Upper-tail large deviation principle for the ASEP through Lyapunov exponents

Based on joint work with Sayan Das

Columbia University Department of Mathematics

MSRI Program Associate Short Talks

arxiv: 2104.00661

Weitao Zhu (Columbia)

Upper-tail large deviation principle for the ASEP throu MSRI Program Associate Short Talks 1/16

- Asymmetric Simple Exclusion Process (ASEP) with step initia data
- Large-time behaviours of $H_0(t)$
- Main result: Lyapunov exponents and upper-tail large deviation

Definition

The ASEP is a continuous-time Markov chain on particle configurations $\textbf{x}=(\textbf{x}_1>\textbf{x}_2>\cdots)$ in $\mathbb{Z}.$

•Dynamics:

- Each site i ∈ Z is occupied by at most one particle, which has an independent exponential clock with exponential waiting time of mean 1.
- **(a)** When the clock rings, the particle jumps to the right with probability q or to the left with probability p = 1 q.
- Jump is permitted when the target site is unoccupied.
- We need to specify its initial state.

Definition

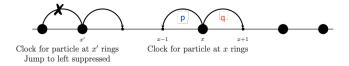
ASEP starts from the *step* initial configuration if $x_j(0) = -j$, j = 1, 2, ...

We set $\gamma = 2q - 1$ and assume $q > \frac{1}{2}$, i.e., ASEP has a drift to the right.

・ロト ・ 同ト ・ ヨト ・ ヨト

Example

Here's a demonstration of the dynamics:



and the step initial configuration:

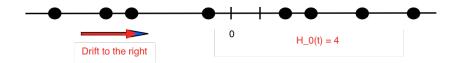
Special case: when q = 1, i.e. the particles only jump to the right, we obtain TASEP (totally asymmetric simple exclusion process).

< ロ > < 同 > < 回 > < 回 >

Definition

The observable of interest in ASEP is $H_0(t)$, which is the integrated current through 0, is defined as:

 $H_0(t) :=$ the number of particles to the right of zero at time t.



{H₀(t) ≥ m} = {X_m(t) ≥ 0}: the current fluctuation is related to fluctuations in the position of the *m*-th particle.

(1)

Significance of $H_0(t)$:

• $H_0(t)$ is the one-dimensional height function of the interface growth of the ASEP \rightarrow ASEP is in the KPZ Universality Class \rightarrow fluctuations of $H_0(t)$ exhibit universal critical behaviors

Large-time behaviors of $H_0(t)$:

Strong Law

$$rac{1}{t} H_0ig(rac{t}{\gamma}ig) o rac{1}{4}, ext{ almost surely as } t o \infty.$$

• CLT (Tracy-Widom'09)

$$\frac{1}{t^{1/3}}2^{4/3}\big(-H_0\big(\frac{t}{\gamma}\big)+\frac{t}{4}\big) \implies \xi_{\text{GUE}},\tag{2}$$

 ξ_{GUE} is the Tracy-Widom GUE distribution. $t^{1/3} \rightarrow$ scaling is the signifier of the KPZ universality. When q = 1, (2) recovers the same result on TASEP. ([Johannson'00])

• What about tails of $-H_0(\frac{t}{\gamma}) + \frac{t}{4}$?

LDP/tail behaviors

Large deviation regime:

What's the probability when $-H_0(\frac{t}{\gamma}) + \frac{t}{4}$ has a deviation of order t?

The story of two tails: we don't know if Φ_{-} and Φ_{+} exist at this point for general ASEP model but we have the rates functions for TASEP, i.e q =1 in [Johansson '00].

 $\mathbb{P}\left(-H_0\left(\frac{t}{\gamma}\right) + \frac{t}{4} < -\frac{t}{4}y\right) \approx e^{-t^2\Phi_-(y)}; \qquad (\text{Lower Tail})$

۲

۲

$$\mathbb{P}\left(-H_0\left(\frac{t}{\gamma}\right) + \frac{t}{4} > \frac{t}{4}y\right) \approx e^{-t\Phi_+(y)}.$$
 (Upper Tail)

- The upper tail corresponds to the ASEP being "too slow"
- The lower tail corresponds to the ASEP being "too fast"
- We recall a similar phenomenon with the KPZ upper/lower tails ([Tsai'18], [Das-Tsai'19])

・ロト ・ 同ト ・ ヨト ・ ヨト

Tail behaviors: speed differentials

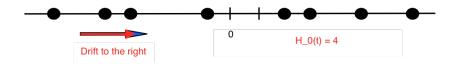
Heuristics for the speed differentials:

• Lower tail corresponds to the ASEP being "too fast":

$$\mathbb{P}\left(-H_0\left(\frac{t}{\gamma}\right) + \frac{t}{4} < -\frac{t}{4}y\right) \approx e^{-t^2\Phi_-(y)}; \qquad (\text{Lower Tail})$$

• Upper tail corresponds to the ASEP being "too slow":

$$\mathbb{P}\left(-H_0(rac{t}{\gamma})+rac{t}{4}>rac{t}{4}y
ight)pprox e^{-t\Phi_+(y)}.$$
 (Upper Tail)



• $\{-H_0(t/\gamma) + \frac{t}{4} > \frac{t}{4}y\} = \{H_0(t/\gamma) - \frac{t}{4} < -\frac{t}{4}y\}$

- Johansson proved both tail large deviation problems for the TASEP in a variational formula. ([Johansson '00])
- For ASEP with step initial data, [Damron-Petrov-Sivakoff '18] produced the following exponential bound:

Theorem (Damron-Petrov-Sivakoff '18)

For
$$\widetilde{\Phi}_+(y)=\sqrt{y}-(1-y) \tanh^{-1}(\sqrt{y})$$
 for $y\leq y_0=rac{1-2\sqrt{q(1-q)}}{1+2\sqrt{q(1-q)}}$, we have

$$\mathbb{P}\left(-H_0\left(\frac{t}{\gamma}\right)+\frac{t}{4}>\frac{t}{4}y\right)\leq e^{-t\widetilde{\Phi}_+(y)}.$$

Figure:
$$\widetilde{\Phi}_+(y)$$

Main results: upper-tail LDP through Lyapunov exponents

We present the first proof of the precise upper-tail LDP for the ASEP with step initial data

Theorem (Das - Z. '21)

Fix $q \in (rac{1}{2},1).$ For any $y \in (0,1)$ we have

$$\lim_{t \to \infty} \frac{1}{t} \log \mathbb{P}\left(-H_0\left(\frac{t}{\gamma}\right) + \frac{t}{4} > \frac{t}{4}y\right) = -\left[\sqrt{y} - (1-y) \tanh^{-1}(\sqrt{y})\right] =: -\Phi_+(y), \quad (3)$$

where $\gamma = 2q - 1$.

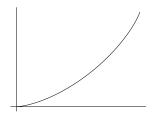


Figure: $\Phi_+(y)$

Proof idea: Lyapunov exponents

• Lyapunov exponents: $\lim_{t\to\infty} \frac{1}{t} \log \mathbb{E}[\tau^{sH_0(t)}]$ - access to the exponential moments

• Connection to large deviation

() Using Markov inequality and tilting, we can show that the upper-tail large deviation principle of log $\tau^{H_0(t)}$ is the Legendre-Fenchel dual of the Lyapunov exponent

We have the following theorem that computes the sth-Lyapunov exponent of $\tau^{H_0(t)}$

Theorem (Das - Z. '21)
Let
$$\tau = \frac{p}{q} < 1$$
. For $s \in (0, \infty)$ we have

$$\lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}[\tau^{sH_0(t)}] =: -(q-p)\frac{1-\tau^{\frac{5}{2}}}{1+\tau^{\frac{5}{2}}}.$$
(4)

• It has been a recent popular approach in studying the large deviations of integrable models in the KPZ universality class

• Recent works

- $\fbox{ Das-Tsai'19 Stochastic Heat Equation with narrow-wedge initial data \rightarrow \mathsf{KPZ} upper-tail}$
- Ohosal-Lin'20 SHE with a large class of initial data, including any bounded deterministic positive initial data and the stationary initial data
- Lin'20 half-line SHE

• Why Lyapunov exponents?

[Damron-Petrov-Sivakoff '18] obtained their exponential bound from steepest descent analysis on the exact formula of the distribution of $H_0(t)$ in the form of Fredholm determinants. This formula comes from [Tracy-Widom '09].

- Choose an appropriate contour that passes through its critical points and this choice of contour imposes restrictions on the range of *y*.
- Improvement is possible theoretically but it will require much finer analysis.

< ロ > < 同 > < 回 > < 回 >

Proof Idea

- How do we obtain the Lyapunov exponent? $\lim_{t\to\infty} \frac{1}{t} \log \mathbb{E}[\tau^{sH_0(t)}]$
 - **@** Exact formula for integer moments of $\tau^{H_0(t)}$ ([Borodin-Corwin-Sasamoto '14]) exists but doesn't extend to fractional moments:
 - Integrability lends us ([Borodin-Corwin-Sasamoto '14])

Theorem

Fix any $\delta \in (0, 1)$. For $\zeta > 0$ we have

$$\mathbb{E}\left[F_q(\zeta\tau^{H_0(t)})\right] = \det(I + K_{\zeta,t}), \quad F_q(\zeta) := \prod_{n=0}^{\infty} \frac{1}{1 + \zeta\tau^n}.$$
(5)

Here det $(I + K_{\zeta,t})$ is the Fredholm determinant of some integral operator $K_{\zeta,t}$.

< ロ > < 同 > < 回 > < 回 >

Proof Idea

• (Borodin-Corwin-Sasamoto '14)

$$\mathbb{E}\left[F_q(\zeta\tau^{H_0(t)})\right] = \det(I + K_{\zeta,t}), \quad F_q(\zeta) := \prod_{n=0}^{\infty} \frac{1}{1 + \zeta\tau^n}.$$
 (6)

• Elementary identity

$$\mathbb{E}[U^{n-1+\alpha}] = \frac{\int_{0}^{\infty} \zeta^{-\alpha} \mathbb{E}[U^{n} F^{(n)}(\zeta U)] d\zeta}{\int_{0}^{\infty} \zeta^{-\alpha} F^{(n)}(\zeta) d\zeta} = \frac{\int_{0}^{\infty} \zeta^{-\alpha} \frac{d^{n}}{d\zeta^{n}} \mathbb{E}[F(\zeta U)] d\zeta}{\int_{0}^{\infty} \zeta^{-\alpha} F^{(n)}(\zeta) d\zeta}.$$
 (7)

- Let U = τ^{H₀(t)}. Combining both identities allows us to obtain good control on the fractional moment E[τ^{sH₀(t)}]. A continuity argument extends the result to the integer moments.
- Compared to the work on KPZ upper tails by [Das-Tsai '19] and [Lin '20], the analysis of our moments is much more intricate given the complexity of our kernel.

$$\mathcal{K}_{\zeta,t}(w,w') := \frac{1}{2\pi i} \int_{\delta-\infty}^{\delta+\infty} \Gamma(-u)\Gamma(1+u)\zeta^{u} \frac{g_{t}(w)}{g_{t}(\tau^{u}w)} \frac{du}{w'-\tau^{u}w},$$
(8)
for $g_{t}(z) = \exp\left(\frac{(q-p)t}{1+z}\right).$
(9)

Theorem (Das - Z. '21)

Let $au = rac{p}{q} < 1$. For $s \in (0,\infty)$ we have

$$\lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}[\tau^{sH_0(t)}] =: -(q-p)\frac{1-\tau^{\frac{5}{2}}}{1+\tau^{\frac{5}{2}}}.$$
 (10)

Consequently, for any $y \in (0,1)$, we have

$$\lim_{t\to\infty}\frac{1}{t}\log\mathbb{P}\left(-H_0\left(\frac{t}{\gamma}\right)+\frac{t}{4}>\frac{t}{4}y\right)=-[\sqrt{y}-(1-y)\tanh^{-1}(\sqrt{y})]=:-\Phi_+(y),\quad(11)$$

where $\gamma = 2q - 1$. Furthermore, we have the following asymptotics near zero:

$$\lim_{y \to 0^+} y^{-3/2} \Phi_+(y) = \frac{2}{3}.$$
 (12)

イロト 不得 トイヨト イヨト

э

Thank you!

Weitao Zhu (Columbia)

Upper-tail large deviation principle for the ASEP throu MSRI Program Associate Short Talks 16 / 16

< □ > < □ > < □ > < □ > < □ >

2