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o Asymmetric Simple Exclusion Process (ASEP)
with step initia data

o Large-time behaviours of Hy(t)

@ Main result: Lyapunov exponents and upper-tail
large deviation
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Asymmetric Simple Exclusion Process (ASEP)

Definition

The ASEP is a continuous-time Markov chain on particle configurations
x=(x1>x2>---)inZ

oDynamics:
@ Each site i € Z is occupied by at most one particle, which has an independent
exponential clock with exponential waiting time of mean 1.
@ When the clock rings, the particle jumps to the right with probability g or to the left
with probability p =1 — q.
© Jump is permitted when the target site is unoccupied.

@ We need to specify its initial state.

Definition

ASEP starts from the step initial configuration if x;(0) = —j, j =1,2,....

We set v = 2qg — 1 and assume q > % i.e., ASEP has a drift to the right.
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Example

© Here's a demonstration of the dynamics:

NN O 4

x' z—1 x z+1
Clock for particle at z’ rings Clock for particle at z rings
Jump to left suppressed

@ and the step initial configuration:

© Special case: when q = 1, i.e. the particles only jump to the right, we obtain
TASEP (totally asymmetric simple exclusion process).
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Integrated ASEP current Hy(t)

Definition

The observable of interest in ASEP is Hy(t), which is the integrated current through 0, is
defined as:

Ho(t) := the number of particles to the right of zero at time t. (1)
—@ @ o—1+—1—0@ @ @o—
- 0 H_0() = 4

Drift to the right

o {Ho(t) > m} = {Xm(t) > 0}: the current fluctuation is related to fluctuations in the
position of the m-th particle.
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Large-time behaviors of Hy(t)

Significance of Ho(t) :

@ Ho(t) is the one-dimensional height function of the interface growth of the ASEP —
ASEP is in the KPZ Universality Class— fluctuations of Hy(t) exhibit universal
critical behaviors

Large-time behaviors of Ho(t) :

o Strong Law

%Ho(s) — %, almost surely as t — oo.
o CLT (Tracy-Widom’09)
732 B~ Ho(;) + Z) = &GUE, (2)

&cue is the Tracy-Widom GUE distribution.
t1/3 — scaling is the signifier of the KPZ universality.
When g =1, (2) recovers the same result on TASEP. ([Johannson’00])

e What about tails of -Ho (L) + £?

t
P
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LDP /tail behaviors

Large deviation regime:

What's the probability when fHo(ﬁ) + £ has a deviation of order t?

The story of two tails: we don't know if ®_ and ®, exist at this point for general
ASEP model but we have the rates functions for TASEP, i.e q =1 in [Johansson '00].

t _ .
P (—Ho(ﬁ) +7< —%y) ~e -, (Lower Tail)

P (—Ho(g) + % > gy) ~ et ), (Upper Tail)

@ The upper tail corresponds to the ASEP being “too slow”
@ The lower tail corresponds to the ASEP being “too fast”

o We recall a similar phenomenon with the KPZ upper/lower tails ([Tsai'18],
[Das-Tsai'19])
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Tail behaviors: speed differentials

Heuristics for the speed differentials:
@ Lower tail corresponds to the ASEP being “too fast”:

P (—Ho(ﬁ) + % < —%y) ~e -, (Lower Tail)
o Upper tail corresponds to the ASEP being “too slow":

P (—Ho(ﬁ) + i > iy) ~ e W), (Upper Tail)

o—@ @ —o—@ @ @—
— 0 H_O{) = 4

Drift to the right

_.

o {—Ho(t/7) + 5> v} ={Ho(t/7) — 5 < —3v}
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Previous result

@ Johansson proved both tail large deviation problems for the TASEP in a variational
formula. ([Johansson '00])

@ For ASEP with step initial data, [Damron-Petrov-Sivakoff '18] produced the
following exponential bound:

Theorem (Damron-Petrov-Sivakoff '18)

> _ (1 _ -1 _ 1-2y/q(1—q)
For ., (y) =y —(1—y)tanh="(\/y) fory < yo = wew et we have

P(—Ho(2) +5 > 4y) < e,

Figure: ®. (v)
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Main results: upper-tail LDP through Lyapunov exponents

We present the first proof of the precise upper-tail LDP for the ASEP with step initial
data

Theorem (Das - Z. '21)

Fix q € (3,1). For any y € (0,1) we have

Jim LlogP (~Ho(£) + £ > &) = ~[yF — (1 - y)tanh (V7] = ~04 (). (3)

where v = 2q — 1.

Figure: &4 (y)

Weitao Zhu (Columbia) Upper-tail large deviation principle for the ASEP throu MSRI Program Associate Short Talks



Proof idea: Lyapunov exponents

sHo(t)

o Lyapunov exponents: limoo 1 log E[T ]- access to the exponential moments

@ Connection to large deviation

@ Using Markov inequality and tilting, we can show that the upper-tail large deviation
principle of log 7Ho(1) is the Legendre-Fenchel dual of the Lyapunov exponent

We have the following theorem that computes the sth-Lyapunov exponent of 7

Theorem (Das - Z. '21)

Let 7 =2 < 1. Fors € (0,00) we have

I|m 1 IogE[TSH"(t] = — 1= . (4)
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Lyapunov exponents

@ It has been a recent popular approach in studying the large deviations of integrable
models in the KPZ universality class

® Recent works
@ Das-Tsai'l9 - Stochastic Heat Equation with narrow-wedge initial data — KPZ
upper-tail
@ Ghosal-Lin'20 - SHE with a large class of initial data, including any bounded
deterministic positive initial data and the stationary initial data
© Lin'20 - half-line SHE

o Why Lyapunov exponents?

[Damron-Petrov-Sivakoff '18] obtained their exponential bound from steepest
descent analysis on the exact formula of the distribution of Hy(t) in the form of
Fredholm determinants. This formula comes from [Tracy-Widom '09].

@ Choose an appropriate contour that passes through its critical points and this choice of
contour imposes restrictions on the range of y.
@ Improvement is possible theoretically but it will require much finer analysis.
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Proof Idea

@ How do we obtain the Lyapunov exponent? lim:_ % log B[r=H(®)]

@ Exact formula for integer moments of 7H(t) ([Borodin-Corwin-Sasamoto '14]) exists
but doesn’t extend to fractional moments:

@ |Integrability lends us ([Borodin-Corwin-Sasamoto '14])

Fix any § € (0,1). For ¢ > 0 we have

E [Fa(¢rt®)] = det(l + Ke,e), Fal¢) =T %CT" (5)
n=0

Here det(/ + K¢ ;) is the Fredholm determinant of some integral operator K ;.
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Proof Idea

@ (Borodin-Corwin-Sasamoto '14)

E [Fo(¢r0)] = det(l + Ke),  Fal€) = (6)
0
o Elementary identity
[ COBUTFO(CU) A fc*“;’;nE[F CU)d¢
]E[Un71+u] — 0 . (7)

afC‘aF" (Q)d¢ OfC“’F”) ¢)d¢

o Let U = 7ot Combining both identities allows us to obtain good control on the
fractional moment IE[TSHU(t)]. A continuity argument extends the result to the integer
moments.

o Compared to the work on KPZ upper tails by [Das-Tsai '19] and [Lin '20], the
analysis of our moments is much more intricate given the complexity of our kernel.

5+100

Keo(w,w') = % / F(=u)r(1+ ”)Cu%ﬁ’ (8)
§—100
for g¢(z) = exp <%> . 9)
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Main Theorem

Theorem (Das - Z. '21)
Let 7= £ <1. Fors € (0,00) we have

Nl

Jim = Iog]E[TSHO(t ]=:

—(q—p);

(10)

(NI

Consequently, for any y € (0,1), we have

lim S1og P (~Ho(£) + £ > £y) = ~[V¥ — (1= ) tanh (V7)) = ~04(y), (11)

t—oo

where v = 2q — 1. Furthermore, we have the following asymptotics near zero:

lim y~32¢ =2, 12
Jim y R0 (y) =3 (12)
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Thank you!
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