KPZ and Boltzmann-Gibbs Principle

Kevin Yang

Department of Mathematics, Stanford University

October 11, 2021

Stochastic Burgers Equation SBE($\bar{\mathfrak{d}}$)

$$\partial_t \mathbf{u} = \Delta \mathbf{u} + \bar{\mathfrak{d}} \partial_x \mathbf{u} + \partial_x (\mathbf{u})^2 + \partial_x \xi \quad \text{on} \quad \mathbb{R}_{\geq 0} \times \mathbb{T}^1$$

- **u** is a *universal* model for hydrodynamic fluctuations
- ▶ $\mathbf{h} = \partial_x^{-1} \mathbf{u}$ is a *universal* KPZ equation interface model
 - ► Kardar-Parisi-Zhang '86 in PRL weak KPZ universality
 - ► Eden model, ballistic deposition, dynamic Ising model
- ► Consider $\partial_t \mathbf{u}' = \Delta \mathbf{u}' + \partial_x F(\mathbf{u}') + \partial_x \xi$. It has Gaussian invariant measures so *Hemite expand*

$$F(\mathbf{u}') = C'_0 + C'_1 \mathbf{u}' + C'_2 ((\mathbf{u}')^2 - 1) + \dots$$

- $C_i' = \partial_{\sigma}^{(i)} \mathbb{E} \mathsf{F}(Z + \sigma)|_{\sigma=0}$, where $Z \sim \mathsf{N}(0, 1)$
- ▶ Under some scaling, $\mathbf{u}' \rightarrow \mathbf{u}$.

Asymmetric Exclusion Processes

- ▶ Independent RWs on $\mathbb{T}_N = \mathbb{Z}/N\mathbb{Z}$ with S_x -speed symmetry and A_x -speed asymmetry to the right. Interact through *exclusion*
- ▶ Define *density fluctuation field* $\mathbf{u}_{t,x} \in \{\pm 1\}$ depending on occupation/vacancy at x at time t.
- ▶ Large-scale behavior of $\langle \mathbf{u}_t, \Phi \rangle_{\mathbb{T}_N}$ process with any $\Phi \in \mathcal{C}^{\infty}(\mathbb{T}^1)$
- ▶ Bertini-Giacomin '97: if $S_x = 1$ and $A_x = N^{-1/2}$, then $\mathbf{u}_{N^2t} \to SBE(0)$
 - ▶ Height function $\mathbf{h}_{t,x} = \partial_x^{-1} \mathbf{u}_{t,x}$ solves exact microscopic KPZ
 - ► Key observation: $\mathbf{z}_{t,x} = \text{Exp}(\mathbf{h}_{t,x})$ solves exact microscopic linear SHE

Universality?

- ► Environment-dependence (D): $S_x = 1$ and $A_x = N^{-1/2} + N^{-1} \mathfrak{d}_x$
 - \triangleright \mathfrak{d}_x a local functional of time t particle environment at x
 - "Gradient condition" for \mathfrak{d}_x ; guarantees a one-parameter family of product invariant measures parameterized by **u**-density $\sigma \in \mathbb{R}$
 - ► ASEP $+ \mathfrak{d}$ -TASEP
- ▶ Slow bond model (SB): $S_x = 1$ and $A_x = N^{-1/2}$, unless $x \in \{0, 1\}$
 - ▶ Random walks cross $\{0,1\}$ with speed $N^{-\beta} + N^{-1/2}$ to the right and with speed $N^{-\beta}$ to the left. β is small and positive
- ▶ Non-simple model (NS): allow for jumps of arbitrary length
 - Require RW step distributions have enough moments

Theorem: [Y '20, Y'21, Y'21+]

 $\mathbf{u}_{N^2t} \to \mathrm{SBE}(\bar{\mathfrak{d}})$, where $\bar{\mathfrak{d}} = 0$ for SB and NS and $\bar{\mathfrak{d}} = \partial_\sigma \mathbb{E}^\sigma \mathsf{F}^{\mathfrak{d}}|_{\sigma=0}$, where $\mathsf{F}^{\mathfrak{d}}$ is the instantaneous flux of \mathfrak{d} -TASEP

- Big Picture Questions from AIM workshop on KPZ
- ► Stationary case Goncalves-Jara '14, '17; Franco-Goncalves-Simon '17
- Done via Cole-Hopf transform



Boltzmann-Gibbs Principle and the D Model

Non-integrability of ASEP + \mathfrak{d} -TASEP reflected in order $N^{\frac{1}{2}}\nabla F^{\mathfrak{d}}$ Problem – homogenization of $N^{1/2}\bar{\mathsf{F}}^{\mathfrak{d}}_{t,x}=N^{1/2}\mathsf{F}^{\mathfrak{d}}_{T,x}-N^{1/2}C_0-N^{1/2}\bar{\mathfrak{d}}\mathbf{u}_{T,x}$

Theorem: "Boltzmann-Gibbs Principle" [Y'21+]

 $N^{1/2}\bar{\mathsf{F}}^{\mathfrak{d}}_{t,x} \to 0$ in the large-N limit in a weak sense, in particular after integrating against smooth space-time test functions

- "Fluctuations of local statistics are asymptotically linear projections onto conserved quantities of the particle system"
- ► Nothing special about F⁰; can compute linear asymptotics for *any* local environment-dependent statistics
- ► Succeeds even when multiplying Fo by Gartner transform

Boltzmann-Gibbs Principle – Applications

Applications/Open Problems:

- General mechanism to derive fluctuations around hydrodynamic limits for many interacting particle systems
 - ▶ Brox-Rost '84, Chang-Yau '92, Jara-Menezes '18
 - Also for geometric flows instead of hydrodynamic equations
- ► Local/Analytic Method fluctuation scaling limits for models without explicit invariant measures or integrable structure
 - Models with boundary, smoothly inhomogeneous/random environment models, e.g. geometric flows with nontrivial topology/metric

Thank you for your attention!

Acknowledgements:

Amir Dembo, Li-Cheng Tsai, Stefano Olla, Ivan Corwin, Cole Graham.