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Roadmap of the Talk

® Goal: Show how one can avoid local parametrix problems in R-H theory

e Example R-H problem: Fokas, Its, Kitaev characterisation of orthogonal polynomials on
[_]w 1]

® New results: on the Plancherel-Rotach asymptotics (large degree asymptotics)
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Roadmap of the Talk

® Goal: Show how one can avoid local parametrix problems in R-H theory

e Example R-H problem: Fokas, Its, Kitaev characterisation of orthogonal polynomials on
[_]w 1]

® New results: on the Plancherel-Rotach asymptotics (large degree asymptotics)

The timeline will be

Example R-H problem =- (Goal) Avoiding local parametrix problems = New result
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Outline of the Talk

1. Orthogonal Polynomials on [—1, 1]
2. Avoiding Local Parametrix Problems

3. Orthogonal Polynomials revisited
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Outline of the talk

1. Orthogonal Polynomials on [—1, 1]
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Orthogonal Polynomials on [—1, 1]

Notation and conventions for this talk:
® pp(x) will denote monic orthogonal polynomials

® orthogonality measure dpu(x) = p(x)dx satisfies the Szegd condition:

1
|
/ og p(z) dz > —oo

1V1—22

® p(z) will satisfy additional analyticity conditions for the R-H analysis (later)
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Plancherel-Rotach Asymptotics

Theorem (Szegd)

Assume dyu = p(z)dz satisfies the Szegé condition and let D(z) be the Szegd function

D(z) = exp

\/227/1 log p(x) dx ) D..

1—x2z—x

= Jin 0G),
which is holomorphic on C\ [-1,1]. Then

~z"
7\

D4 Z)n+1/2
D(Z) 2n+3g(i2 _ 1)1/4(1 I En(Z))

pn(2) =

where p(z) =z+Vz> -1, zeC\[-1,1] and

lim ep(z) =0, zeC\[-1,1]

n—o00
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Simplified Relation

Just think!

z"D4

pn(z) ~ (1+¢n(2))

where is explicitly computable from the weight function p(x).

We want to bound £,(z) < R-H method
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R-H Problem for Orthogonal Polynomials

Theorem (Fokas, Its, Kitaev '91)
Let p(z) be integrable on [—1,1]. Find a 2 x 2 matrix valued function Y"(z) such that
® Y"(z) has holomorphic entries in C\ [—1,1].

* Y{(z)=Y"(z) <(1) p(lz)) , ze(—-1,1)

im0 (5 5) = (5 3)

Then (Y"(2))11 = pn(2), where pp(z) is the n-th monic orthogonal polynomial associated to
the weight function p(x).
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R-H Problem for Orthogonal Polynomials

In fact we have

Yn(z):< pn(2) CC(pap)(2) )

’Ynflpnfl(z) ’Ynflc(_Ll) (pnflp)(z)

where v, == _27ri”pn|’Z22((—1,1),p(x)dx) is a normalization constant and

CE L 12(Y) = O(C\5), (K)o CEd(z) = — ®(k)

= — dk
21 Jy k—z

is the Cauchy operator (convolution with the Cauchy kernel (k — z)71).
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Known Results

The R-H characterization of orthogonal polynomials can be used to compute the convergence
rate €,(z) for certain smooth p(z).

Theorem (Kuijlaars, McLaughlin, Van Assche, Vanlessen '04)

Assume the weight function pj,c(z) has the form
p1ac(z) = (L= 2)*(1 + 2)°h(2)

where a,, 3 > —1 and h has an analytic continuation to a neighbourhood of [—1,1]. Then

en(2) ~ Z N(2)

nk
k=1

where the Ny (z) can be exp//atly computed and the expansion is uniform away from [—1,1].
In particular £,(z) = O(n71).

A. Kuijlaars, K.T-R McLaughlin, W. Van Assche and M. Vanlessen, The Riemann—Hilbert approach to
strong asymptotics for orthogonal polynomials on [—1,1], Adv. Math. 188(2), 337-398 (2004).
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Nonlinear steepest descent analysis

Problem: Y has not a suitable form for analysis (no partition into n-dependent and
n-independent part...)

Define

niy o (27 0y (#2770
@) = (5 ) v (U )
Then (note p(z) = z+Vz2 -1, o (2)p_(2) =1, z€ (—1,1))

n _ Tn <p+(z)—2n p(Z) _
° T+(Z) - T—(Z) ( 0 90—(2)72’7 ’ PAS ( 17 1)
® im0 T"(2) =1
= n-dependence in the jump matrices + normalization at infinity.
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Opening of the Lense

Factorize the jump matrix:

(W(B)zn so_’i‘z?—%):(p<z>—1$_<z>—2n (1)> (—p(i)—l p(oz)> <p(z)-1<pl+(z)—2" ‘f)

= =v =
and split the jump contour accordingly:
v3
________________________ e v2 S
Vi

Note: (z)~2" — 0 uniformly away +1, as ¢(z) > 1 for z€ C\ [-1,1]!
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Solution inside the Lense

v3

-1 V2 +1

Vi

The new solution will have a different form inside the lense:

(T"(2), z outside of the lense
1 0
i T"(2) , z in the upper part of the lense
5"(2) = —p(2) " tp(2) 72" 1>
1 0 :
T"(z) . on ,  zin the lower part of the lense
p(z) 7 p(z)™" 1
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R-H Problem for S”

X1 . +

—1 22 —+ +1

Jump condition:

Si(k) = SZ(k)vs(k)

where
1 0
, forkeXiUls,
nen ) \p(K)Tp(k) 2" 1)
vs(k) = 0 0
DY) forkem=(-1,1),
—p(k)™" 0
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Behaviour of VS

) n

—1 22 —+ +1

vZ(k) is n-independent for k € [—1,1].

a0 =g )+ Ot ) kemu,

—0 uniformly away from +1

Because,
lp(z)| > 1, zeC\[-1,1]

lim |SO(Z)| = 1’ k € [_17 1]
2=k 15/48



R-H Solutions S™ and N

Partition of R-H problems into constant and decaying parts
We now ignore the jump matrix on X1 U X3:

= We get a R-H problem for N with jump only on [—1,1]:

Sn
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The Model R-H problem for N

We get the model problem (outer parametrix problem)

N+(k):N_(k)< 0 p(k)>, ke (-1,1)

—p(k)"t 0
—un(K)
Jim W(e) =1

This R-H problem is explicitly solvable:

N CR O O O ;
N(z) = ( 50 Dt) | a(2) _23(2)—1 a(z) +21'J(Z)_1 ( 0 ) .
—92i 2
Here a(z) = (j; 1)1/4.
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Solutions S™ and N cont.

Recall: p,(z) ~ 11 +4e4(2))
Sn
en(2)
U fr
pn(2)
Problem: Jump matrices are not close in the co-norm to each other!
Recall:

a0 =g )+ Ot ) kemun,

—0 uniformly away from +1 18/48




Local Parametrix Solution

Remedy: Solve two local parametrix problems
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Local Parametrix Solution

Remedy: Solve two local parametrix problems

Sn

such that
® jumps of S” and P" match inside the discs
® ||[N— P"||oc — 0 as n — oo on the boundary of the discs
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Local Parametrix Problem

All P", n e N are derived from an p>.

= need to solve a local parametrix (Bessel, Airy, ...) R-H problem for p

Deriving the P> R-H Problem

The local parametrix problem P> is obtained from P" through
® An n-dependent change of variables z — (,

® Conjugation to make the jump matrices (-independent

e A limit n — oo.
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Bessel Parametrix Problem

x|

B
z3
Figure: Contour for the Bessel R-H problem
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Bessel Parametrix Problem

The choice pjac(z) = (1 — 2)*(1 + z)®h(z) leads to the following local parametrix problem

around z = +1:

P2(Q) = PX(Q)vs(¢) with vi(¢) =

V2

([1 0
< . ) , for(e Z{g,
eOLﬂ'l 1

1 0
< . ) , for (e Z?,
e—Oéﬂ'l 1

0 1
,  forCeXB.

ﬁ)\m(g)_)(271_<1/2)0'3/21<<% 1) +O(1)>e2<1/203

uniformly as ¢ — co. Note: Jump matrices do not depend on (
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Analytic Continuation

Problem: requires analytic continuation properties of p(z) in the yellow disc!

Recall: Kuijlaars et al considered the weight function
p1ac(z) = (1= 2)*(1 + 2)°h(2)
where h(x) has an analytic continuation in a neighbourhood of [—1, 1].

® (1-2)% (1+ z)? introduce multiplicative jump conditions.

® — | ocal parametrix problem and solution P> can be computed ©
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Logarithmic Weight Function

0. Conway, P. Deift considered recently the logarithmic weight

2c
1—2’

pPiog(z) = log ze(-1,1), c>1.

The logarithm introduces an additional jump conditions.

T. O. Conway and P. Deift, Asymptotics of Polynomials Orthogonal with respect to a Logarithmic Weight,

SIGMA 14, 056, 66 pages (2018).
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Logarithmic parametrix problem

log
Z1

e o

log
z3

Figure: Contour for logarithmic local parametrix problem

Note: There is an additional jump contour Z|4°g
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Logarithmic parametrix problem cont.

.
10 |
, for ¢ € X5,
11 reen
10
L 1) forCGZ?g,
P(C) = P2 (C)viog(€) with vieg(C) = 0 1
, for ( € T28.
~1 0 €
2K 4in 7
% , forzEng
Iog|f|717r

No solution to the above R-H problem is known ®

The authors avoided this issue through a comparison to the Legendre problem (pieg(z) = 1).

26 /48



Outline of the talk

2. Avoiding Local Parametrix Problems
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The Cauchy Integral Operator

Let ®(k) € L?(X). Define the Cauchy Operator C* by

C*: L%(X) - O(C\ ),

®(k) = CFd(2) = ! /d)(k) dk
>

T omi k —z

Define the Cauchy Boundary Operators CX by

CIo(k) = lim CTo(2)

CE : L2(X) — L2(X) are bounded linear operators.
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Another Cauchy-type Integral Operator

For a Riemann—Hilbert problem with jump matrix v(k) define
w(k) :=v(k) —1¢e L>®(X)
and the bounded operator
CL L2(X) — LX), &(k)+— CE(® - w)(k)

Note: [[C3]li2(x)i2() S Wl (x)
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Singular Integral Formulation

Theorem (Zhou '89)

There is a bijective correspondence between normalized solutions M(z) of a Riemann—Hilbert
problem with M_(k) — 1 € L?(X) and solutions of the associated singular integral equation

(1-C)o =CF(w)
given by
®(k) — M(z) := 1+ C((® + L)w)(2),

M(z) —s (k) == M_(k) — 1.
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® The following arguments hold in various application of R-H problems.

® For illustration we will keep referring back to the orthogonal polynomials R-H problems:

5[7
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Two Singular Integral Equations

Consider
(1= Cup)Px =C=(wy), (1 —Cuz)® =C>(wg)

corresponding to the R-H problems for S” and N.

To understand the convergence rate of £,(z) — 0, we need to understand the convergence
rate of S” — N or equivalently:

d% - dp in L2(X), n— 0o
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Two Singular Integral Equations

(1= Cup )Py = CZ(wn), (1= Cug)®d = CZ(wd)
We have
w2 = wy in 2(Z) = CE(w) — CE(wy) in L3(X)
but

||CV>|:/§ —Co iz sz = ||C£§—WN||L2(Z)—>L2(Z) S ws — wyl[ e (x)
40
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The Plan

Note:
® [[wg — wy|lpzy — 0 for p € [1,00).

n_

® wl — wy is concentrated around %1 (stationary points of the phase function)

Idea:

1. Show a priori estimates of the form:
¢ =S5" -1, &y = N — 1 do not "blow up” around +1,

2. Show that Cwz — Cwy, on the space of functions that do not "blow up” near £1,

3. Conclude: ®% — &5 away from £1.
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Some Standard Assumptions

Partition ¥ = Y. modjy exp

vi(k), ke xmod
k —_ S ) )
(k) {1, k ey,

and
vi(k) — 1, k € X

exponentially fast away from a finite number of points (e.g. £1).
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Our Example

In our example ¥4 = (—1,1), TP = ¥; U ¥3:
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Residual R-H problem

Define R" := S"N~!. Then:

R?(k) = R"(k)va(k), ke X

where
v (k) = N(k)vg(k)N_l(k), k € X
and
A, Rrle) =1
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The Bijection again

Recall the bijection from Zhou's Theorem:
(k) — R"(2) :==1+C"((¢ + 1)wg)(2),
R"(z) — ®(k) := R" (k) — 1.
Note:
R'(z)=14C¥ (¢ +1)wl)(z) =1+ CE"(R"wh)(2)

L[ R

dk
27Ti Y exp k —Z
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A Priori Estimates

So we have:

1 R™(k)w3
1 RUWRG)
271 [y e k—z

n n -1
Sl [ SN
3 exp k —z

~~

<UIS2[p(sexw) dist(z,xeP)~1

R'(z) =1+
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A Priori Estimates

So we have:
1 R™ (k)wg (k)
R (Z)=14+ — SR i
(Z) + 2771 S exp k — Z d
1 SP(k)wa(k)N=1(k
2mi s exp k— =
<UIS2 e (sexw) 1) dist(z,Ze®)~1
We want a priori estimates on ||S” || p(sex) and such that
HSEHLP(Z“P) —0
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A Priori Estimates cont.

Having an a priori estimates such that
1S oz < 5(n) =0
we get
R"(z) = 1+ O(5(n) dist(z, &)™)
or equivalently (R" = S"N—1)

S"(2) = (1 + O(6(n) dist(z, £°)~1))
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A Priori Estimates cont.

Having an a priori estimates such that
1S oz < 5(n) =0
we get
R"(z) = 1+ O(5(n) dist(z, &)™)
or equivalently (R" = S"N—1)
S"(z) = (1 + O((n) dist(z, Z&P)~1))

Recall: p,(z) ~ 1 +en(2))
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Outline of the talk

3. Orthogonal Polynomials revisited

41/48



A Priori Estimates for S"

Recall: S" is built from p,, pn—1, C(_l’l)(p,,p) and C(_l’l)(pn_lp)

= The a priori estimate for S"(z) is based on the following theorem:

Assume the weight p(z), z € (—1, 1) satisfies the Szegé condition. Then

1

o ' log p(2)
Jim 2771 pall 21,11, p(2)dz) = VT exP <Z /_1 T dZ)-
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A Priori Estimate for N

Note: /V is built from the Szego function D(z), which depends only on p(z) (so does wg).

= The a priori estimate for is derived from the following assumptions on the
weight functions p(z), z € (—1,1):

® p(z) has an analytic continuation to a lense-shaped neighbourhood £

* p(2), p(z)7r € O((z £ 1)~ Y/¥+%) for some v > 8, § >0
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Lense shaped Neighbourhood L

Figure: Jump contour for S.
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Main Result

Theorem (P. '20)

Assume the weight function p(z) has an analytic continuation to a lense-shaped
neighbourhood L, and satisfies:

p(2)] = O(lz £ 1| 7/**0), |p(2) 7| = O(lz £ 1|7/**), ze L

for some v > 8 and 0 > 0. Then the corresponding orthogonal polynomials satisfy

3 Doo(p(z)n-i-l/2 L
1 A 1
iz — it T 2 )
= &n(2)

pn(z) =

locally uniformly in C\ [-1,1] and A=1/2—4/v > 0.

M. P., Riemann—Hilbert Theory without local Parametrix Problems: Applications to Orthogonal
Polynomials, to appear in J. Math. Anal. Appl.
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® \We have shown how one can avoid local parametrix problems in R-H theory, provided one
has certain a priori esimates.

® \We have derived the a priori estimates for the R-H problem for orthogonal polynomials on
[_17 1]

® \We obtained an improved error estimate in the Plancherel-Rotach asymptotics for the
orthogonal polynomials.

® More generally, we compared two R-H problems in the coarser LP-norm of the jump
matrices, instead of the standard L°°-norm.
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® Find further applications for R-H problems with no know local parametrix solutions I3°°,

® Try to understand the behaviour of P> for the logarithmic weight (see also Van Assche
'99 on irrationality of {(2n+ 1) and Magnus '18),

® Derive "better” a priori estimates to improve the error terms

W. Van Assche, Multiple orthogonal polynomials, irrationality and transcendence , Contemp. Math. 236,
325-342 (1999).
A. Magnus, Gaussian integration formulas for logarithmic weights and application to 2-dimensional

solid-state lattices, J. Approx. Theory 228, 21-57 (2018).
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Thank You!
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