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Hypergraph

H = (V ,E ), V : vertex set, E : hyperedge set.

Ravindran (2015)

co-authorship network

chat group in social network

Protein interaction network
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Community detection

Political blogs data from Adamic-Glance (05). Figure from Abbe (18)
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Community detection on random graphs

Consider a (unknown) partition of n vertices into two communities of size
n/2. Generate edges within each community with probability p. Generate
edges across communities with probability q < p.

Stochastic block model G(n, p, q). Holland et al. (83).

Task: observe a graph G ∼ G(n, p, q), find the unknown partition with high
probability (efficiently and accurately).
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Spectral method on A

Adjacency matrix A: symmetric, Aij is independent Bernoulli for i < j .

EA =


p p q q
p p q q
q q p p
q q p p

 , λ1(EA) = (p+q)n
2 , λ2(EA) = (p−q)n

2 .

v1(EA) =


1
1
1
1

 , v2(EA) =


1
1
−1
−1

 .
A = EA + (A− EA), low rank + noise

If A is concentrated around EA, then v2(A) ≈ v2(E(A)).

Spectral method: observe A, compute v2(A), use the signs of the entries in
v2(A) to recover the community. v = (0.5, 1.1,−0.8,−0.4)

‖A− EA‖ = O(
√
np) when (p+q)n

2 = Ω(log n). o(n) vertices are
mis-classified.

Feige–Ofek 05, Lei–Rinaldo 13, Le–Levina–Vershynin 16, Benaych-Georges–Bordenave–Knowles 17, Latala–van
Handel–Youssef 17, Alt–Ducatez–Knowles 19, Tikhomirov–Youssef 19
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Sparse SBMs: two phase transitions

Two communities of roughly equal size: assign labels σi ∈ {−1,+1} uniformly
and i.i.d. for i ∈ [n].

Logarithmic expected degrees: p = a log n
n , q = b log n

n .

Exact recovery (recover vector σ up to a sign flip) is possible if and only if
(
√
a−
√
b)2 ≥ 2.

Abbe-Bandeira-Hall (14), Mossel-Neeman-Sly (14).

Bounded expected degrees: p = a
n , q = b

n .

Detection is possible (strictly better than random guessing) if and only if
(a− b)2 > 2(a + b).
Decelle-Krzakala-Moore-Zdeborová (11), Mossel-Neeman-Sly (12, 14), Massoulié (14),
Bordenave-Lelarge-Massoulié (15).

A huge body of work for more general cases and different settings: survey by
Abbe (18).
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Bounded expected degrees

Figure: Abbe et al. (2018), a = 2.2, b = 0.06, n = 100000, apply spectral method directly on A

When p = a
n , q = b

n , top eigenvectors are localized on high degree vertices.

Yizhe Zhu (UCSD) 7 / 24



Detection by self-avoiding walks

When p = a
n , q = b

n :

Locally tree-like structure appears, few cycles.

local neighborhood of G (n, cn ) is close to a Galton-Watson tree with
offspring distribution Pois(c).

Self-avoiding walks on trees are simple.

Massoulié (14): self-avoiding walk matrix B(`).

B
(`)
ij = the number of self-avoiding walks of length ` = c log n from i to j .

The second eigenvector of B(`) can be used to estimate σ = (σ1, . . . , σn),
better than random guess.

Yizhe Zhu (UCSD) 8 / 24
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Detection by self-avoiding walks
Let α := a+b

2 , β := a−b
2 . Assume β2 > α.

Show v2(B(`)) ≈ B(`)σ (asymptotically aligned).

(B(`)σ)i =
∑

j B
(`)
ij σj . Assume the `-neighborhood of i is a tree, then

B
(`)
ij = 1 if d(i , j) = `.

(B(`)σ)i =
∑

j :d(i,j)=`

σj .

The boundary of `-neighborhood of i has size ≈ α` = nc logα,
|
∑

j :d(i,j)=` σj | ≈ β` = nc log β . The sign of (B(`)σ)i is correlated with σi .

?
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Hypergraph stochastic block model (HSBM)

H is d-uniform if each hyperedge has size d . Generate a random
hypergraph H with label σ in two steps:

labels {σi , i ∈ [n]} are uniformly and
i.i.d. drawn from {−1,+1}.
Each hyperedge e = {v1, . . . , vd}
appears independently with probability

P(e ∈ E ) =

{
p if σv1 = · · · = σvd
q otherwise.

Task: observe H, construct a label estimator σ̂ ∈ {−1,+1}n correlated
with the true σ.

Ghoshdastidar-Dukkipati (14, 15)
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Community detection on HSBM

Exact recovery: Chien-Lin-Wang (18), Kim-Bandeira-Goemans (18)
p = a log n

( n
d−1)

, q = b log n

( n
d−1)

, exact recovery is possible if and only

(
√
a−
√
b)2 ≥ 2d−1.

Detection: Angelini-Caltagirone-Krzakala-Zdeborová (15) conjectured a
phase transition when p = a

( n
d−1)

, q = b

( n
d−1)

.

Spectral method in the bounded expected degree regime?
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Tensor

What we observe is an adjacency tensor T of order d with nd many entries.
Ti1,...,id = 1 if {i1, . . . , id} is a hyperedge.

Figure: an order-3 tensor

Eigenvalue, eigenvector, rank?

Spectral norm

‖T‖2 = sup
x,y ,z∈Sn−1

∑
i,j,k

Tijkxiyjzk

Most tensor problems are NP-hard
(Hillar-Lim 13): rank, spectral norm, best
low-rank approximation,. . .

Ke-Shi-Xia (20): Tensor unfolding and power iteration, o(n) mis-classified
vertices when the average degree � log2(n).
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Adjacency matrix of a hypergraph

Define the adjacency matrix of H as Aij :=
∑

e∈E :{i,j}⊂e

Te ,

counting number of hyperedges containing i , j .

Ae
ij := 1{i , j ∈ e, e ∈ E}.

trAk =
∑

i0,i2,...,ik−1

Ai0i1Ai2i3 · · ·Aik−1i0

=
∑

i0,i1,...,ik−1
e1,...,ek

Ae1

i0i1
· · ·Aek−1

ik−2ik−1
Aek
ik−1i0

,

which counts the number of closed walks of length k in H:
(i0, e1, i1, . . . , ik−1, ek , i0).
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Detection by self-avoiding walks on hypergraphs

A walk of length `: (v0, e1, v1, · · · e`, v`) such that vi 6= vi+1 and
{vi−1, vi} ⊂ ei .

A self-avoiding walk of length ` in H
is a walk w = (v0, e1, v1, · · · , e`, v`)
such that only consecutive hyperedges
intersect at one vertex.

v0
e1

v1

v2

e2

e3

e4v3

v4

self-avoiding walk matrix B(`): B
(`)
ij counts the number of self-avoiding

walks of length ` from i to j .
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Model parameters

α := (d − 1) a+(2d−1−1)b
2d−1 , expected degree of any vertex

β := (d − 1) a−b
2d−1 , discrepancy between numbers of +,− labels of any vertex

neighborhood

Angelini et al. (15): conjectured β2 = α is the detection threshold for all
d ≥ 2.
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Theorem (Pal-Z., 21)

Assume β2 > α. Set ` = c log(n) for a proper constant c . Let x be a unit second
eigenvector of B(`). There exists a constant t such that, defining the label
estimate σ̂i as

σ̂i =

{
+1 if xi

√
n ≥ t,

−1 otherwise,

then σ̂ is correlated with σ asymptotically almost surely.

Dimension reduction: construct B(`) of n2 entries from the adjacency tensor
T of nd entries.

Spectral clustering: detect the community according to the second
eigenvector.
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Local structure: multi-type Poisson hypertrees

Start with a root ρ with label τ(ρ), generate Pois
(

α
d−1

)
many hyperedges

that pairwise intersects at ρ.

Assign a type (the number of + labels) to each hyperedge independently.

Keep constructing subsequent generations by induction.

Yizhe Zhu (UCSD) 17 / 24



Proof sketch

Show v2(B(`)) ≈ B(`)σ.

(B(`)σ)i =
∑

j B
(`)
ij σj . Assume the `-neighborhood of i is a hypertree, then

B
(`)
ij = 1{d(i , j) = `} =⇒ (B(`)σ)i =

∑
j :d(i,j)=`

σj .

The sign of (B(`)σ)i is correlated with σi .

?
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Local Analysis

i

V<t(i)

Vt(i)

i
V<t(i)

Vt(i)

Exploration process on hypergraphs. Control the boundary size and number of ±
labels at distance t.
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The moment method

Counting centered SAWs : ∆
(`)
ij :=

∑
w∈SAWij

∏̀
t=1

(A
eit
it−1it
− A

eit
it−1it ).

B(`) = ∆(`) +
∑̀
m=1

(∆(`−m)AB(m−1))−
∑̀
m=1

Γ(`,m)

Eρ(∆(`))2k ≤ Etr(∆(`))2k , estimate by counting concatenations of 2k many
self-avoiding walks of length `.

1

2

3

4

5

6

7

9

10

11

e1

e2

e3

e4

e5

e6

e9

e10

e12
e7

8

e8
e11

12

13
e15

e14 e13

Figure: concatenations of 4 SAWs of length 5
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Spectral gap for B (`)

When β2 > α, B(`) has a spectral gap asymptotically almost surely:

λ1(B(`)) = Θ(α`) up to a log n factor.

λ2(B(`)) = Ω(β`), and λ2(B(`)) = O(n−γα`) for some γ > 0.

λ3(B(`)) = O(nεα`/2) for any ε > 0.
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Further Problems

Non-backtracking operator for random hypergraphs with k blocks (work in
progress with Ludovic Stephan)

Non-uniform hypergraphs (with Ioana Dumitriu and Haixiao Wang)

Impossibility for detection below the threshold

Applications in tensor completion
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Tensor Analog of Matrix Problems

Statistical and computational gap

Tensor PCA: X = λv⊗k + Z
Montanari-Richard (14), Chen (18), Ben Arous-Mei-Montanari-Nica (17), Ben Arous-Gheissari-Jagannath (18),
Wein-Alaoui-Moore (19), Huang-Huang-Yang-Cheng (20), Ding-Hopkins-Steurer (20), Ben Arous-Huang-Huang
(21),. . .

Tensor completion
Jain-Oh (14), Ge-Huang-Jin-Yuan (15), Barak-Moitra (16), Xia-Yuan (17, 19), Yuan-Zhang (17), Ge-Ma (17),
Potechin-Steurer (17), Montanari-Sun (18), Ghadermarzy-Plan-Yilmaz (18), . . .

No such gap in many hypergraph community detection problems:

Exact recovery: Kim-Bandeira-Goemans (17, 18), Ahn-Lee-Suh (18), Chien-Lin-Wang (18), Zhang-Tan (21).
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Conclusion

Community detection on random hypergraphs can be analyzed by spectral
methods on sparse random matrices.

Moment methods can be applied to random hypergraphs.

Sparse random tensors are not well understood.

Thank You!
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