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@ co-authorship network
@ chat group in social network

@ Protein interaction network
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Community detection

Political blogs data from Adamic-Glance (05). Figure from Abbe (18)
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Community detection on random graphs

@ Consider a (unknown) partition of n vertices into two communities of size
n/2. Generate edges within each community with probability p. Generate
edges across communities with probability g < p.

@ Stochastic block model G(n, p, g). Holland et al. (83).
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Community detection on random graphs

@ Consider a (unknown) partition of n vertices into two communities of size
n/2. Generate edges within each community with probability p. Generate
edges across communities with probability g < p.

@ Stochastic block model G(n, p, g). Holland et al. (83).

@ Task: observe a graph G ~ G(n, p, q), find the unknown partition with high

probability (efficiently and accurately).

Yizhe Zhu (UCSD)
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Spectral method on A
@ Adjacency matrix A: symmetric, A; is independent Bernoulli for i < j.

q_9. M(EA) = (P'E‘?)”7 Mo (EA) = (P—2Q)"_
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Spectral method on A

@ Adjacency matrix A: symmetric, A; is independent Bernoulli for i < j.

q_9. M(EA) = (P'|'2q)"7 Mo (EA) = (P—2Q)"_
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o A=EA+ (A—EA), low rank + noise
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Spectral method on A

@ Adjacency matrix A: symmetric, A; is independent Bernoulli for i < j.

P PiIq g
P pP'q q (p+a)n (p—a)n
o FA= |-=-"T-1-"- | | MN(EA) =5, XM(EA) = ‘5.
g qipp 1(EA) =5 ABA) =75
9 g'p p
1 1
1 1
o vi(EA) = 1 ,v2(EA) = 1
1 -1

o A=EA+ (A—EA), low rank + noise
@ If Ais concentrated around EA, then v,(A) = v (E(A)).
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Spectral method on A

@ Adjacency matrix A: symmetric, A; is independent Bernoulli for i < j.

P P9 q
P pP'q g (p+q)n (p=q)n
e EA= [P P9 91  \(EA)=idn )\, (EA) = (=2
9 qip P 1A =" ABA) =75
9 g'p p
1 1
1 1
(] Vl(EA) = 1 ,Vz(EA) = ]
1 -1
o A=EA+ (A—EA), low rank + noise
@ If Ais concentrated around EA, then v»(A) = v»(E(A)).
@ Spectral method: observe A, compute v»(A), use the signs of the entries in

v2(A) to recover the community. v = (0.5,1.1,-0.8,—0.4)
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Spectral method on A

@ Adjacency matrix A: symmetric, A; is independent Bernoulli for i < j.

P PiIq g
P pP'q q (p+a)n (p—a)n
o FA= |-=-"T-1-"- | | MN(EA) =5, XM(EA) = ‘5.
g qipp 1(EA) =5 ABA) =75
9 g'p p
1 1
1 1
° v(EA) = ||| v»(EA) = |
1 -1

A=EA+ (A—EA), low rank + noise
If Ais concentrated around EA, then v»2(A) = v (E(A)).

Spectral method: observe A, compute v»2(A), use the signs of the entries in
v2(A) to recover the community. v = (0.5,1.1,-0.8,—0.4)

|A—EA|| = O(,/np) when M = Q(log n). o(n) vertices are
mis-classified.

Feige-Ofek 05, Lei-Rinaldo 13, Le—Levina—Vershynin 16, Benaych-Georges—Bordenave—Knowles 17, Latala—van
Handel-Youssef 17, Alt—-Ducatez—Knowles 19, Tikhomirov—Youssef 19
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Two communities of roughly equal size: assign labels o; € {—1,+1} uniformly
and i.i.d. for i € [n].

@ Logarithmic expected degrees: p = ﬂ‘—;", qg= #.

@ Exact recovery (recover vector o up to a sign flip) is possible if and only if
(Va—Vb)? >2.

Abbe-Bandeira-Hall (14), Mossel-Neeman-Sly (14).
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and i.i.d. for i € [n].
@ Logarithmic expected degrees: p = 2981 4 — #.

n )

@ Exact recovery (recover vector o up to a sign flip) is possible if and only if
(Va—Vb)? >2.

Abbe-Bandeira-Hall (14), Mossel-Neeman-Sly (14).

@ Bounded expected degrees: p= 2,q = ’;’.
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Two communities of roughly equal size: assign labels o; € {—1,+1} uniformly
and i.i.d. for i € [n].
@ Logarithmic expected degrees: p = 2981 4 — %.

n )

@ Exact recovery (recover vector o up to a sign flip) is possible if and only if
(vVa—vb)? >2.

Abbe-Bandeira-Hall (14), Mossel-Neeman-Sly (14).
. _ _ b
@ Bounded expected degrees: p=2,q = 7.

@ Detection is possible (strictly better than random guessing) if and only if
(a— b)? >2(a+ b).
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Two communities of roughly equal size: assign labels o; € {—1,+1} uniformly
and i.i.d. for i € [n].

@ Logarithmic expected degrees: p = ﬂ‘—;", qg= #.

@ Exact recovery (recover vector o up to a sign flip) is possible if and only if
(Va—Vb)? >2.

Abbe-Bandeira-Hall (14), Mossel-Neeman-Sly (14).
. _ _ b
@ Bounded expected degrees: p=2,q = 7.

@ Detection is possible (strictly better than random guessing) if and only if
(a— b)? >2(a+ b).
Decelle-Krzakala-Moore-Zdeborova (11), Mossel-Neeman-Sly (12, 14), Massoulié (14),
Bordenave-Lelarge-Massoulié (15).
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Sparse SBMs: two phase transitions

Two communities of roughly equal size: assign labels o; € {—1,+1} uniformly
and i.i.d. for i € [n].

@ Logarithmic expected degrees: p = ﬂ‘—;", qg= %.

@ Exact recovery (recover vector o up to a sign flip) is possible if and only if
(vVa—vb)? >2.

Abbe-Bandeira-Hall (14), Mossel-Neeman-Sly (14).
. _ _ b
@ Bounded expected degrees: p=2,q = 7.

@ Detection is possible (strictly better than random guessing) if and only if
(a— b)? >2(a+ b).
Decelle-Krzakala-Moore-Zdeborova (11), Mossel-Neeman-Sly (12, 14), Massoulié (14),
Bordenave-Lelarge-Massoulié (15).

A huge body of work for more general cases and different settings: survey by
Abbe (18).
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Bounded expected degrees

FIgLI re. Abbe et al. (2018), a = 2.2, b = 0.06, n = 100000, apply spectral method directly on A

When p= 2 q = %, top eigenvectors are localized on high degree vertices.
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@ Locally tree-like structure appears, few cycles.
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Detection by self-avoiding walks
When p =2 q = /;’:

@ Locally tree-like structure appears, few cycles.

@ local neighborhood of G(n, £) is close to a Galton-Watson tree with
offspring distribution Pois(c).

@ Self-avoiding walks on trees are simple.

@ Massoulié (14): self-avoiding walk matrix B(*).

° B,-(je) = the number of self-avoiding walks of length ¢ = clog n from i to j.
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Detection by self-avoiding walks
When p =2 q = %:

@ Locally tree-like structure appears, few cycles.

@ local neighborhood of G(n, £) is close to a Galton-Watson tree with
offspring distribution Pois(c).

Self-avoiding walks on trees are simple.

Massoulié (14): self-avoiding walk matrix B(),

y

The second eigenvector of B(Y) can be used to estimate o = (o1, .-
better than random guess.

Yizhe Zhu (UCSD)

7Un),

BY) = the number of self-avoiding walks of length ¢ = clog n from i to j.
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Detection by self-avoiding walks
Let o := 2£2 B := 22b Assume 2 > a.
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Detection by self-avoiding walks
Let o := 2£2 B := 22b Assume 2 > a.

@ Show v»(B®) ~ B¢ (asymptotically aligned).
o (BYWo); =3, B0;.
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Detection by self-avoiding walks
Let o := 2£2 B := 22b Assume 2 > a.

@ Show v»(B®) ~ B¢ (asymptotically aligned).
e (BYg); = > B,.(jl)aj. Assume the ¢-neighborhood of i is a tree, then
B =1if d(i,j) = L.
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Detection by self-avoiding walks
Let o := 2£2 B := 22b Assume 2 > a.

@ Show v»(B®) ~ B¢ (asymptotically aligned).
e (BYg); = > B,.(jz)aj. Assume the ¢-neighborhood of i is a tree, then
O 4 i oo
B’ =1ifd(i,j) =1
Z)U) Z 0j-
Jjd(ij)=¢

@ The boundary of /-neighborhood of i has size ~ af = nc'°e >,
| 32 ca e O3] = B° = n°1E.
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Detection by self-avoiding walks
Let o := 2£2 B := 22b Assume 2 > a.
@ Show v»(B®) ~ B¢ (asymptotically aligned).
e (BYg); = > B,.(f)oj. Assume the ¢-neighborhood of i is a tree, then
O 4 e afs
B’ =1ifd(i,j) =1
(BY9)i= Y o

Jud(ij)=t

@ The boundary of /-neighborhood of i has size ~ af = n°'og®,
| 22 a(ijy=e T4l = B¢ = n°'°88_ The sign of (BYs); is correlated with o;.
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Detection by self-avoiding walks
Let o := 2£2 B := 22b Assume 2 > a.

@ Show v»(B®) ~ B¢ (asymptotically aligned).

e (BYg); = > B,.(f)oj. Assume the ¢-neighborhood of i is a tree, then
BY = 1if d(i,j) = ¢.

i

(BWg); = Z aj.

Jud(ij)=t

@ The boundary of /-neighborhood of i has size ~ af = n°'og®,
| 22 a(ijy=e T4l = B¢ = n°'°88_ The sign of (BYs); is correlated with o;.
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Hypergraph stochastic block model (HSBM)

H is d-uniform if each hyperedge has size d. Generate a random
hypergraph H with label o in two steps:
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hypergraph H with label o in two steps:

e labels {oj, i € [n]} are uniformly and
i.i.d. drawn from {—1,+1}.

e Each hyperedge e = {wv1,...,v4}
appears independently with probability

p ifo,=--=o0y,

IP’(eGE):{

g otherwise.
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Hypergraph stochastic block model (HSBM)

H is d-uniform if each hyperedge has size d. Generate a random
hypergraph H with label o in two steps:

e labels {oj, i € [n]} are uniformly and
i.i.d. drawn from {—1,+1}.

e Each hyperedge e = {wv1,...,v4}
appears independently with probability

p ifo,=--=o0y,

P(eeE):{

g otherwise.

Task: observe H, construct a label estimator & € {—1,+1}" correlated
with the true o.

Ghoshdastidar-Dukkipati (14, 15)
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Community detection on HSBM

@ Exact recovery: Chien-Lin-Wang (18), Kim-Bandeira-Goemans (18)

p= é("° S’ qg= % exact recovery is possible if and only
d—1 d—1
(vVa—Vb)? =271
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Community detection on HSBM

@ Exact recovery: Chien-Lin-Wang (18), Kim-Bandeira-Goemans (18)

p = 38n o — blogn oyact recovery is possible if and only
(d D0 )

(vVa—vb)> =291,

@ Detection: Angelini-Caltagirone-Krzakala-Zdeborova (15) conjectured a

phase transition when p = ﬁ, q= Zd%j.
—1 —1
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Community detection on HSBM

@ Exact recovery: Chien-Lin-Wang (18), Kim-Bandeira-Goemans (18)

p= ‘E'° S’ qg= % exact recovery is possible if and only
d—1 d—1
(vVa—vb)> =291,

@ Detection: Angelini-Caltagirone-Krzakala-Zdeborova (15) conjectured a

hase transition when p = -2 = b
P ition when p [6) »d [6)
@ Spectral method in the bounded expected degree regime?
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Tensor

What we observe is an adjacency tensor T of order d with n many entries.
Ty =1if{i,...,iq} is a hyperedge.
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Tensor

What we observe is an adjacency tensor T of order d with n many entries.
Ty =1if{i,...,iq} is a hyperedge.

15-e5ld

@ Eigenvalue, eigenvector, rank?

@ Spectral norm

ITlo=sup > Tixiyz
x,y,z€S"—1 ik

XGSI

=12,
Mode-2

Figure: an order-3 tensor
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Tensor

What we observe is an adjacency tensor T of order d with n many entries.
Ti,..iy=1if {i,...,iq} is a hyperedge.

[

F @ Eigenvalue, eigenvector, rank?

@ Spectral norm
i ITlo=sup > Tixiyz

-1
X,y,zES" ik

- @ Most tensor problems are NP-hard
—12...J 651 . e .
2 (Hillar-Lim 13)..rank., spectral norm, best
low-rank approximation,. ..
Figure: an order-3 tensor
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Tensor

What we observe is an adjacency tensor T of order d with n many entries.

Ti,..iy=1if {i,...,iq} is a hyperedge.

[

¥ @ Eigenvalue, eigenvector, rank?
7

@ Spectral norm

: ITlo=sup > Tixiyz
Y ny;ZES"_l,"j’k

= @ Most tensor problems are NP-hard
j=1,2,...J &

12, (Hillar-Lim 13): rank, spectral norm, best

low-rank approximation,. ..
Figure: an order-3 tensor

Ke-Shi-Xia (20): Tensor unfolding and power iteration, o(n) mis-classified
vertices when the average degree > log?(n).
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Adjacency matrix of a hypergraph

@ Define the adjacency matrix of H as Aj := Z Te,
ecE:{i,j}Ce
counting number of hyperedges containing i, j.
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counting number of hyperedges containing i, j.
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Adjacency matrix of a hypergraph

@ Define the adjacency matrix of H as Aj := Z Te,
ecE:{i,j}Ce
counting number of hyperedges containing i, .

o Ab:=1{i,j€eec E}
°

trAk = Z AiohAizis e Aik—lio

iy e yik—1

_ Ael Aek—l Aek
Z oh Ik—2lk—1" "lk—1l0’
foyiyeeeyik—1
€1,...,8k

which counts the number of closed walks of length k in H:
(io, €15 /1,5 ik—1, €k, io)-



Adjacency matrix of a hypergraph

@ Define the adjacency matrix of H as Aj := Z Te,
ecE:{i,j}Ce
counting number of hyperedges containing i, j.

o Ab:=1{i,j€eec E}
°

trA* = Z Apgis Ay *++ Aip i

foyi2y-eyik—1

_ A61 Aek—l Aek
Z oh Ik—2lk—1" "Ik—1l0’
iy 015 ey ik—1
€1,---,€k

which counts the number of closed walks of length k in H:
(iOa €1, i17 ey ikflv €k, ’0)
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Detection by self-avoiding walks on hypergraphs

@ A walk of length ¢: (v, €1, v1,- - €, v¢) such that v; # v;41 and
{V,'_l, V,'} C g
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Detection by self-avoiding walks on hypergraphs

@ A walk of length ¢: (v, €1, v1,- - €, v¢) such that v; # v;41 and
{V,'_l, V,'} C g

@ A self-avoiding walk of length £ in H
is a walk w = (v, er,vi, -+ , e, V)
such that only consecutive hyperedges
intersect at one vertex.
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Detection by self-avoiding walks on hypergraphs

@ A walk of length ¢: (v, €1, v1,- - €, v¢) such that v; # v;41 and
{V,'_l, V,'} C g

@ A self-avoiding walk of length £ in H
is a walk w = (v, er,vi, -+ , e, V)
such that only consecutive hyperedges
intersect at one vertex.

o self-avoiding walk matrix B(): BIS.Z) counts the number of self-avoiding
walks of length ¢ from i to j.
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Model parameters

d—
o a:=(d— 1)”(22,,#’, expected degree of any vertex
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o a:=(d— 1)”(2,,—_) expected degree of any vertex

o f:=(d-— 1)2d 7, discrepancy between numbers of 4, — labels of any vertex
neighborhood
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Model parameters

d
o a:=(d— 1)”(2,,—_) expected degree of any vertex

o f:=(d-— 1)2d 7, discrepancy between numbers of +, — labels of any vertex
neighborhood

@ Angelini et al. (15): conjectured 3% = « is the detection threshold for all
d>2.
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Theorem (Pal-Z., 21)

Assume B2 > a. Set £ = clog(n) for a proper constant c. Let x be a unit second
eigenvector of BY). There exists a constant t such that, defining the label
estimate &; as

. {+1 if xiv/n > t,
gj =

—1 otherwise,

then & is correlated with o asymptotically almost surely.
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Theorem (Pal-Z., 21)

Assume B2 > a. Set £ = clog(n) for a proper constant c. Let x be a unit second
eigenvector of BY). There exists a constant t such that, defining the label
estimate &; as

. {+1 if xiv/n > t,
gj =

—1 otherwise,

then & is correlated with o asymptotically almost surely.

@ Dimension reduction: construct B() of n? entries from the adjacency tensor
T of n entries.

@ Spectral clustering: detect the community according to the second
eigenvector.
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Local structure: multi-type Poisson hypertrees

@ Start with a root p with label 7(p), generate Pois (ﬁ) many hyperedges

that pairwise intersects at p.
@ Assign a type (the number of + labels) to each hyperedge independently.

@ Keep constructing subsequent generations by induction.
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Proof sketch
@ Show v (BW) ~ BWg,
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J:d(ij)=¢
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Proof sketch
@ Show v»(B®) ~ By,
° (B(‘v’)g),- = ZJ. B,.(je)aj. Assume the f-neighborhood of i is a hypertree, then
B =1{d(i,j) =} = (BYo)i= Y o
Jxd(ij)=¢

@ The sign of (B()g); is correlated with o;.
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Local Analysis
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Local Analysis

Exploration process on hypergraphs. Control the boundary size and number of +
labels at distance t.
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The moment method
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The moment method

@ Counting centered SAWs : Aff) = Z H Al AL

it—1it
wESAW;; t=1
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The moment method

@ Counting centered SAWs : A,(-j[ : Z H i'tm Al m)-
weSAW; t=1
‘
E)_ Z)+Z Zm)AB(m 1) Zrﬁm)
m=1
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The moment method

‘
@ Counting centered SAWs : A,(-j[ : Z H i'tm Al m)
weSAW; t=1
‘
E)_ Z)+Z Zm)AB(m 1) erm)
m=1

e Ep(A)%k < ]Etr(A(z))zk, estimate by counting concatenations of 2k many
self-avoiding walks of length /.

Yizhe Zhu (UCSD) 20/ 24



The moment method

‘
@ Counting centered SAWs : A,(f) = H ilt i~ Ai m)
weSAW; t=1
‘
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m=1

e Ep(A)%k < ]Etr(A(z))zk, estimate by counting concatenations of 2k many
self-avoiding walks of length /.

1

Figure: concatenations of 4 SAWSs of length 5
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Spectral gap for B

When 32 > «, B() has a spectral gap asymptotically almost surely:

e \(B®)) =0(af) up to a log n factor.
e \(B®) =Q(B), and \a(BY) = O(n~7a’) for some y > 0.
e \3(BWY) = O(n°at/?) for any ¢ > 0.

Yizhe Zhu (UCSD)
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Further Problems

Non-backtracking operator for random hypergraphs with k blocks (work in
progress with Ludovic Stephan)

@ Non-uniform hypergraphs (with loana Dumitriu and Haixiao Wang)

Impossibility for detection below the threshold

Applications in tensor completion

Yizhe Zhu (UCSD) 22 /24



Tensor Analog of Matrix Problems
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Tensor Analog of Matrix Problems

Statistical and computational gap

@ Tensor PCA: X = \v®k 4 7
Montanari-Richard (14), Chen (18), Ben Arous-Mei-Montanari-Nica (17), Ben Arous-Gheissari-Jagannath (18),
Wein-Alaoui-Moore (19), Huang-Huang-Yang-Cheng (20), Ding-Hopkins-Steurer (20), Ben Arous-Huang-Huang
(21),...

@ Tensor completion

Jain-Oh (14), Ge-Huang-Jin-Yuan (15), Barak-Moitra (16), Xia-Yuan (17, 19), Yuan-Zhang (17), Ge-Ma (17),
Potechin-Steurer (17), Montanari-Sun (18), Ghadermarzy-Plan-Yilmaz (18), ...
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Tensor Analog of Matrix Problems

Statistical and computational gap

@ Tensor PCA: X = \w®k + 7

Montanari-Richard (14), Chen (18), Ben Arous-Mei-Montanari-Nica (17), Ben Arous-Gheissari-Jagannath (18),
Wein-Alaoui-Moore (19), Huang-Huang-Yang-Cheng (20), Ding-Hopkins-Steurer (20), Ben Arous-Huang-Huang
(21),...

@ Tensor completion

Jain-Oh (14), Ge-Huang-Jin-Yuan (15), Barak-Moitra (16), Xia-Yuan (17, 19), Yuan-Zhang (17), Ge-Ma (17),
Potechin-Steurer (17), Montanari-Sun (18), Ghadermarzy-Plan-Yilmaz (18), ...

No such gap in many hypergraph community detection problems:

Exact recovery: Kim-Bandeira-Goemans (17, 18), Ahn-Lee-Suh (18), Chien-Lin-Wang (18), Zhang-Tan (21).
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Conclusion

@ Community detection on random hypergraphs can be analyzed by spectral
methods on sparse random matrices.

@ Moment methods can be applied to random hypergraphs.

@ Sparse random tensors are not well understood.

Thank Youl
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