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Topics and methods of analysis

Background:
– Integrability of the focusing nonlinear Schrödinger equation (NLS) on the circle

– Connection to the theory of nonselfadjoint Dirac operators on the circle

Nonselfadjoint Dirac operator with an elliptic potential
– Discuss some general features of the spectral theory

– Find an explicit two-parameter family of finite-gap (or finite-band) potentials

– Semiclassical bounds on the spectrum

Tools
– Numerics (e.g. Hill’s method)

– Bloch-Floquet theory

– Perturbation theory of linear operators

– Theory of tridiagonal operators

Jeffrey A. Oregero (MSRI) MSRI seminar jaoreger@buffalo.edu - 10/11/2021 2 / 39



Outline

1 Background: Inverse scattering method

2 Hill’s method and elliptic potentials

3 Spectral theory

4 Tridiagonal operators

5 Semiclassical bounds on the Lax spectrum

6 Conclusions

Jeffrey A. Oregero (MSRI) MSRI seminar jaoreger@buffalo.edu - 10/11/2021 3 / 39



Seminal work in the 1970s extended the inverse scattering transform
(IST) of Gardner, Greene, Kruskal and Miura to the case of x-periodic
initial data.

– Novikov 1974

– Its and Matveev 1975, Its and Kotlyarov 1976

– Dubrovin 1975

– Lax 1975

– Kac and van Moerbeke 1975, McKean and van Moerbeke 1975

– Flaschka–McLaughlin 1976

– McKean and Trubowitz 1976

– Date and Tanaka 1976

Evolution equation is compatibility of a ”Lax pair”:

φx = Xφ , φt = Tφ . (1)

Provides algorithmic procedure for solving the initial value
problem.
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The NLS equation on the circle

NLS with periodic initial data:

i∂tq + ∂2
xq− 2κ|q|2q = 0 , (2a)

q(x + l, t) = q(x, t) , ∀ x ∈ R , t ≥ 0 . (2b)

– Universal physical model for the evolution of nonlinear dispersive
wavetrains.

– Completely integrable Hamiltonian system.

– κ = −1 (focusing) and κ = 1 (defocusing).

Next, we briefly review the inverse scattering method for (2).

– Direct problem and scattering data.

– Connection to the classical theory of linear ODEs with periodic
coefficients, i.e., “Bloch-Floquet theory”.

– Finite-band potentials and the finite-genus machinery.
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Zakharov-Shabat (ZS) spectral problem

Spatial half of Lax pair:

Lφ = zφ , L := iσ3(∂x −Q) , (3)

where L is a one-dimensional Dirac operator sometimes referred
to as the “ZS operator”, φ(x; z, ε) = (φ1, φ2)T, σ3 = diag(1,−1),
and

Q := Q(x) =
(

0 q(x, 0)
κq(x, 0) 0

)
. (4)

Note that L is nonselfadjoint when κ = −1.
The following sets comprise the scattering data in the IST for
periodic BCs:

σLax(L) := {z ∈ C : Lφ = zφ, ‖φ‖∞ < ∞} (5a)
σDir(L) := {z ∈ C : Lφ = zφ, φ1(0) = φ2(0), φ1(l) = φ2(l)} (5b)
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Direct scattering–Bloch-Floquet theory

Bloch-Floquet (or normal) solution:

φ(x + l; z) = µφ(x; z), (6)

where µ := µ(z) is the Floquet multiplier.

A monodromy matrix M := M(z) is defined as:

Φ(x + l; z) = Φ(x; z)M(z) , (7)

where Φ(x; z) is a fundamental matrix solution of ZS.

The Floquet discriminant ∆ := ∆(z) is defined as:

∆(z) = 1
2 tr M(z) , (8)

The Floquet multipliers µ± = ∆±
√

∆2 − 1 are eigenvalues of M.
Importantly,

z ∈ σLax(L) ⇐⇒ |µ(z)| = 1 ⇐⇒ ∆(z) ∈ [−1, 1] , (9)

and ∆ is isospectral.
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Direct scattering–additional properties

The Floquet spectrum is defined as:

Σν = {z ∈ C : Lφ = zφ, φ(l) = eiνl φ(0)} (10a)
= {z ∈ C : ∆(z) = cos(νl)} (10b)

where ν ∈ R and µ = eiνl.

Importantly, σLax(L) = ∪ν∈[0,2π/l)Σν.

– For each fixed ν ∈ R the Floquet spectrum is discrete.

– Periodic spectrum [φ(x + l) = φ(x)] when ν = 2nπ/l, or ∆ = 1.

– Antiperiodic spectrum [φ(x + l) = −φ(x)] when ν = 2(n + 1/2)π/l, or ∆ = −1.

The Floquet discriminant ∆ is an entire function of z.

The Floquet discriminant satisifies ∆(z) = ∆(z).

If q is real-valued, even, or odd then Floquet eigenvalues occur in
quartets (z, z,−z,−z).
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Scattering data–spectral bands and gaps

Band and gap structure of the Lax spectrum in the nonselfadjoint case. Blue arcs are spectral
bands with edges z± corresponding to periodic, and antiperiodic eigenvalues, respectively.
Construct the level set C := {z ∈ C : Im∆(z) = 0}. Then the spectral bands form an at most
countable set of analytic arcs in the complex plane defined by {z ∈ C : |Re∆(z)| ≤ 1}.
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N-band potentials and inverse scattering

Definition 1
If ∆2 − 1 has 2N simple roots, we say that the l-periodic potential q is
an N-band potential. The class of finite-band potentials is comprised of
the set of all N-band potentials for all positive integer values N.

Dirichlet spectra are not isospectral. Their motions are used to
reconstruct the potential for t > 0 (“angle variables”).

The motion of the Dirichlet spectra is linearized by employing a
suitable Abel transformation.

Solutions are described in terms of Θ-functions determined by
hyperelliptic Riemann surfaces of genus G where N = G + 1.

In general, N-band potentials have N noncommensurate phases.
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Hill’s method

Hill’s method is a numerical technique for calculating the spectrum of
a linear operator with periodic coefficients.

Hill’s method is spectrally accurate as a result of using Fourier
series approximations.
The method is limited to the number of Fourier modes chosen and
an eigenvalue solver such as the QR algorithm.

Note Q(x + l) = Q(x) and so by Floquet’s theorem one gets:

z ∈ σLax(L) ⇐⇒ φ(x; z) = eiνx w(x; z) , (11)

where w(x + l; z) = w(x; z) and ν ∈ R.

Rewrite ZS in the form of a modified eigenvalue problem:

Lνw = zw , Lν := σ3((i∂x − ν)− iQ) . (12)
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Elliptic potentials

Consider

Q(x; m, A) =

(
0 A dn(x; m)

−A dn(x; m) 0

)
, (13)

where dn is a Jacobi elliptic function.
– m ∈ (0, 1) is the elliptic parameter and A ∈ R

– l = 2K with K := K(m) the complete elliptic integral of the first kind
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Through various numerical simulations an interesting property
emerged for this family of potentials, namely, for A ∈ Z there appears
to be no bands intersecting the real or imaginary z-axis.
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Main result

Consider the focusing ZS eigenvalue problem:

Lφ = zφ , L := iσ3(∂x −Q) , (14)

and
q := q(x; m, A) = A dn(x; m) (15)

Theorem 2
If A ∈ Z and m ∈ (0, 1), then σLax(L) ⊂ R∪ (−iA, iA).

Theorem 3
If A ∈ Z and m ∈ (0, 1), then q is a two-parameter family of finite-gap (or
finite-band) potentials of the focusing ZS eigenvalue problem (14).
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Outline

Main ideas:

Discuss some results in the spectral theory of the nonselfadjoint ZS operator on the circle.

Show the periodic and antiperiodic eigenvalues are real and purely imaginary only and
that this is sufficient to claim that the entire spectrum is real and purely imaginary only.

Relate the ZS eigenvalue problem to an eigenvalue problem for a tridiagonal operator.

The proof of the the above theorems involves several steps:

Map the focusing ZS eigenvalue problem into a second-order ODE with trigonometric
coefficients (and λ = z2).

Map the trigonometric ODE into a three-term recurrence relation for the Fourier
coefficients.

Demonstrate the existence of ascending and descending half-infinite Fourier series
solutions.

Map the trigonometric ODE into Heun’s equation and relate the eigenvalues of the ZS
problem to the connection problem for Heun’s equation.

Establish reality of eigenvalues of finite truncations of the associated Heun matrices.

Establish continuity of eigenvalues as the truncation becomes infinite.
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Reduction to m = 0, m = 1, and the Lamé equation

When m = 0 it follows A dn(x, 0) ≡ A. Thus, the ZS problem
reduces to that of a constant background and is exactly solvable.

Whem m = 1 it follows A dn(x, 1) ≡ Asech x. Thus, the ZS
problem reduces to the case studied by Satsuma and Yajima
(1974). For A ∈ Z one gets N-soliton solution of focusing NLS.
Moreover, discrete eigenvalues occur at the half-integers along the
imaginary z-axis.

The invertible change of dependent variable:

y± = φ1 ± iφ2 (16)

maps the ZS eigenvalue problem into

yxx + (iAm sn(x, m) cn(x, m) + λ + A2 dn2(x, m))y = 0 , (17)

where y := y− and λ := z2. Since dn2(x; m) = 1−m sn2(x; m),
(17) is a complex perturbation of the celebrated Lamé equation.
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Large z asymptotics of ∆

We find the large z asymptotics for ∆(z) and ∆′(z).

Lemma 4

If q ∈ L∞(R), then

∆(z) = cos(zl) + eIm zl o(1) , as z→ ∞ , Im z ≥ 0 , (18a)

∆′(z) = −l sin(zl) + eIm zl o(1) , as z→ ∞ , Im z ≥ 0 , (18b)

where l is the period of q.

The behavior for Im z < 0 follows from ∆(z) = ∆(z).

The real z-axis is one infinitely long band, i.e., R ⊂ σLax. Moreover
this is the only band extending to infinity.
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Bound on the spectrum

Lemma 5
Take q(x; m, A) = A dn(x; m) with A ∈ C and m ∈ (0, 1). If z ∈ σLax(L),
then | Im z| < |A|.
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Finite–gap potentials of the focusing ZS operator
Theorem 6

Let q ∈ L∞(R). Then q is a finite-gap potential if and only if
∃N = N(q) ∈N such that (σLax(L) \R) ⊂ RN,q.

Theorem 7

Let q ∈ L∞(R) be real, even, or odd. If the periodic and antiperiodic
eigenvalues are real and purely imaginary only then
σLax(L) ⊂ R∪ [−i‖q‖L∞(R), i‖q‖L∞(R)] and q is a finite-gap potential.
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ZS
ϕ1−→ Hill with complex potential

yxx + (iAm sn(x, m) cn(x, m) + λ + A2 dn2(x, m))y = 0 (19)

Hill with complex potential
ϕ2−→ ODE with trig. coefficients

4(1−m sin2(t/2))ytt − (m sin t)yt

+(λ + A2(1−m sin2(t/2)) + i
2 Am sin t)y = 0 (20)

By Bloch-Floquet theory, all bounded solutions have the form
y = eiνt w with w(t + 2π; λ, m, A) = w(t; λ, m, A).

Thus consider the Fourier series expansion:

y(t; λ, m, A) = eiνt ∑
n∈Z

cn eint (21)
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Three-term recurrence relation

Plugging (21) into (20) gives the following recurrence relation:
αncn−1 + (βn − λ)cn + γncn+1 = 0 , (22)

where
αn = −m

4
[A− (2n + 2ν− 2)][A + (2n + 2ν− 1)] , (23a)

βn = (1− m
2
)[(2n + 2ν)2 −A2] , (23b)

γn = −m
4
[A− (2n + 2ν + 2)][A + (2n + 2ν + 1)] . (23c)

Equivalently, one can express (22) as the eigenvalue problem:
BA

ν c = λc , (24)
where c = {cn}n∈Z,

BA
ν :=


. . . . . . . . .

αn βn γn
. . . . . . . . .

 , (25)

dom(BA
ν ) = {c ∈ `2(Z) : ∑

n∈Z

|n|4|cn|2 < ∞} . (26)
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Ascending and descending Fourier series solutions

A tridiagonal matrix is “reducible” when there exists a zero along
the subdiagonal, (or superdiagonal).

Recall ν ∈ Z corresponds to periodic eigenvalues,
and ν ∈ Z + 1

2 corresponds to antiperiodic eigenvalues.

Let A ∈N. Then for ν ∈ Z or ν ∈ Z + 1
2 there exists a zero along

both the subdiagonal and superdiagonal.

This leads to the following result:

Theorem 8

Let A ∈N. If λ ∈ C is a periodic or antiperiodic eigenvalue of the
trigonometric operator (20), then there is an associated eigenfunction
generated by either an ascending or descending Fourier series.
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Heun’s equation

The change of independent variable

ζ := eit (27)

maps (20) into a second-order Heun ODE:

ζ2F(ζ; m)yζζ + ζG(ζ; m)yζ + H(ζ; m, A)y = 0 (28)

F(ζ; m) = −mζ2 + (2m− 4)ζ −m ,

G(ζ; m) = −3mζ/2 + (2m− 4)ζ −m/2 ,

H(ζ; m, A) = (A2m/4 + Am/4)ζ2 + (λ + A2 −A2m/2)ζ + A2m/4−Am/4 .

The Heun ODE has four regular singular points:

zo = 0, z1,2 = (m− 2± 2
√

1−m)/m, z∞ = ∞ . (29)

Frobenius series solution:

y(ζ; λ, m, A) = ζρ
∞

∑
n=0

Cnζn . (30)
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Frobenius analysis and recurrence relations

Frobenius exponents at ζ = 0: ρ o
1 = 1

2 A & ρ o
2 = 1

2 (1−A) with
three-term recurrence relations:

RnCn−1 + (Sn − λ)Cn + PnCn+1 = 0 , (31a)

R̃nCn−1 + (S̃n − λ)Cn + P̃nCn+1 = 0 . (31b)

Let T±o be the associated tridiagonal operators.

Frobenius exponents at ζ = ∞: ρ ∞
1 = − 1

2 A & ρ ∞
2 = 1

2 (1 + A) with
three-term recurrence relations:

XnCn−1 + (Yn − λ)Cn + ZnCn+1 = 0 , (32a)

X̃nCn−1 + (Ỹn − λ)Cn + Z̃nCn+1 = 0 . (32b)

Let T±∞ be the associated tridiagonal operators.
Letting ν = ρ o

1,2 or ν = ρ ∞
1,2 with A ∈N maps the Frobenius

recurrence relations to the ascending/descending Fourier series
recurrence relations.
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Real eigenvalues of the truncated Heun matrices

For λ a periodic or antiperiodic eigenvalue the corresponding
Frobenius series solution converges on the unit circle.

Periodic and antiperiodic eigenvalues of ZS correspond to the
union of eigenvalues of the tridiagonal operators T±o , T±∞
generated by three-term recurrence relations of the Frobenius
series.

The N×N finite truncations T+
o,N and T±∞,N are similar to real

symmetric matrices. Thus, they have all real simple eigenvalues.

The N×N finite truncation (T−o,N)
T is an irreducible, diagonally

dominant matrix such that sgn(S̃nS̃n−1) = sgn(R̃nP̃n−1). Thus, it
also has all real simple eigenvalues (see Veselic 1979)
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Real eigenvalues of the infinite Heun matrices

T±o and T±∞ are closed with compact resolvent.

The geometric multiplicity of of each eigenvalue is one.

Importantly, λN,k → λk as N → ∞ (Kato 1980)

Thus, since λN,k ∈ R ∀N ∈N, it follows that λk ∈ R.

Thus, the periodic and antiperiodic eigenvalues of the ZS problem
are all real or purely imaginary.

By previous results (i.e. Theorems 6 and 7), this implies

σLax(L) ⊂ R∪ (−iA, iA) , (33)

and the spectrum has at most finitely mand bands.

Jeffrey A. Oregero (MSRI) MSRI seminar jaoreger@buffalo.edu - 10/11/2021 29 / 39



Dependence of eigenvalues on the elliptic parameter

Trajectories of the periodic (red)/antiperiodic (blue) eigenvalues
along the Im z-axis as m goes from 0 to 1 and A = 4.
Recall that the spectrum is know exactly for m = 0 and m = 1.
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0
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Conjecture: G = 2|A| − 1
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Complex Ince equation

The idea of associating differential operators to three-term recurrence
relations dates back at least to the work of Ince and to the so-called
Ince’s equation:

(1 + a cos 2t)ytt + b(sin 2t)yt + (h + d cos 2t)y = 0 , (34)

where a, b, and d are real and |a| < 1.

It turns out that taking focusing ZS with potential A dn(x; m) can be
mapped to a complex Ince equation:

(1 + a cos t)ytt + b(sin t)yt + (h + d cos t + ie sin t)y = 0 , (35)

where a, b, d, and e are real and |a| < 1.

This gives a new class of problems for which three-term recurrence
relations are applicable, but the imaginary perturbation complicates
the analysis.
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Focusing NLS on the circle–semiclassical limit

Semiclassical focusing NLS with periodic initial data:

iε∂tq + ε2∂2
xq + 2|q|2q = 0 , (36a)

q(x + l, t; ε) = q(x, t; ε) , ∀ x ∈ R , t ≥ 0 , 0 < ε� 1 . (36b)

Focusing ZS operator (spatial half of the Lax pair):

Lεφ = zφ , Lε := iσ3(ε∂x −Q) . (37)

– This is a singular perturbation problem.

– The spectrum depends on the semiclassical parameter ε.

– When m = 1 (q(x, 0) = sechx) and ε = 1/N one gets N-solitons.

Solutions q(x, t; ε) analyzed in the limit ε ↓ 0 for decaying BCs
using Deift-Zhou method.

– Kamvissis–McLaughlin–Miller 2003 (reflectionless data)

– Tovbis–Venakides–Zhou 2004 (solitons and radiation)
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Semiclassical bounds I
Lemma 9

Let z ∈ σLax(L). If q ∈ L∞(R), then | Im z| ≤ ‖q‖L∞(R).

Lemma 10

If q ∈ H1
loc(R) and qx ∈ L∞(R), then | Im z||Re z| ≤ ε

2‖qx‖L∞(R).
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Semiclassical bounds II
Lemma 11

Let z ∈ σLax(L). Take q ∈ H1
loc(R) and qx ∈ L∞(R). Assume q(x) > 0. If

Re z > 0, then | Im z| ≤ ε
2‖(ln q)x‖L∞(R)

Lemma 12

Let z ∈ σDir(L). Take q ∈ H1
loc(R) and qx ∈ L∞(R). Assume q(x) > 0. If

Re z > 0, then | Im z| ≤ ε
2‖(ln q)x‖L∞(R)
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Recap

We discussed the spectral theory of nonselfadjoint Dirac operators
and their connection to integrable nonlinear PDEs.

We connected the eigenvalue problem for a nonselfadjoint Dirac
operator to the eigenvalue problem for a tridiagonal operator in
the case of a two-parameter family of Jacobi elliptic potentials.

We showed that for each A ∈ Z and m ∈ (0, 1) the spectrum has
finitely many bands (resp. gaps).

Finally, we derived semiclassical bounds on the location of the
eigenvalues in the spectral plane.

Jeffrey A. Oregero (MSRI) MSRI seminar jaoreger@buffalo.edu - 10/11/2021 37 / 39



Future directions

One direction of future work is to prove the conjecture:

G = 2|A| − 1 . (38)

Moreover, is A ∈ Z also necessary? That is if A 6∈ Z then the
potential has infinitely many bands.

Recently McLaughlin–Nabelek (2019), and Fokas–Lennels (2021)
constructed a Riemann-Hilbert problem approach to the inverse
scattering problem for general periodic initial data. A very
interesting open question is whether one can use the
Riemman-Hilbert problem to study semiclassical limits in the case
of periodic data.
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