n 5 Qp " = 7.
hg‘) DfL:)»lD(T-’—l)
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Recurrence Relations 23

Theorem

The pure-offset recurrence relations for the 2j — k and j — 2k polynomials are
given by

ng_‘_l)Pn(z; r+3) —zPp(z;7 +2) + 5&T+1)Pn(z; r+1) + zPn(z;7) =0,

Qi(zir+3) — Qilzr +2) + BT 2Qu (25 + 1) + ol TV 2Q% (257) = 0,

pgls+2)Rn(z; s+3)+ %7(13+2>Rn(z; s+2) —zRp(z;5+ 1) + 2Rn(z;s) =0,

and

Sy(zs+3)+ 'ySerQ)zS;‘L(z; s+2)—SH(zs+1)+ 9$f+2)zS:L(z; s) =0.




Polynomial interrelations 24

It holds that

(r+2) _2n+1
2 Dy z -1 -1 —1 -1
Qn(z%r) = 7[)(7') — {Pn+1(z ;T +2)Pp(—2" 514+ 2) = Ppyi(—2 57+ 2)Pu(z ;7‘+2)} s

n

E(572) 22ntl 1 1 1 1
n _ _ _ _
Sny1(z" 55 = 2)8n(=2" s = 2) = Sppa(—2 " s = Sz s - 2)]

2
Ry (27;s) = _
w0 = S
Compare with the Toeplitz (j — k) Case:
zn+1
#n+1(0)
n+1

nt1(z) = [Hn+1¢n+1(271) - '€7L271¢n,(371)]

=z K . P 7nnz_l/\n P
Snt1(2) = T (0) [ n+10nt1(27 ) n( )]




Multiple integral formulae for the 25 — k/j — 2k BOPUCs 25

Theorem
We have the following multiple integral representations for 2j — k and j — 2k
biorthogonal polynomials:

Pa(27) = —3 Dalw(Q)C ( ~ O,
Dy,
Qn(z57) = —5 Palw(O T (= = ¢ 2L,
Dn,

R (2; ) En[w()¢5(z = ¢?)],

!
E

Sn(25) =~ Eal(OC (= = ¢




Reproducing kernels 26

Define the reproducing kernel for the 25 — k and j — 2k systems respectively as
n
(z,7571) := Z (z;7)Pj(T357),

and
n

Ln(Z,T S = Z (s) ](T;S).

It is easy to see that the following repmducmg properties hold:

/ K (2 G 1)@Qu(¢ 2 )¢ () 25

27r1(

Q[(Z'T‘) 0<£<n,
l>n,

0<¢<n,

/Kn 2 ) Po(¢r)CT w(C) L>n

27r1(

J R RSP
T 71'1

{g(zs 0<t<n,

, > n,
s d¢ Rg 0<¢<mn,
/T La(C L mim) RS )C (O3 2 = 4 0> n




Reproducing kernels

26

Define the reproducing kernel for the 2j — k and j — 2k systems respectively as

(z,757) := Z (z;7)Pj(T357),
and
1
Lp(z,7;8) = Z @ Sj(z;8)Rj(T;8).
=09,
K"‘L(ZQVZUT‘) (7‘) D”[w( ) 7”4(’21 - C)(Z2 -
n+1
Ln(22,713) = —r-Ealw(€)C™* (21 — ) (22
G

n+1

¢l

¢hHl




Christoffel-Darboux identity 27

(r4+2) _2n+1
Kn(22,21;7) = %D”ﬁ) %
D, 21— ?
Pn(—zgl;r +2) Pn+1(—z2_1;r +2) Pn+2(—z2_1;r +2)
det Pn(zz_l;'r—l-Z) Pn+1(22_1;'r+2) Pn+2(z2_1;r+2) s

Pn(z157+2) Pnyi1(z157+2) Ppyo(z157+2)

X

and
1 E’ELS_Q) Z%n«kl

= — X
(s) 72 52
2 En+1 1 Z2

Sn(zf1;372) S"_,_l(zfl;sz) Sn+2(zf1;572)
det Sn(fzfl; s—2) Sn+1(fzf1; s—2) Sn+2(fzfl; s—2)
Sn(z2;8 —2) Sn+1(z2;8 —2) Snt2(z2;8 —2)

Ln(zz,z%; s)

Compare with the Christoffel-Darboux identity for Toeplitz (j — k) case

n41 1\ n+17 -1y _ 7
Rn(z1,22) = A ¢n+l(z1 )22 ¢711+1(;22 ) ¢>n+1(zl)¢n+1(z2)‘
— R1%R2




Explicit formulae for the undeformed exponential weight (u = 0) 28

b GGG + )
28G4T G0+ TH2)

(r) 2" n/
W) = =
(2n +r)!
o) — _op — r T)ELT) -
7(;") _ 1 ay) _ .

S @ntr+1)@2ntr+2) Cn+r)2n+r+1)C2n+r+2)

¢
Pr(zr) = Z"Zn:% > (*1)m+n+£(f) (’";m> -~
£=0 " m=0 n

m

and

r+1 r+2
) = T o1~ rxoN ..4
Qn(Z,T) 4n (r;—l)n (r+2)n 5 T ,z)7




Thank you!
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