Spectral theory of nonselfadjoint Dirac operators on the circle

Jeffrey A. Oregero

Mathematical Sciences Research Institute (MSRI) postdoctoral associate

MSRI seminar

October 15, 2021

Collaborators: Gino Biondini (University at Buffalo) Alexander Tovbis (University of Central Florida) Xudan Luo (Chinese Academy of Sciences)

• Background:

- $-$ Integrability of the focusing nonlinear Schrödinger equation (NLS) on the circle
- Connection to the theory of nonselfadjoint Dirac operators on the circle
- Nonselfadjoint Dirac operator with an elliptic potential
	- Discuss some general features of the spectral theory
	- Find an explicit two-parameter family of finite-gap (or finite-band) potentials
	- Semiclassical bounds on the spectrum

Tools

- Numerics (e.g. Hill's method)
- Bloch-Floquet theory
- Perturbation theory of linear operators
- Theory of tridiagonal operators

1 [Background: Inverse scattering method](#page-2-0)

- 2 [Hill's method and elliptic potentials](#page-10-0)
- 3 [Spectral theory](#page-17-0)
- 4 [Tridiagonal operators](#page-21-0)
- 5 [Semiclassical bounds on the Lax spectrum](#page-31-0)

[Conclusions](#page-35-0)

伊 ト イヨ ト イヨ ト

 290

Seminal work in the 1970s extended the inverse scattering transform (IST) of Gardner, Greene, Kruskal and Miura to the case of *x*-periodic initial data.

- Novikov 1974
- Its and Matveev 1975, Its and Kotlyarov 1976
- Dubrovin 1975
- $-$ Lax 1975
- Kac and van Moerbeke 1975, McKean and van Moerbeke 1975
- Flaschka–McLaughlin 1976
- McKean and Trubowitz 1976
- Date and Tanaka 1976
- Evolution equation is compatibility of a "Lax pair":

$$
\phi_x = X\phi, \qquad \phi_t = T\phi. \tag{1}
$$

Provides algorithmic procedure for solving the initial value problem.

重

The NLS equation on the circle

• NLS with periodic initial data:

$$
i\partial_t q + \partial_x^2 q - 2\kappa |q|^2 q = 0,
$$
\n
$$
q(x+l,t) = q(x,t), \qquad \forall x \in \mathbb{R}, t \ge 0.
$$
\n(2a)

- Universal physical model for the evolution of nonlinear dispersive wavetrains.
- Completely integrable Hamiltonian system.
- $-\kappa = -1$ (focusing) and $\kappa = 1$ (defocusing).
- Next, we briefly review the inverse scattering method for [\(2\)](#page-4-0).
	- Direct problem and scattering data.
	- Connection to the classical theory of linear ODEs with periodic coefficients, i.e., "Bloch-Floquet theory".
	- Finite-band potentials and the finite-genus machinery.

何→ K ヨ→ K ヨ→ ニヨー YO Q O

Zakharov-Shabat (ZS) spectral problem

• Spatial half of Lax pair:

$$
L\phi = z\phi, \quad L := i\sigma_3(\partial_x - Q), \tag{3}
$$

where *L* is a one-dimensional Dirac operator sometimes referred to as the "ZS operator", $\phi(x; z, \epsilon) = (\phi_1, \phi_2)^T$, $\sigma_3 = \text{diag}(1, -1)$, and

$$
Q := Q(x) = \begin{pmatrix} 0 & q(x,0) \\ \kappa q(x,0) & 0 \end{pmatrix} . \tag{4}
$$

- Note that *L* is nonselfadjoint when $\kappa = -1$.
- The following sets comprise the scattering data in the IST for periodic BCs:

$$
\sigma_{\text{Lax}}(L) := \{ z \in \mathbb{C} : L\phi = z\phi, \ \|\phi\|_{\infty} < \infty \} \tag{5a}
$$

 $\sigma_{\text{Dir}}(L) := \{z \in \mathbb{C} : L\phi = z\phi, \phi_1(0) = \phi_2(0), \phi_1(l) = \phi_2(l)\}\$ (5b)

|④ 重 ※ ④ 重 ※ …

Direct scattering–Bloch-Floquet theory

• Bloch-Floquet (or normal) solution:

$$
\phi(x + l; z) = \mu \phi(x; z), \tag{6}
$$

where $\mu := \mu(z)$ is the Floquet multiplier.

• A *monodromy matrix* $M := M(z)$ is defined as:

$$
\Phi(x+l;z) = \Phi(x;z)M(z), \qquad (7)
$$

where $\Phi(x; z)$ is a fundamental matrix solution of ZS.

• The *Floquet discriminant* $\Delta := \Delta(z)$ is defined as:

$$
\Delta(z) = \frac{1}{2} \operatorname{tr} M(z),\tag{8}
$$

The Floquet multipliers $\mu_\pm = \Delta\,\pm\,$ ∆² − 1 are eigenvalues of *M*. • Importantly,

$$
z \in \sigma_{\text{Lax}}(L) \iff |\mu(z)| = 1 \iff \Delta(z) \in [-1,1], \tag{9}
$$

and Δ is isospectral.

 290

Direct scattering–additional properties

• The Floquet spectrum is defined as:

$$
\Sigma_{\nu} = \{ z \in \mathbb{C} : L\phi = z\phi, \ \phi(l) = e^{i\nu l} \phi(0) \}
$$
\n
$$
= \{ z \in \mathbb{C} : \Delta(z) = \cos(\nu l) \}
$$
\n(10a)\n(10b)

where $\nu \in \mathbb{R}$ and $\mu = e^{i\nu l}$.

- **•** Importantly, $\sigma_{\text{Lax}}(L) = \bigcup_{\nu \in [0, 2\pi/l)} \Sigma_{\nu}$.
	- For each fixed *ν* ∈ **R** the Floquet spectrum is discrete.
	- Periodic spectrum [*φ*(*x* + *l*) = *φ*(*x*)] when *ν* = 2*nπ*/*l*, or ∆ = 1.
	- Antiperiodic spectrum [*φ*(*x* + *l*) = −*φ*(*x*)] when *ν* = 2(*n* + 1/2)*π*/*l*, or ∆ = −1.
- The Floquet discriminant ∆ is an entire function of *z*.
- The Floquet discriminant satisifies $\Delta(\bar{z}) = \overline{\Delta(z)}$.
- If *q* is real-valued, even, or odd then Floquet eigenvalues occur in quartets $(z, \overline{z}, -z, -\overline{z}).$ メロメメ 御 メメ きょくきょうき $2Q$

Scattering data–spectral bands and gaps

Band and gap structure of the Lax spectrum in the nonselfadjoint case. Blue arcs are spectral bands with edges *z* [±] corresponding to periodic, and antiperiodic eigenvalues, respectively. Construct the level set $C := \{z \in \mathbb{C} : \text{Im}\Delta(z) = 0\}$. Then the spectral bands form an at most countable set of analytic arcs in the complex plane defined by $\{z \in C : |\text{Re}\Delta(z)| \leq 1\}$.

 Ω

Definition 1

If ∆ ² − 1 has 2*N* simple roots, we say that the *l*-periodic potential *q* is an *N*-band potential. The class of finite-band potentials is comprised of the set of all *N*-band potentials for all positive integer values *N*.

- Dirichlet spectra are not isospectral. Their motions are used to reconstruct the potential for $t > 0$ ("angle variables").
- The motion of the Dirichlet spectra is linearized by employing a suitable Abel transformation.
- Solutions are described in terms of Θ-functions determined by hyperelliptic Riemann surfaces of genus G where $N = G + 1$.
- In general, *N*-band potentials have *N* noncommensurate phases.

 $2Q$

イロト イ押 トイヨ トイヨ トー

1 [Background: Inverse scattering method](#page-2-0)

2 [Hill's method and elliptic potentials](#page-10-0)

- 3 [Spectral theory](#page-17-0)
- 4 [Tridiagonal operators](#page-21-0)
- 5 [Semiclassical bounds on the Lax spectrum](#page-31-0)

[Conclusions](#page-35-0)

 $2Q$

伊 ト イヨ ト イヨ ト

Hill's method

Hill's method is a numerical technique for calculating the spectrum of a linear operator with periodic coefficients.

- Hill's method is spectrally accurate as a result of using Fourier series approximations.
- The method is limited to the number of Fourier modes chosen and an eigenvalue solver such as the QR algorithm.

Note $Q(x + l) = Q(x)$ and so by Floquet's theorem one gets:

$$
z \in \sigma_{\text{Lax}}(L) \iff \phi(x; z) = e^{i\nu x} w(x; z), \tag{11}
$$

where $w(x + l; z) = w(x; z)$ and $v \in \mathbb{R}$.

Rewrite ZS in the form of a modified eigenvalue problem:

$$
L^{\nu}w = zw, \qquad L^{\nu} := \sigma_3((i\partial_x - \nu) - iQ). \tag{12}
$$

▶ (母) (ヨ) (ヨ) (ヨ) 2000

Elliptic potentials

Consider

$$
Q(x; m, A) = \begin{pmatrix} 0 & A \operatorname{dn}(x; m) \\ -A \operatorname{dn}(x; m) & 0 \end{pmatrix},
$$
 (13)

where dn is a Jacobi elliptic function.

- *m* ∈ (0, 1) is the elliptic parameter and *A* ∈ **R**
- $l l = 2K$ with $K := K(m)$ the complete elliptic integral of the first kind

4 0 8 4 有 \mathbf{p} ÷. $2Q$

≣

Through various numerical simulations an interesting property emerged for this family of potentials, namely, for $A \in \mathbb{Z}$ there appears to be no bands intersecting the real or imaginary *z*-axis.

4 0 8

Main result

Consider the focusing ZS eigenvalue problem:

$$
L\phi = z\phi, \qquad L := i\sigma_3(\partial_x - Q), \qquad (14)
$$

and

$$
q := q(x; m, A) = A \operatorname{dn}(x; m)
$$
 (15)

Theorem 2

If
$$
A \in \mathbb{Z}
$$
 and $m \in (0, 1)$, then $\sigma_{Lax}(L) \subset \mathbb{R} \cup (-iA, iA)$.

Theorem 3

If $A \in \mathbb{Z}$ *and* $m \in (0, 1)$ *, then* q *is a two-parameter family of finite-gap* (*or finite-band) potentials of the focusing ZS eigenvalue problem* [\(14\)](#page-14-0)*.*

Outline

Main ideas:

- Discuss some results in the spectral theory of the nonselfadjoint ZS operator on the circle.
- Show the periodic and antiperiodic eigenvalues are real and purely imaginary only and that this is sufficient to claim that the entire spectrum is real and purely imaginary only.
- Relate the ZS eigenvalue problem to an eigenvalue problem for a tridiagonal operator.

The proof of the the above theorems involves several steps:

- Map the focusing ZS eigenvalue problem into a second-order ODE with trigonometric coefficients (and $\lambda = z^2$).
- Map the trigonometric ODE into a three-term recurrence relation for the Fourier coefficients.
- Demonstrate the existence of ascending and descending half-infinite Fourier series solutions.
- Map the trigonometric ODE into Heun's equation and relate the eigenvalues of the ZS problem to the connection problem for Heun's equation.
- Establish reality of eigenvalues of finite truncations of the associated Heun matrices.
- Establish continuity of eigenvalues as the truncation becomes infinite.

 $2Q$

イロト イ御 トイヨ トイヨ トーヨ

Reduction to $m = 0$, $m = 1$, and the Lamé equation

- When $m = 0$ it follows $A dn(x, 0) \equiv A$. Thus, the ZS problem reduces to that of a constant background and is exactly solvable.
- Whem $m = 1$ it follows $A dn(x, 1) \equiv A sech x$. Thus, the ZS problem reduces to the case studied by Satsuma and Yajima (1974). For $A \in \mathbb{Z}$ one gets *N*-soliton solution of focusing NLS. Moreover, discrete eigenvalues occur at the half-integers along the imaginary *z*-axis.
- The invertible change of dependent variable:

$$
y^{\pm} = \phi_1 \pm i\phi_2 \tag{16}
$$

maps the ZS eigenvalue problem into

 $y_{xx} + (iAm \operatorname{sn}(x, m) \operatorname{cn}(x, m) + \lambda + A^2 \operatorname{dn}^2(x, m))y = 0$, (17) where $y := y^-$ and $\lambda := z^2$. Since $dn^2(x; m) = 1 - m \, \text{sn}^2(x; m)$, (17) is a complex perturbation of the cele[bra](#page-15-0)t[e](#page-10-0)[d](#page-15-0) [L](#page-16-0)[a](#page-16-0)[m](#page-9-0)é [e](#page-17-0)[q](#page-9-0)[u](#page-10-0)a[t](#page-17-0)[io](#page-0-0)[n.](#page-38-0) スコンスコント $2Q$ [Background: Inverse scattering method](#page-2-0)

2 [Hill's method and elliptic potentials](#page-10-0)

3 [Spectral theory](#page-17-0)

4 [Tridiagonal operators](#page-21-0)

5 [Semiclassical bounds on the Lax spectrum](#page-31-0)

[Conclusions](#page-35-0)

 $2Q$

メタト メミト メミト

Large *z* asymptotics of ∆

We find the large *z* asymptotics for $\Delta(z)$ and $\Delta'(z)$.

Lemma 4

 $\textit{If } q \in L^{\infty}(\mathbb{R})\text{, then}$

$$
\Delta(z) = \cos(zt) + e^{\text{Im }zt} o(1), \qquad \text{as } z \to \infty, \text{ Im } z \ge 0, \quad (18a)
$$

$$
\Delta'(z) = -l \sin(zt) + e^{\text{Im }zt} o(1), \qquad \text{as } z \to \infty, \text{ Im } z \ge 0, \quad (18b)
$$

where l is the period of q.

- The behavior for Im *z* < 0 follows from $\Delta(\overline{z}) = \overline{\Delta(z)}$.
- The real *z*-axis is one infinitely long band, i.e., $\mathbb{R} \subset \sigma_{\text{Lax}}$. Moreover this is the only band extending to infinity.

∢ ロ ▶ ∢ 母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 299

Bound on the spectrum

Lemma 5

Take q(*x*; *m*, *A*) = *A* dn(*x*; *m*) *with A* \in **C** *and m* \in (0, 1)*. If* $z \in \sigma_{\text{Lax}}(L)$ *, then* $|\text{Im } z| < |A|$ *.*

 $2Q$

目

Finite–gap potentials of the focusing ZS operator

Theorem 6

Let q ∈ *L* [∞](**R**)*. Then q is a finite-gap potential if and only if* $\exists N = N(q) \in \mathbb{N}$ *such that* $(\sigma_{\text{Lax}}(L) \setminus \mathbb{R}) \subset R_{N,q}$ *.*

Theorem 7

Let q ∈ *L* [∞](**R**) *be real, even, or odd. If the periodic and antiperiodic eigenvalues are real and purely imaginary only then* $\sigma_{\text{Lax}}(L) \subset \mathbb{R} \cup [-i\|q\|_{L^\infty(\mathbb{R})}$, $i\|q\|_{L^\infty(\mathbb{R})}]$ and q is a finite-gap potential.

[Background: Inverse scattering method](#page-2-0)

- 2 [Hill's method and elliptic potentials](#page-10-0)
- 3 [Spectral theory](#page-17-0)
- 4 [Tridiagonal operators](#page-21-0)

5 [Semiclassical bounds on the Lax spectrum](#page-31-0)

[Conclusions](#page-35-0)

 $2Q$

メタト メミト メミト

 $\overline{ZS} \stackrel{\varphi_1}{\longrightarrow}$ Hill with complex potential

 $y_{xx} + (iAm \operatorname{sn}(x, m) \operatorname{cn}(x, m) + \lambda + A^2 \operatorname{dn}^2(x, m))y = 0$ (19)

Hill with complex potential $\stackrel{\varphi_2}{\rightarrow}$ ODE with trig. coefficients

$$
4(1 - m\sin^2(t/2))y_{tt} - (m\sin t)y_t
$$

$$
+ (\lambda + A^2(1 - m\sin^2(t/2)) + \frac{i}{2}Am\sin t)y = 0
$$
 (20)

- By Bloch-Floquet theory, all bounded solutions have the form $y = e^{ivt} w$ with $w(t + 2\pi; \lambda, m, A) = w(t; \lambda, m, A)$.
- Thus consider the Fourier series expansion:

$$
y(t; \lambda, m, A) = e^{ivt} \sum_{n \in \mathbb{Z}} c_n e^{int}
$$
 (21)

Three-term recurrence relation

Plugging [\(21\)](#page-22-0) into [\(20\)](#page-0-1) gives the following recurrence relation:

$$
\alpha_n c_{n-1} + (\beta_n - \lambda)c_n + \gamma_n c_{n+1} = 0, \qquad (22)
$$

where

$$
\alpha_n = -\frac{m}{4} [A - (2n + 2\nu - 2)][A + (2n + 2\nu - 1)], \qquad (23a)
$$

$$
\beta_n = (1 - \frac{m}{2})[(2n + 2\nu)^2 - A^2],
$$
\n(23b)

$$
\gamma_n = -\frac{m}{4}[A - (2n + 2\nu + 2)][A + (2n + 2\nu + 1)].
$$
 (23c)

Equivalently, one can express [\(22\)](#page-23-0) as the eigenvalue problem: $B_v^A c = \lambda c$, (24)

where $c = \{c_n\}_{n \in \mathbb{Z}}$, $B^A_\nu :=$ $\sqrt{ }$ $\overline{}$ *αn βn γn* \setminus $\Big\}$ (25) $dom(B_v^A) = \{c \in \ell^2(\mathbb{Z}) : \sum_{n \in \mathbb{Z}}$ $|n|^4 |c_n|^2 < \infty$ } . (26)

Ascending and descending Fourier series solutions

- A tridiagonal matrix is "reducible" when there exists a zero along the subdiagonal, (or superdiagonal).
- Recall $\nu \in \mathbb{Z}$ corresponds to periodic eigenvalues, and $\nu \in \mathbb{Z} + \frac{1}{2}$ corresponds to antiperiodic eigenvalues.
- Let $A \in \mathbb{N}$. Then for $\nu \in \mathbb{Z}$ or $\nu \in \mathbb{Z} + \frac{1}{2}$ there exists a zero along both the subdiagonal and superdiagonal.

This leads to the following result:

Theorem 8

Let $A \in \mathbb{N}$ *. If* $\lambda \in \mathbb{C}$ *is a periodic or antiperiodic eigenvalue of the trigonometric operator* [\(20\)](#page-0-1)*, then there is an associated eigenfunction generated by either an ascending or descending Fourier series.*

 $2Q$

←ロト (伊) → (ヨ) → (ヨ) →

Heun's equation

• The change of independent variable

$$
\zeta := e^{it} \tag{27}
$$

maps [\(20\)](#page-0-1) into a second-order Heun ODE:

$$
\zeta^2 F(\zeta; m) y_{\zeta\zeta} + \zeta G(\zeta; m) y_{\zeta} + H(\zeta; m, A) y = 0 \tag{28}
$$

$$
F(\zeta;m) = -m\zeta^2 + (2m-4)\zeta - m,
$$

\n
$$
G(\zeta;m) = -3m\zeta/2 + (2m-4)\zeta - m/2,
$$

\n
$$
H(\zeta;m,A) = (A^2m/4 + Am/4)\zeta^2 + (\lambda + A^2 - A^2m/2)\zeta + A^2m/4 - Am/4.
$$

• The Heun ODE has four regular singular points:

$$
z_0 = 0
$$
, $z_{1,2} = (m - 2 \pm 2\sqrt{1 - m})/m$, $z_{\infty} = \infty$. (29)

• Frobenius series solution:

$$
y(\zeta; \lambda, m, A) = \zeta^{\rho} \sum_{n=0}^{\infty} C_n \zeta^n.
$$
 (30)

Frobenius analysis and recurrence relations

Frobenius exponents at $\zeta = 0$: $\rho_1^o = \frac{1}{2}A$ & $\rho_2^o = \frac{1}{2}(1-A)$ with three-term recurrence relations:

$$
R_n C_{n-1} + (S_n - \lambda) C_n + P_n C_{n+1} = 0, \qquad (31a)
$$

$$
\widetilde{R}_n C_{n-1} + (\widetilde{S}_n - \lambda) C_n + \widetilde{P}_n C_{n+1} = 0.
$$
\n(31b)

Let T_o^{\pm} be the associated tridiagonal operators.

Frobenius exponents at $\zeta = \infty$: $\rho_1^{\infty} = -\frac{1}{2}A$ & $\rho_2^{\infty} = \frac{1}{2}(1+A)$ with three-term recurrence relations:

$$
X_n C_{n-1} + (Y_n - \lambda)C_n + Z_n C_{n+1} = 0,
$$
 (32a)

$$
\widetilde{X}_n C_{n-1} + (\widetilde{Y}_n - \lambda) C_n + \widetilde{Z}_n C_{n+1} = 0.
$$
\n(32b)

Let T_{∞}^{\pm} be the associated tridiagonal operators.

Letting $\nu = \rho_{1,2}^o$ or $\nu = \rho_{1,2}^\infty$ with $A \in \mathbb{N}$ maps the Frobenius recurrence relations to the ascending/descending Fourier series recurrence relations.

 Ω

イロトス 御下ス ヨトス ヨトッ ヨ

Real eigenvalues of the truncated Heun matrices

- For *λ* a periodic or antiperiodic eigenvalue the corresponding Frobenius series solution converges on the unit circle.
- Periodic and antiperiodic eigenvalues of ZS correspond to the union of eigenvalues of the tridiagonal operators T^\pm_o , T^\pm_∞ generated by three-term recurrence relations of the Frobenius series.
- The $N \times N$ finite truncations T_{o}^+ $_{o,N}^{+}$ and T_{∞}^{\pm} $\sum_{\infty,N}^{\pm}$ are similar to real symmetric matrices. Thus, they have all real simple eigenvalues.
- The *N* × *N* finite truncation (T_{o}^{-}) $\int_{\mathit{o},N}^{\mathit{o}}\mathrm{d}X$ is an irreducible, diagonally dominant matrix such that $sgn(S_nS_{n-1}) = sgn(R_nP_{n-1})$. Thus, it also has all real simple eigenvalues (see Veselic 1979)

Real eigenvalues of the infinite Heun matrices

- T_o^{\pm} and T_{∞}^{\pm} are closed with compact resolvent.
- The geometric multiplicity of of each eigenvalue is one.
- Importantly, $\lambda_{N,k} \to \lambda_k$ as $N \to \infty$ (Kato 1980)
- Thus, since $\lambda_{N,k} \in \mathbb{R} \forall N \in \mathbb{N}$, it follows that $\lambda_k \in \mathbb{R}$.
- Thus, the periodic and antiperiodic eigenvalues of the ZS problem are all real or purely imaginary.
- By previous results (i.e. Theorems [6](#page-20-0) and [7\)](#page-20-1), this implies

$$
\sigma_{\text{Lax}}(L) \subset \mathbb{R} \cup (-iA, iA), \tag{33}
$$

and the spectrum has at most finitely mand bands.

 299

Dependence of eigenvalues on the elliptic parameter

- Trajectories of the periodic (red)/antiperiodic (blue) eigenvalues along the Im *z*-axis as *m* goes from 0 to 1 and $A = 4$.
- Recall that the spectrum is know exactly for $m = 0$ and $m = 1$.

Conjecture: $G = 2|A| - 1$

 Ω

Complex Ince equation

The idea of associating differential operators to three-term recurrence relations dates back at least to the work of Ince and to the so-called Ince's equation:

$$
(1 + a\cos 2t)y_{tt} + b(\sin 2t)y_t + (h + d\cos 2t)y = 0,
$$
 (34)

where *a*, *b*, and *d* are real and $|a| < 1$.

It turns out that taking focusing ZS with potential *A* dn(*x*; *m*) can be mapped to a complex Ince equation:

$$
(1 + a\cos t)y_{tt} + b(\sin t)y_t + (h + d\cos t + ie\sin t)y = 0,
$$
 (35)

where *a*, *b*, *d*, and *e* are real and $|a| < 1$.

This gives a new class of problems for which three-term recurrence relations are applicable, but the imaginary perturbation complicates the analysis. K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ ... $2Q$

[Background: Inverse scattering method](#page-2-0)

- 2 [Hill's method and elliptic potentials](#page-10-0)
- 3 [Spectral theory](#page-17-0)
- 4 [Tridiagonal operators](#page-21-0)

5 [Semiclassical bounds on the Lax spectrum](#page-31-0)

[Conclusions](#page-35-0)

 $2Q$

伊 ト イヨ ト イヨ ト

Focusing NLS on the circle–semiclassical limit

• Semiclassical focusing NLS with periodic initial data:

$$
i\epsilon \partial_t q + \epsilon^2 \partial_x^2 q + 2|q|^2 q = 0,
$$
\n(36a)

$$
q(x+l,t;\epsilon) = q(x,t;\epsilon), \quad \forall x \in \mathbb{R}, t \ge 0, \quad 0 < \epsilon \ll 1. \tag{36b}
$$

• Focusing ZS operator (spatial half of the Lax pair):

$$
L^{\epsilon}\phi = z\phi, \qquad L^{\epsilon} := i\sigma_3(\epsilon \partial_x - Q). \tag{37}
$$

- This is a singular perturbation problem.
- The spectrum depends on the semiclassical parameter ϵ .
- When $m = 1$ ($q(x, 0) =$ sech x) and $\epsilon = 1/N$ one gets *N*-solitons.
- Solutions $q(x, t; \epsilon)$ analyzed in the limit $\epsilon \downarrow 0$ for decaying BCs using Deift-Zhou method.
	- Kamvissis–McLaughlin–Miller 2003 (reflectionless data)
	- Tovbis–Venakides–Zhou 2004 (solitons and radiation)

Semiclassical bounds I

Lemma 9

Let
$$
z \in \sigma_{\text{Lax}}(L)
$$
. If $q \in L^{\infty}(\mathbb{R})$, then $|\text{Im } z| \leq ||q||_{L^{\infty}(\mathbb{R})}$.

Lemma 10

If
$$
q \in H^1_{loc}(\mathbb{R})
$$
 and $q_x \in L^{\infty}(\mathbb{R})$, then $|\operatorname{Im} z| |\operatorname{Re} z| \leq \frac{\epsilon}{2} ||q_x||_{L^{\infty}(\mathbb{R})}$.

 QQ

G

Semiclassical bounds II

Lemma 11

Let $z \in \sigma_{\text{Lax}}(L)$ *. Take* $q \in H_{\text{loc}}^1(\mathbb{R})$ *and* $q_x \in L^\infty(\mathbb{R})$ *. Assume* $q(x) > 0$ *. If* $\text{Re}\,z > 0$, then $|\text{Im}\,z| \leq \frac{\varepsilon}{2} \|(\ln q)_x \|_{L^{\infty}(\mathbb{R})}$

Lemma 12

Let $z \in \sigma_{\text{Dir}}(L)$ *. Take* $q \in H_{\text{loc}}^1(\mathbb{R})$ *and* $q_x \in L^{\infty}(\mathbb{R})$ *. Assume* $q(x) > 0$ *. If* $\text{Re}\,z > 0$, then $|\text{ Im}\,z| \leq \frac{\varepsilon}{2} \|(\ln q)_x \|_{L^{\infty}(\mathbb{R})}$

[Background: Inverse scattering method](#page-2-0)

- 2 [Hill's method and elliptic potentials](#page-10-0)
- 3 [Spectral theory](#page-17-0)
- 4 [Tridiagonal operators](#page-21-0)

5 [Semiclassical bounds on the Lax spectrum](#page-31-0)

[Conclusions](#page-35-0)

 $2Q$

メタト メミト メミト

- We discussed the spectral theory of nonselfadjoint Dirac operators and their connection to integrable nonlinear PDEs.
- We connected the eigenvalue problem for a nonselfadjoint Dirac operator to the eigenvalue problem for a tridiagonal operator in the case of a two-parameter family of Jacobi elliptic potentials.
- We showed that for each $A \in \mathbb{Z}$ and $m \in (0,1)$ the spectrum has finitely many bands (resp. gaps).
- Finally, we derived semiclassical bounds on the location of the eigenvalues in the spectral plane.

• One direction of future work is to prove the conjecture:

$$
\mathcal{G} = 2|A| - 1. \tag{38}
$$

Moreover, is $A \in \mathbb{Z}$ also necessary? That is if $A \notin \mathbb{Z}$ then the potential has infinitely many bands.

Recently McLaughlin–Nabelek (2019), and Fokas–Lennels (2021) constructed a Riemann-Hilbert problem approach to the inverse scattering problem for general periodic initial data. A very interesting open question is whether one can use the Riemman-Hilbert problem to study semiclassical limits in the case of periodic data.

Thank you!

- G. Biondini, J. Oregero, and A. Tovbis, *On the spectrum of the focusing Zakharov-Shabat operator with periodic potentials* arXiv:2010.04263
- G. Biondini, X.–D. Luo, J. Oregero, and A. Tovbis, *Elliptic finite-gap potentials and nonselfadjoint Dirac operators* in preparation

 $2Q$

イロト (個) イヨト (ヨ)