Spectral theory of nonselfadjoint Dirac operators on the circle

Jeffrey A. Oregero

Mathematical Sciences Research Institute (MSRI) postdoctoral associate

MSRI seminar

October 15, 2021

Collaborators: Gino Biondini (University at Buffalo) Alexander Tovbis (University of Central Florida) Xudan Luo (Chinese Academy of Sciences)

• Background:

- Integrability of the focusing nonlinear Schrödinger equation (NLS) on the circle
- Connection to the theory of nonselfadjoint Dirac operators on the circle
- Nonselfadjoint Dirac operator with an elliptic potential
 - Discuss some general features of the spectral theory
 - Find an explicit two-parameter family of finite-gap (or finite-band) potentials
 - Semiclassical bounds on the spectrum

Tools

- Numerics (e.g. Hill's method)
- Bloch-Floquet theory
- Perturbation theory of linear operators
- Theory of tridiagonal operators

Outline

Background: Inverse scattering method

- 3 Spectral theory

∃ >

Seminal work in the 1970s extended the inverse scattering transform (IST) of Gardner, Greene, Kruskal and Miura to the case of *x*-periodic initial data.

- Novikov 1974
- Its and Matveev 1975, Its and Kotlyarov 1976
- Dubrovin 1975
- Lax 1975
- Kac and van Moerbeke 1975, McKean and van Moerbeke 1975
- Flaschka-McLaughlin 1976
- McKean and Trubowitz 1976
- Date and Tanaka 1976
- Evolution equation is compatibility of a "Lax pair":

$$\phi_x = X\phi, \qquad \phi_t = T\phi. \tag{1}$$

• Provides algorithmic procedure for solving the initial value problem.

The NLS equation on the circle

• NLS with periodic initial data:

$$i\partial_t q + \partial_x^2 q - 2\kappa |q|^2 q = 0,$$

$$q(x+l,t) = q(x,t), \quad \forall x \in \mathbb{R}, t \ge 0.$$
(2a)
(2b)

- Universal physical model for the evolution of nonlinear dispersive wavetrains.
- Completely integrable Hamiltonian system.
- $\kappa = -1$ (focusing) and $\kappa = 1$ (defocusing).
- Next, we briefly review the inverse scattering method for (2).
 - Direct problem and scattering data.
 - Connection to the classical theory of linear ODEs with periodic coefficients, i.e., "Bloch-Floquet theory".
 - Finite-band potentials and the finite-genus machinery.

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → の Q ()~

Zakharov-Shabat (ZS) spectral problem

• Spatial half of Lax pair:

$$L\phi = z\phi$$
, $L := i\sigma_3(\partial_x - Q)$, (3)

where *L* is a one-dimensional Dirac operator sometimes referred to as the "ZS operator", $\phi(x; z, \epsilon) = (\phi_1, \phi_2)^T$, $\sigma_3 = \text{diag}(1, -1)$, and

$$Q := Q(x) = \begin{pmatrix} 0 & q(x,0) \\ \kappa \overline{q(x,0)} & 0 \end{pmatrix}.$$
 (4)

- Note that *L* is nonselfadjoint when $\kappa = -1$.
- The following sets comprise the scattering data in the IST for periodic BCs:

$$\sigma_{\text{Lax}}(L) := \{ z \in \mathbb{C} : L\phi = z\phi, \ \|\phi\|_{\infty} < \infty \}$$
(5a)

 $\sigma_{\text{Dir}}(L) := \{ z \in \mathbb{C} : L\phi = z\phi, \ \phi_1(0) = \phi_2(0), \ \phi_1(l) = \phi_2(l) \}$ (5b)

Direct scattering–Bloch-Floquet theory

• Bloch-Floquet (or normal) solution:

$$\phi(x+l;z) = \mu\phi(x;z), \tag{6}$$

where $\mu := \mu(z)$ is the Floquet multiplier.

• A *monodromy matrix* M := M(z) is defined as:

$$\Phi(x+l;z) = \Phi(x;z)M(z), \qquad (7)$$

where $\Phi(x; z)$ is a fundamental matrix solution of ZS.

• The *Floquet discriminant* $\Delta := \Delta(z)$ is defined as:

$$\Delta(z) = \frac{1}{2} \operatorname{tr} M(z) , \qquad (8)$$

The Floquet multipliers μ_± = Δ ± √Δ² − 1 are eigenvalues of *M*.
Importantly,

$$z \in \sigma_{\text{Lax}}(L) \iff |\mu(z)| = 1 \iff \Delta(z) \in [-1, 1],$$
 (9)

and Δ is isospectral.

Direct scattering-additional properties

• The Floquet spectrum is defined as:

$$\Sigma_{\nu} = \{ z \in \mathbb{C} : L\phi = z\phi, \ \phi(l) = e^{i\nu l} \phi(0) \}$$
(10a)
= $\{ z \in \mathbb{C} : \Delta(z) = \cos(\nu l) \}$ (10b)

where $\nu \in \mathbb{R}$ and $\mu = e^{i\nu l}$.

- Importantly, $\sigma_{\text{Lax}}(L) = \bigcup_{\nu \in [0, 2\pi/l)} \Sigma_{\nu}$.
 - − For each fixed $\nu \in \mathbb{R}$ the Floquet spectrum is discrete.
 - Periodic spectrum $[\phi(x+l) = \phi(x)]$ when $\nu = 2n\pi/l$, or $\Delta = 1$.
 - Antiperiodic spectrum $[\phi(x+l) = -\phi(x)]$ when $\nu = 2(n+1/2)\pi/l$, or $\Delta = -1$.
- The Floquet discriminant Δ is an entire function of *z*.
- The Floquet discriminant satisifies $\Delta(\overline{z}) = \overline{\Delta(z)}$.
- If *q* is real-valued, even, or odd then Floquet eigenvalues occur in quartets $(z, \overline{z}, -z, -\overline{z})$.

Scattering data-spectral bands and gaps

Band and gap structure of the Lax spectrum in the nonselfadjoint case. Blue arcs are spectral bands with edges z^{\pm} corresponding to periodic, and antiperiodic eigenvalues, respectively. Construct the level set $C := \{z \in \mathbb{C} : \text{Im}\Delta(z) = 0\}$. Then the spectral bands form an at most countable set of analytic arcs in the complex plane defined by $\{z \in C : |\text{Re}\Delta(z)| \le 1\}$.

Definition 1

If $\Delta^2 - 1$ has 2*N* simple roots, we say that the *l*-periodic potential *q* is an *N*-band potential. The class of finite-band potentials is comprised of the set of all *N*-band potentials for all positive integer values *N*.

- Dirichlet spectra are not isospectral. Their motions are used to reconstruct the potential for *t* > 0 ("angle variables").
- The motion of the Dirichlet spectra is linearized by employing a suitable Abel transformation.
- Solutions are described in terms of Θ -functions determined by hyperelliptic Riemann surfaces of genus \mathcal{G} where $N = \mathcal{G} + 1$.
- In general, *N*-band potentials have *N* noncommensurate phases.

10/3

Background: Inverse scattering method

2 Hill's method and elliptic potentials

- 3 Spectral theory
- Tridiagonal operators
- 5 Semiclassical bounds on the Lax spectrum

6 Conclusions

Hill's method

Hill's method is a numerical technique for calculating the spectrum of a linear operator with periodic coefficients.

- Hill's method is spectrally accurate as a result of using Fourier series approximations.
- The method is limited to the number of Fourier modes chosen and an eigenvalue solver such as the QR algorithm.

Note Q(x + l) = Q(x) and so by Floquet's theorem one gets:

$$z \in \sigma_{\text{Lax}}(L) \iff \phi(x;z) = e^{i\nu x} w(x;z), \qquad (11)$$

where w(x+l;z) = w(x;z) and $\nu \in \mathbb{R}$.

Rewrite ZS in the form of a modified eigenvalue problem:

$$L^{\nu}w = zw, \qquad L^{\nu} := \sigma_3((i\partial_x - \nu) - iQ).$$
(12)

★ E ► ★ E ► E

Elliptic potentials

Consider

$$Q(x;m,A) = \begin{pmatrix} 0 & A \operatorname{dn}(x;m) \\ -A \operatorname{dn}(x;m) & 0 \end{pmatrix}, \quad (13)$$

where dn is a Jacobi elliptic function.

- − $m \in (0, 1)$ is the elliptic parameter and $A \in \mathbb{R}$
- l = 2K with K := K(m) the complete elliptic integral of the first kind

Through various numerical simulations an interesting property emerged for this family of potentials, namely, for $A \in \mathbb{Z}$ there appears to be no bands intersecting the real or imaginary *z*-axis.

Main result

Consider the focusing ZS eigenvalue problem:

$$L\phi = z\phi$$
, $L := i\sigma_3(\partial_x - Q)$, (14)

and

$$q := q(x; m, A) = A \operatorname{dn}(x; m) \tag{15}$$

Theorem 2

If
$$A \in \mathbb{Z}$$
 and $m \in (0,1)$, then $\sigma_{\text{Lax}}(L) \subset \mathbb{R} \cup (-iA, iA)$.

Theorem 3

If $A \in \mathbb{Z}$ and $m \in (0, 1)$, then q is a two-parameter family of finite-gap (or finite-band) potentials of the focusing ZS eigenvalue problem (14).

Jeffrey A. Oregero (MSRI)

15/3

Outline

Main ideas:

- Discuss some results in the spectral theory of the nonselfadjoint ZS operator on the circle.
- Show the periodic and antiperiodic eigenvalues are real and purely imaginary only and that this is sufficient to claim that the entire spectrum is real and purely imaginary only.
- Relate the ZS eigenvalue problem to an eigenvalue problem for a tridiagonal operator.

The proof of the the above theorems involves several steps:

- Map the focusing ZS eigenvalue problem into a second-order ODE with trigonometric coefficients (and $\lambda = z^2$).
- Map the trigonometric ODE into a three-term recurrence relation for the Fourier coefficients.
- Demonstrate the existence of ascending and descending half-infinite Fourier series solutions.
- Map the trigonometric ODE into Heun's equation and relate the eigenvalues of the ZS problem to the connection problem for Heun's equation.
- Establish reality of eigenvalues of finite truncations of the associated Heun matrices.
- Establish continuity of eigenvalues as the truncation becomes infinite.

э

イロト 人間 とくほ とくほ とう

Reduction to m = 0, m = 1, and the Lamé equation

- When m = 0 it follows $A \operatorname{dn}(x, 0) \equiv A$. Thus, the ZS problem reduces to that of a constant background and is exactly solvable.
- Whem m = 1 it follows $A \operatorname{dn}(x, 1) \equiv A \operatorname{sech} x$. Thus, the ZS problem reduces to the case studied by Satsuma and Yajima (1974). For $A \in \mathbb{Z}$ one gets *N*-soliton solution of focusing NLS. Moreover, discrete eigenvalues occur at the half-integers along the imaginary *z*-axis.
- The invertible change of dependent variable:

$$y^{\pm} = \phi_1 \pm i\phi_2 \tag{16}$$

maps the ZS eigenvalue problem into

 $y_{xx} + (iAm \operatorname{sn}(x,m) \operatorname{cn}(x,m) + \lambda + A^2 \operatorname{dn}^2(x,m))y = 0, \quad (17)$

where $y := y^-$ and $\lambda := z^2$. Since $dn^2(x; m) = 1 - m sn^2(x; m)$, (17) is a complex perturbation of the celebrated Lamé equation.

17/3

Background: Inverse scattering method

2 Hill's method and elliptic potentials

3 Spectral theory

- 4 Tridiagonal operators
- 5 Semiclassical bounds on the Lax spectrum

6 Conclusions

Large *z* asymptotics of Δ

We find the large *z* asymptotics for $\Delta(z)$ and $\Delta'(z)$.

Lemma 4

If $q \in L^{\infty}(\mathbb{R})$, then

$$\Delta(z) = \cos(zl) + e^{\operatorname{Im} zl} o(1), \qquad \text{as } z \to \infty, \, \operatorname{Im} z \ge 0, \quad (18a)$$
$$\Delta'(z) = -l\sin(zl) + e^{\operatorname{Im} zl} o(1), \qquad \text{as } z \to \infty, \, \operatorname{Im} z \ge 0, \quad (18b)$$

where *l* is the period of *q*.

- The behavior for Im z < 0 follows from $\Delta(\overline{z}) = \overline{\Delta(z)}$.
- The real *z*-axis is one infinitely long band, i.e., ℝ ⊂ σ_{Lax}. Moreover this is the only band extending to infinity.

Bound on the spectrum

Lemma 5

Take $q(x; m, A) = A \operatorname{dn}(x; m)$ with $A \in \mathbb{C}$ and $m \in (0, 1)$. If $z \in \sigma_{\operatorname{Lax}}(L)$, then $|\operatorname{Im} z| < |A|$.

Finite-gap potentials of the focusing ZS operator

Theorem 6

Let $q \in L^{\infty}(\mathbb{R})$. Then q is a finite-gap potential if and only if $\exists N = N(q) \in \mathbb{N}$ such that $(\sigma_{\text{Lax}}(L) \setminus \mathbb{R}) \subset R_{N,q}$.

Theorem 7

Let $q \in L^{\infty}(\mathbb{R})$ be real, even, or odd. If the periodic and antiperiodic eigenvalues are real and purely imaginary only then $\sigma_{\text{Lax}}(L) \subset \mathbb{R} \cup [-i||q||_{L^{\infty}(\mathbb{R})}, i||q||_{L^{\infty}(\mathbb{R})}]$ and q is a finite-gap potential.

- 3 Spectral theory
- **Tridiagonal operators**

∃ >

 $ZS \xrightarrow{\varphi_1} Hill$ with complex potential

 $y_{xx} + (iAm \operatorname{sn}(x,m) \operatorname{cn}(x,m) + \lambda + A^2 \operatorname{dn}^2(x,m))y = 0$ (19)

Hill with complex potential $\xrightarrow{\varphi_2}$ ODE with trig. coefficients

$$4(1 - m\sin^2(t/2))y_{tt} - (m\sin t)y_t + (\lambda + A^2(1 - m\sin^2(t/2)) + \frac{i}{2}Am\sin t)y = 0$$
 (20)

- By Bloch-Floquet theory, all bounded solutions have the form $y = e^{i\nu t} w$ with $w(t + 2\pi; \lambda, m, A) = w(t; \lambda, m, A)$.
- Thus consider the Fourier series expansion:

$$y(t;\lambda,m,A) = e^{i\nu t} \sum_{n \in \mathbb{Z}} c_n e^{int}$$
(21)

Three-term recurrence relation

Plugging (21) into (20) gives the following recurrence relation:

$$\alpha_n c_{n-1} + (\beta_n - \lambda)c_n + \gamma_n c_{n+1} = 0, \qquad (22)$$

where

$$\alpha_n = -\frac{m}{4} [A - (2n + 2\nu - 2)] [A + (2n + 2\nu - 1)], \qquad (23a)$$

$$\beta_n = (1 - \frac{m}{2})[(2n + 2\nu)^2 - A^2], \qquad (23b)$$

$$\gamma_n = -\frac{m}{4} [A - (2n + 2\nu + 2)] [A + (2n + 2\nu + 1)].$$
(23c)

Equivalently, one can express (22) as the eigenvalue problem: $B_{\nu}^{A}c = \lambda c,$

where
$$c = \{c_n\}_{n \in \mathbb{Z}}$$
,
 $B_{\nu}^{A} := \begin{pmatrix} \ddots & \ddots & \ddots & \ddots \\ & \alpha_n & \beta_n & \gamma_n \\ & \ddots & \ddots & \ddots \end{pmatrix}$, (25)
 $\operatorname{dom}(B_{\nu}^{A}) = \{c \in \ell^2(\mathbb{Z}) : \sum_{n \in \mathbb{Z}} |n|^4 |c_n|^2 < \infty\}.$ (26)

Ê▶ K Ē▶ -

(24)

э

24/3

Ascending and descending Fourier series solutions

- A tridiagonal matrix is "reducible" when there exists a zero along the subdiagonal, (or superdiagonal).
- Recall *v* ∈ Z corresponds to periodic eigenvalues, and *v* ∈ Z + ¹/₂ corresponds to antiperiodic eigenvalues.
- Let $A \in \mathbb{N}$. Then for $\nu \in \mathbb{Z}$ or $\nu \in \mathbb{Z} + \frac{1}{2}$ there exists a zero along both the subdiagonal and superdiagonal.

This leads to the following result:

Theorem 8

Let $A \in \mathbb{N}$. If $\lambda \in \mathbb{C}$ is a periodic or antiperiodic eigenvalue of the trigonometric operator (20), then there is an associated eigenfunction generated by either an ascending or descending Fourier series.

Heun's equation

• The change of independent variable

$$\zeta := e^{it} \tag{27}$$

maps (20) into a second-order Heun ODE:

$$\zeta^2 F(\zeta;m) y_{\zeta\zeta} + \zeta G(\zeta;m) y_{\zeta} + H(\zeta;m,A) y = 0$$
(28)

$$\begin{split} F(\zeta;m) &= -m\zeta^2 + (2m-4)\zeta - m, \\ G(\zeta;m) &= -3m\zeta/2 + (2m-4)\zeta - m/2, \\ H(\zeta;m,A) &= (A^2m/4 + Am/4)\zeta^2 + (\lambda + A^2 - A^2m/2)\zeta + A^2m/4 - Am/4. \end{split}$$

• The Heun ODE has four regular singular points:

$$z_o = 0, \qquad z_{1,2} = (m - 2 \pm 2\sqrt{1 - m})/m, \qquad z_\infty = \infty.$$
 (29)

• Frobenius series solution:

$$y(\zeta;\lambda,m,A) = \zeta^{\rho} \sum_{n=0}^{\infty} C_n \zeta^n \,. \tag{30}$$

Frobenius analysis and recurrence relations

• Frobenius exponents at $\zeta = 0$: $\rho_1^o = \frac{1}{2}A \& \rho_2^o = \frac{1}{2}(1-A)$ with three-term recurrence relations:

$$R_n C_{n-1} + (S_n - \lambda)C_n + P_n C_{n+1} = 0, \qquad (31a)$$

$$\widetilde{R}_n C_{n-1} + (\widetilde{S}_n - \lambda) C_n + \widetilde{P}_n C_{n+1} = 0.$$
(31b)

Let T_o^{\pm} be the associated tridiagonal operators.

• Frobenius exponents at $\zeta = \infty$: $\rho_1^{\infty} = -\frac{1}{2}A \& \rho_2^{\infty} = \frac{1}{2}(1+A)$ with three-term recurrence relations:

$$X_n C_{n-1} + (Y_n - \lambda)C_n + Z_n C_{n+1} = 0, \qquad (32a)$$

$$\widetilde{X}_n C_{n-1} + (\widetilde{Y}_n - \lambda) C_n + \widetilde{Z}_n C_{n+1} = 0.$$
(32b)

Let T_{∞}^{\pm} be the associated tridiagonal operators.

• Letting $\nu = \rho_{1,2}^o$ or $\nu = \rho_{1,2}^\infty$ with $A \in \mathbb{N}$ maps the Frobenius recurrence relations to the ascending/descending Fourier series recurrence relations.

Real eigenvalues of the truncated Heun matrices

- For λ a periodic or antiperiodic eigenvalue the corresponding Frobenius series solution converges on the unit circle.
- Periodic and antiperiodic eigenvalues of ZS correspond to the union of eigenvalues of the tridiagonal operators T_o^{\pm} , T_{∞}^{\pm} generated by three-term recurrence relations of the Frobenius series.
- The *N* × *N* finite truncations *T*⁺_{o,N} and *T*[±]_{∞,N} are similar to real symmetric matrices. Thus, they have all real simple eigenvalues.
- The $N \times N$ finite truncation $(T_{o,N}^-)^T$ is an irreducible, diagonally dominant matrix such that $sgn(\tilde{S}_n\tilde{S}_{n-1}) = sgn(\tilde{R}_n\tilde{P}_{n-1})$. Thus, it also has all real simple eigenvalues (see Veselic 1979)

Real eigenvalues of the infinite Heun matrices

- T_o^{\pm} and T_{∞}^{\pm} are closed with compact resolvent.
- The geometric multiplicity of of each eigenvalue is one.
- Importantly, $\lambda_{N,k} \rightarrow \lambda_k$ as $N \rightarrow \infty$ (Kato 1980)
- Thus, since $\lambda_{N,k} \in \mathbb{R} \ \forall N \in \mathbb{N}$, it follows that $\lambda_k \in \mathbb{R}$.
- Thus, the periodic and antiperiodic eigenvalues of the ZS problem are all real or purely imaginary.
- By previous results (i.e. Theorems 6 and 7), this implies

$$\sigma_{\text{Lax}}(L) \subset \mathbb{R} \cup (-iA, iA), \qquad (33)$$

and the spectrum has at most finitely mand bands.

Dependence of eigenvalues on the elliptic parameter

- Trajectories of the periodic (red)/antiperiodic (blue) eigenvalues along the Im *z*-axis as *m* goes from 0 to 1 and *A* = 4.
- Recall that the spectrum is know exactly for m = 0 and m = 1.

Conjecture: $\mathcal{G} = 2|A| - 1$

Jeffrey A. Oregero (MSRI)

MSRI seminar

jaoreger@buffalo.edu - 10/11/2021 30 / 3

Complex Ince equation

The idea of associating differential operators to three-term recurrence relations dates back at least to the work of Ince and to the so-called Ince's equation:

$$(1 + a\cos 2t)y_{tt} + b(\sin 2t)y_t + (h + d\cos 2t)y = 0, \qquad (34)$$

where *a*, *b*, and *d* are real and |a| < 1.

It turns out that taking focusing ZS with potential $A \operatorname{dn}(x; m)$ can be mapped to a complex Ince equation:

$$(1 + a\cos t)y_{tt} + b(\sin t)y_t + (h + d\cos t + ie\sin t)y = 0, \quad (35)$$

where *a*, *b*, *d*, and *e* are real and |a| < 1.

This gives a new class of problems for which three-term recurrence relations are applicable, but the imaginary perturbation complicates the analysis. Background: Inverse scattering method

- 2 Hill's method and elliptic potentials
- 3 Spectral theory
- Tridiagonal operators

5 Semiclassical bounds on the Lax spectrum

6 Conclusions

Focusing NLS on the circle-semiclassical limit

• Semiclassical focusing NLS with periodic initial data:

$$i\epsilon\partial_t q + \epsilon^2 \partial_x^2 q + 2|q|^2 q = 0, \qquad (36a)$$

$$q(x+l,t;\epsilon) = q(x,t;\epsilon), \quad \forall x \in \mathbb{R}, t \ge 0, \quad 0 < \epsilon \ll 1.$$
 (36b)

• Focusing ZS operator (spatial half of the Lax pair):

$$L^{\epsilon}\phi = z\phi$$
, $L^{\epsilon} := i\sigma_3(\epsilon\partial_x - Q)$. (37)

- This is a singular perturbation problem.
- The spectrum depends on the semiclassical parameter ϵ .
- When m = 1 ($q(x, 0) = \operatorname{sech} x$) and $\epsilon = 1/N$ one gets *N*-solitons.
- Solutions *q*(*x*, *t*; *ε*) analyzed in the limit *ε* ↓ 0 for decaying BCs using Deift-Zhou method.
 - Kamvissis-McLaughlin-Miller 2003 (reflectionless data)
 - Tovbis-Venakides-Zhou 2004 (solitons and radiation)

Semiclassical bounds I

Lemma 9

Let
$$z \in \sigma_{\text{Lax}}(L)$$
. If $q \in L^{\infty}(\mathbb{R})$, then $|\operatorname{Im} z| \leq ||q||_{L^{\infty}(\mathbb{R})}$.

Lemma 10

If
$$q \in H^1_{\text{loc}}(\mathbb{R})$$
 and $q_x \in L^{\infty}(\mathbb{R})$, then $|\operatorname{Im} z||\operatorname{Re} z| \leq \frac{\epsilon}{2} ||q_x||_{L^{\infty}(\mathbb{R})}$.

э

副医 金属医 金属医

Semiclassical bounds II

Lemma 11

Let $z \in \sigma_{\text{Lax}}(L)$. Take $q \in H^1_{\text{loc}}(\mathbb{R})$ and $q_x \in L^{\infty}(\mathbb{R})$. Assume q(x) > 0. If Re z > 0, then $|\operatorname{Im} z| \leq \frac{\epsilon}{2} ||(\ln q)_x||_{L^{\infty}(\mathbb{R})}$

Lemma 12

Let $z \in \sigma_{\text{Dir}}(L)$. *Take* $q \in H^1_{\text{loc}}(\mathbb{R})$ *and* $q_x \in L^{\infty}(\mathbb{R})$. *Assume* q(x) > 0. *If* Re z > 0, *then* $|\operatorname{Im} z| \leq \frac{\epsilon}{2} ||(\ln q)_x||_{L^{\infty}(\mathbb{R})}$

Background: Inverse scattering method

- 2 Hill's method and elliptic potentials
- 3 Spectral theory
- Tridiagonal operators
- 5 Semiclassical bounds on the Lax spectrum

6 Conclusions

- We discussed the spectral theory of nonselfadjoint Dirac operators and their connection to integrable nonlinear PDEs.
- We connected the eigenvalue problem for a nonselfadjoint Dirac operator to the eigenvalue problem for a tridiagonal operator in the case of a two-parameter family of Jacobi elliptic potentials.
- We showed that for each $A \in \mathbb{Z}$ and $m \in (0, 1)$ the spectrum has finitely many bands (resp. gaps).
- Finally, we derived semiclassical bounds on the location of the eigenvalues in the spectral plane.

• One direction of future work is to prove the conjecture:

$$\mathcal{G} = 2|A| - 1. \tag{38}$$

Moreover, is $A \in \mathbb{Z}$ also necessary? That is if $A \notin \mathbb{Z}$ then the potential has infinitely many bands.

• Recently McLaughlin–Nabelek (2019), and Fokas–Lennels (2021) constructed a Riemann-Hilbert problem approach to the inverse scattering problem for general periodic initial data. A very interesting open question is whether one can use the Riemman-Hilbert problem to study semiclassical limits in the case of periodic data.

Thank you!

- G. Biondini, J. Oregero, and A. Tovbis, On the spectrum of the focusing Zakharov-Shabat operator with periodic potentials arXiv:2010.04263
- G. Biondini, X.–D. Luo, J. Oregero, and A. Tovbis, Elliptic finite-gap potentials and nonselfadjoint Dirac operators in preparation