Community Detection in Sparse Random Hypergraphs

Yizhe Zhu

Department of Mathematics UCSD

November 1, 2021

MSRI Seminar

Joint work with Soumik Pal (University of Washington)

Hypergraph

• H = (V, E), V: vertex set, E: hyperedge set.

Hypergraph

• H = (V, E), V: vertex set, E: hyperedge set.

Ravindran (2015)

Hypergraph

• H = (V, E), V: vertex set, E: hyperedge set.

Ravindran (2015)

- co-authorship network
- chat group in social network
- Protein interaction network

Community detection

Political blogs data from Adamic-Glance (05). Figure from Abbe (18)

Community detection on random graphs

- Consider a (unknown) partition of *n* vertices into two *communities* of size n/2. Generate edges within each community with probability *p*. Generate edges across communities with probability q < p.
- Stochastic block model $\mathcal{G}(n, p, q)$. Holland et al. (83).

Community detection on random graphs

- Consider a (unknown) partition of *n* vertices into two *communities* of size n/2. Generate edges within each community with probability *p*. Generate edges across communities with probability q < p.
- Stochastic block model $\mathcal{G}(n, p, q)$. Holland et al. (83).
- Task: observe a graph G ~ G(n, p, q), find the unknown partition with high probability (efficiently and accurately).

•
$$\mathbb{E}A = \begin{bmatrix} p & p \mid q & q \\ p & p \mid q & q \\ - p & - p \mid q & q \\ q & q \mid p & p \\ q & q \mid p & p \end{bmatrix}$$

•
$$\mathbb{E}A = \begin{bmatrix} p & p & q & q \\ p & p & q & q \\ q & q & p & p \\ q & q & p & p \end{bmatrix}, \quad \lambda_1(\mathbb{E}A) = \frac{(p+q)n}{2}, \quad \lambda_2(\mathbb{E}A) = \frac{(p-q)n}{2}$$

•
$$\mathbb{E}A = \begin{bmatrix} p & p & | & q & q \\ p & p & | & q & q \\ q & -p & | & p & p \\ q & q & | & p & p \end{bmatrix}, \quad \lambda_1(\mathbb{E}A) = \frac{(p+q)n}{2}, \quad \lambda_2(\mathbb{E}A) = \frac{(p-q)n}{2}$$

• $v_1(\mathbb{E}A) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, v_2(\mathbb{E}A) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}.$

• Adjacency matrix A: symmetric, A_{ij} is independent Bernoulli for i < j.

•
$$\mathbb{E}A = \begin{bmatrix} p & p & | & q & q \\ p & p & | & q & q \\ -p & -p & | & q & q \\ q & q & | & p & p \end{bmatrix}, \quad \lambda_1(\mathbb{E}A) = \frac{(p+q)n}{2}, \quad \lambda_2(\mathbb{E}A) = \frac{(p-q)n}{2}$$

• $v_1(\mathbb{E}A) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, v_2(\mathbb{E}A) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}.$
• $A = \mathbb{E}A + (A - \mathbb{E}A), \text{ low rank } + \text{ noise}$

•

• Adjacency matrix A: symmetric, A_{ij} is independent Bernoulli for i < j.

•
$$\mathbb{E}A = \begin{bmatrix} p & p & q & q \\ p & p & q & q \\ - q & q & p & p \\ q & q & p & p \end{bmatrix}$$
, $\lambda_1(\mathbb{E}A) = \frac{(p+q)n}{2}$, $\lambda_2(\mathbb{E}A) = \frac{(p-q)n}{2}$
• $v_1(\mathbb{E}A) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $v_2(\mathbb{E}A) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$.

• $A = \mathbb{E}A + (A - \mathbb{E}A)$, low rank + noise

• If A is concentrated around $\mathbb{E}A$, then $v_2(A) \approx v_2(\mathbb{E}(A))$.

• Adjacency matrix A: symmetric, A_{ij} is independent Bernoulli for i < j.

•
$$\mathbb{E}A = \begin{bmatrix} p & p & q & q \\ p & p & q & q \\ - & q & p & p \\ q & q & p & p \\ q & q & p & p \end{bmatrix}$$
, $\lambda_1(\mathbb{E}A) = \frac{(p+q)n}{2}$, $\lambda_2(\mathbb{E}A) = \frac{(p-q)n}{2}$
• $v_1(\mathbb{E}A) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $v_2(\mathbb{E}A) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$.

• $A = \mathbb{E}A + (A - \mathbb{E}A)$, low rank + noise

- If A is concentrated around $\mathbb{E}A$, then $v_2(A) \approx v_2(\mathbb{E}(A))$.
- Spectral method: observe A, compute $v_2(A)$, use the signs of the entries in $v_2(A)$ to recover the community. v = (0.5, 1.1, -0.8, -0.4)

• Adjacency matrix A: symmetric, A_{ij} is independent Bernoulli for i < j.

•
$$\mathbb{E}A = \begin{bmatrix} p & p & q & q \\ p & p & q & q \\ -q & q & p & p \\ q & q & p & p \end{bmatrix}$$
, $\lambda_1(\mathbb{E}A) = \frac{(p+q)n}{2}$, $\lambda_2(\mathbb{E}A) = \frac{(p-q)n}{2}$
• $v_1(\mathbb{E}A) = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $v_2(\mathbb{E}A) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$.

• $A = \mathbb{E}A + (A - \mathbb{E}A)$, low rank + noise

- If A is concentrated around $\mathbb{E}A$, then $v_2(A) \approx v_2(\mathbb{E}(A))$.
- Spectral method: observe A, compute $v_2(A)$, use the signs of the entries in $v_2(A)$ to recover the community. v = (0.5, 1.1, -0.8, -0.4)
- $||A \mathbb{E}A|| = O(\sqrt{np})$ when $\frac{(p+q)n}{2} = \Omega(\log n)$. o(n) vertices are mis-classified.

Feige–Ofek 05, Lei–Rinaldo 13, Le–Levina–Vershynin 16, Benaych-Georges–Bordenave–Knowles 17, Latala–van Handel–Youssef 17, Alt–Ducatez–Knowles 19, Tikhomirov–Youssef 19

Yizhe Zhu (UCSD)

Two communities of roughly equal size: assign labels $\sigma_i \in \{-1, +1\}$ uniformly and i.i.d. for $i \in [n]$.

Two communities of roughly equal size: assign labels $\sigma_i \in \{-1, +1\}$ uniformly and i.i.d. for $i \in [n]$.

• Logarithmic expected degrees: $p = \frac{a \log n}{n}, q = \frac{b \log n}{n}$.

Two communities of roughly equal size: assign labels $\sigma_i \in \{-1, +1\}$ uniformly and i.i.d. for $i \in [n]$.

- Logarithmic expected degrees: $p = \frac{a \log n}{n}, q = \frac{b \log n}{n}$.
- Exact recovery (recover vector σ up to a sign flip) is possible if and only if $(\sqrt{a} \sqrt{b})^2 \ge 2$.

Abbe-Bandeira-Hall (14), Mossel-Neeman-Sly (14).

Two communities of roughly equal size: assign labels $\sigma_i \in \{-1, +1\}$ uniformly and i.i.d. for $i \in [n]$.

- Logarithmic expected degrees: $p = \frac{a \log n}{n}, q = \frac{b \log n}{n}$.
- Exact recovery (recover vector σ up to a sign flip) is possible if and only if $(\sqrt{a} \sqrt{b})^2 \ge 2$.

Abbe-Bandeira-Hall (14), Mossel-Neeman-Sly (14).

• Bounded expected degrees: $p = \frac{a}{n}, q = \frac{b}{n}$.

Two communities of roughly equal size: assign labels $\sigma_i \in \{-1, +1\}$ uniformly and i.i.d. for $i \in [n]$.

- Logarithmic expected degrees: $p = \frac{a \log n}{n}, q = \frac{b \log n}{n}$.
- Exact recovery (recover vector σ up to a sign flip) is possible if and only if $(\sqrt{a} \sqrt{b})^2 \ge 2$.

Abbe-Bandeira-Hall (14), Mossel-Neeman-Sly (14).

- Bounded expected degrees: $p = \frac{a}{n}, q = \frac{b}{n}$.
- Detection is possible (strictly better than random guessing) if and only if $(a b)^2 > 2(a + b)$.

Two communities of roughly equal size: assign labels $\sigma_i \in \{-1, +1\}$ uniformly and i.i.d. for $i \in [n]$.

- Logarithmic expected degrees: $p = \frac{a \log n}{n}, q = \frac{b \log n}{n}$.
- Exact recovery (recover vector σ up to a sign flip) is possible if and only if $(\sqrt{a} \sqrt{b})^2 \ge 2$.

Abbe-Bandeira-Hall (14), Mossel-Neeman-Sly (14).

- Bounded expected degrees: $p = \frac{a}{n}, q = \frac{b}{n}$.
- Detection is possible (strictly better than random guessing) if and only if $(a b)^2 > 2(a + b)$.

Decelle-Krzakala-Moore-Zdeborová (11), Mossel-Neeman-Sly (12, 14), Massoulié (14), Bordenave-Lelarge-Massoulié (15).

Two communities of roughly equal size: assign labels $\sigma_i \in \{-1, +1\}$ uniformly and i.i.d. for $i \in [n]$.

- Logarithmic expected degrees: $p = \frac{a \log n}{n}, q = \frac{b \log n}{n}$.
- Exact recovery (recover vector σ up to a sign flip) is possible if and only if $(\sqrt{a} \sqrt{b})^2 \ge 2$.

Abbe-Bandeira-Hall (14), Mossel-Neeman-Sly (14).

- Bounded expected degrees: $p = \frac{a}{n}, q = \frac{b}{n}$.
- Detection is possible (strictly better than random guessing) if and only if $(a b)^2 > 2(a + b)$.

Decelle-Krzakala-Moore-Zdeborová (11), Mossel-Neeman-Sly (12, 14), Massoulié (14), Bordenave-Lelarge-Massoulié (15).

A huge body of work for more general cases and different settings: survey by Abbe (18).

Bounded expected degrees

Figure: Abbe et al. (2018), a = 2.2, b = 0.06, n = 100000, apply spectral method directly on A

When $p = \frac{a}{p}$, $q = \frac{b}{p}$, top eigenvectors are localized on high degree vertices.

When $p = \frac{a}{n}, q = \frac{b}{n}$:

• Locally tree-like structure appears, few cycles.

When $p = \frac{a}{n}, q = \frac{b}{n}$:

- Locally tree-like structure appears, few cycles.
- local neighborhood of $G(n, \frac{c}{n})$ is close to a Galton-Watson tree with offspring distribution Pois(c).

When $p = \frac{a}{n}, q = \frac{b}{n}$:

- Locally tree-like structure appears, few cycles.
- local neighborhood of $G(n, \frac{c}{n})$ is close to a Galton-Watson tree with offspring distribution Pois(c).

• Self-avoiding walks on trees are simple.

When $p = \frac{a}{n}, q = \frac{b}{n}$:

- Locally tree-like structure appears, few cycles.
- local neighborhood of $G(n, \frac{c}{n})$ is close to a Galton-Watson tree with offspring distribution Pois(c).

- Self-avoiding walks on trees are simple.
- Massoulié (14): self-avoiding walk matrix $B^{(\ell)}$.
- $B_{ij}^{(\ell)}$ = the number of self-avoiding walks of length $\ell = c \log n$ from *i* to *j*.

When $p = \frac{a}{n}, q = \frac{b}{n}$:

- Locally tree-like structure appears, few cycles.
- local neighborhood of $G(n, \frac{c}{n})$ is close to a Galton-Watson tree with offspring distribution Pois(c).

- Self-avoiding walks on trees are simple.
- Massoulié (14): self-avoiding walk matrix $B^{(\ell)}$.
- $B_{ij}^{(\ell)}$ = the number of self-avoiding walks of length $\ell = c \log n$ from *i* to *j*.
- The second eigenvector of B^(ℓ) can be used to estimate σ = (σ₁,...,σ_n), better than random guess.

• Show $v_2(B^{(\ell)}) \approx B^{(\ell)}\sigma$ (asymptotically aligned).

• Show $v_2(B^{(\ell)}) \approx B^{(\ell)}\sigma$ (asymptotically aligned).

•
$$(B^{(\ell)}\sigma)_i = \sum_j B^{(\ell)}_{ij}\sigma_j.$$

- Show $v_2(B^{(\ell)}) \approx B^{(\ell)}\sigma$ (asymptotically aligned).
- $(B^{(\ell)}\sigma)_i = \sum_j B^{(\ell)}_{ij}\sigma_j$. Assume the ℓ -neighborhood of i is a tree, then $B^{(\ell)}_{ij} = 1$ if $d(i, j) = \ell$.

- Show $v_2(B^{(\ell)}) \approx B^{(\ell)}\sigma$ (asymptotically aligned).
- $(B^{(\ell)}\sigma)_i = \sum_j B^{(\ell)}_{ij}\sigma_j$. Assume the ℓ -neighborhood of i is a tree, then $B^{(\ell)}_{ij} = 1$ if $d(i,j) = \ell$.

$$(B^{(\ell)}\sigma)_i = \sum_{j:d(i,j)=\ell} \sigma_j.$$
Detection by self-avoiding walks Let $\alpha := \frac{a+b}{2}, \beta := \frac{a-b}{2}$. Assume $\beta^2 > \alpha$.

- Show $v_2(B^{(\ell)}) \approx B^{(\ell)}\sigma$ (asymptotically aligned).
- $(B^{(\ell)}\sigma)_i = \sum_j B^{(\ell)}_{ij}\sigma_j$. Assume the ℓ -neighborhood of i is a tree, then $B^{(\ell)}_{ij} = 1$ if $d(i,j) = \ell$. $(B^{(\ell)}\sigma)_i = \sum_{j \in \mathcal{J}} \sigma_j$.

$$(B^{(\ell)}\sigma)_i = \sum_{j:d(i,j)=\ell} \sigma_j.$$

• The boundary of ℓ -neighborhood of i has size $\approx \alpha^{\ell} = n^{c \log \alpha}$, $|\sum_{j:d(i,j)=\ell} \sigma_j| \approx \beta^{\ell} = n^{c \log \beta}$. Detection by self-avoiding walks Let $\alpha := \frac{a+b}{2}, \beta := \frac{a-b}{2}$. Assume $\beta^2 > \alpha$.

- Show $v_2(B^{(\ell)}) \approx B^{(\ell)}\sigma$ (asymptotically aligned).
- $(B^{(\ell)}\sigma)_i = \sum_j B^{(\ell)}_{ij}\sigma_j$. Assume the ℓ -neighborhood of i is a tree, then $B^{(\ell)}_{ij} = 1$ if $d(i,j) = \ell$. $(B^{(\ell)}\sigma)_i = \sum_j \sigma_j$.

$$(B^{(\ell)}\sigma)_i = \sum_{j:d(i,j)=\ell} \sigma_j.$$

• The boundary of ℓ -neighborhood of i has size $\approx \alpha^{\ell} = n^{c \log \alpha}$, $|\sum_{j:d(i,j)=\ell} \sigma_j| \approx \beta^{\ell} = n^{c \log \beta}$. The sign of $(B^{(\ell)}\sigma)_i$ is correlated with σ_i . Detection by self-avoiding walks Let $\alpha := \frac{a+b}{2}, \beta := \frac{a-b}{2}$. Assume $\beta^2 > \alpha$.

- Show $v_2(B^{(\ell)}) \approx B^{(\ell)}\sigma$ (asymptotically aligned).
- $(B^{(\ell)}\sigma)_i = \sum_j B^{(\ell)}_{ij}\sigma_j$. Assume the ℓ -neighborhood of i is a tree, then $B^{(\ell)}_{ij} = 1$ if $d(i,j) = \ell$. $(B^{(\ell)}\sigma)_i = \sum_j \sigma_j$

$$(B^{(\ell)}\sigma)_i = \sum_{j:d(i,j)=\ell} \sigma_j.$$

• The boundary of ℓ -neighborhood of i has size $\approx \alpha^{\ell} = n^{c \log \alpha}$, $|\sum_{j:d(i,j)=\ell} \sigma_j| \approx \beta^{\ell} = n^{c \log \beta}$. The sign of $(B^{(\ell)}\sigma)_i$ is correlated with σ_i .

H is *d*-uniform if each hyperedge has size *d*. Generate a random hypergraph *H* with label σ in two steps:

H is *d*-uniform if each hyperedge has size *d*. Generate a random hypergraph *H* with label σ in two steps:

- labels {σ_i, i ∈ [n]} are uniformly and i.i.d. drawn from {−1, +1}.
- Each hyperedge $e = \{v_1, \dots, v_d\}$ appears independently with probability

$$\mathbb{P}(e \in E) = egin{cases} p & ext{if } \sigma_{v_1} = \cdots = \sigma_{v_d} \ q & ext{otherwise.} \end{cases}$$

H is *d*-uniform if each hyperedge has size *d*. Generate a random hypergraph *H* with label σ in two steps:

- labels {σ_i, i ∈ [n]} are uniformly and i.i.d. drawn from {−1, +1}.
- Each hyperedge $e = \{v_1, \dots, v_d\}$ appears independently with probability

$$\mathbb{P}(e \in E) = egin{cases} p & ext{if } \sigma_{v_1} = \cdots = \sigma_{v_d} \ q & ext{otherwise.} \end{cases}$$

H is *d*-uniform if each hyperedge has size *d*. Generate a random hypergraph *H* with label σ in two steps:

- labels {σ_i, i ∈ [n]} are uniformly and i.i.d. drawn from {−1, +1}.
- Each hyperedge e = {v₁,..., v_d} appears independently with probability

$$\mathbb{P}(e \in E) = egin{cases} p & ext{if } \sigma_{v_1} = \cdots = \sigma_{v_d} \ q & ext{otherwise.} \end{cases}$$

Task: observe H, construct a label estimator $\hat{\sigma} \in \{-1, +1\}^n$ correlated with the true σ .

Ghoshdastidar-Dukkipati (14, 15)

Community detection on HSBM

• Exact recovery: Chien-Lin-Wang (18), Kim-Bandeira-Goemans (18) $p = \frac{a \log n}{\binom{n}{d-1}}, q = \frac{b \log n}{\binom{n}{d-1}}$, exact recovery is possible if and only $(\sqrt{a} - \sqrt{b})^2 \ge 2^{d-1}$.

Community detection on HSBM

- Exact recovery: Chien-Lin-Wang (18), Kim-Bandeira-Goemans (18) $p = \frac{a \log n}{\binom{n}{d-1}}, q = \frac{b \log n}{\binom{n}{d-1}}$, exact recovery is possible if and only $(\sqrt{a} - \sqrt{b})^2 \ge 2^{d-1}$.
- Detection: Angelini-Caltagirone-Krzakala-Zdeborová (15) conjectured a phase transition when $p = \frac{a}{\binom{n}{d-1}}, q = \frac{b}{\binom{n}{d-1}}$.

Community detection on HSBM

- Exact recovery: Chien-Lin-Wang (18), Kim-Bandeira-Goemans (18) $p = \frac{a \log n}{\binom{n}{d-1}}, q = \frac{b \log n}{\binom{n}{d-1}}$, exact recovery is possible if and only $(\sqrt{a} - \sqrt{b})^2 \ge 2^{d-1}$.
- Detection: Angelini-Caltagirone-Krzakala-Zdeborová (15) conjectured a phase transition when $p = \frac{a}{\binom{n}{d-1}}, q = \frac{b}{\binom{n}{d-1}}$.
- Spectral method in the bounded expected degree regime?

What we observe is an **adjacency tensor** T of order d with n^d many entries. $T_{i_1,\ldots,i_d} = 1$ if $\{i_1,\ldots,i_d\}$ is a hyperedge.

What we observe is an **adjacency tensor** T of order d with n^d many entries. $T_{i_1,\ldots,i_d} = 1$ if $\{i_1,\ldots,i_d\}$ is a hyperedge.

Figure: an order-3 tensor

What we observe is an **adjacency tensor** T of order d with n^d many entries. $T_{i_1,...,i_d} = 1$ if $\{i_1, \ldots, i_d\}$ is a hyperedge.

• Eigenvalue, eigenvector, rank?

Figure: an order-3 tensor

What we observe is an **adjacency tensor** T of order d with n^d many entries. $T_{i_1,...,i_d} = 1$ if $\{i_1, \ldots, i_d\}$ is a hyperedge.

Figure: an order-3 tensor

- Eigenvalue, eigenvector, rank?
- Spectral norm

$$\|T\|_2 = \sup_{x,y,z\in\mathbb{S}^{n-1}}\sum_{i,j,k}T_{ijk}x_iy_jz_k$$

What we observe is an **adjacency tensor** T of order d with n^d many entries. $T_{i_1,...,i_d} = 1$ if $\{i_1, \ldots, i_d\}$ is a hyperedge.

Figure: an order-3 tensor

- Eigenvalue, eigenvector, rank?
- Spectral norm

$$\|T\|_{2} = \sup_{x,y,z\in\mathbb{S}^{n-1}}\sum_{i,j,k}T_{ijk}x_{i}y_{j}z_{k}$$

• Most tensor problems are NP-hard (Hillar-Lim 13): rank, spectral norm, best low-rank approximation,...

What we observe is an **adjacency tensor** T of order d with n^d many entries. $T_{i_1,...,i_d} = 1$ if $\{i_1, \ldots, i_d\}$ is a hyperedge.

- Eigenvalue, eigenvector, rank?
- Spectral norm

$$||T||_2 = \sup_{x,y,z\in\mathbb{S}^{n-1}}\sum_{i,j,k}T_{ijk}x_iy_jz_k$$

• Most tensor problems are NP-hard (Hillar-Lim 13): rank, spectral norm, best low-rank approximation,...

Figure: an order-3 tensor

Ke-Shi-Xia (20): Tensor unfolding and power iteration, o(n) mis-classified vertices when the average degree $\gg \log^2(n)$.

• Define the adjacency matrix of H as $A_{ij} := \sum_{e \in E: \{i,j\} \subset e} T_e$,

counting number of hyperedges containing i, j.

• Define the adjacency matrix of H as $A_{ij} := \sum_{e \in E: \{i,j\} \subset e} T_e$,

counting number of hyperedges containing i, j.

•
$$A_{ij}^e := \mathbf{1}\{i, j \in e, e \in E\}.$$

• Define the adjacency matrix of H as $A_{ij} := \sum_{e \in E: \{i,j\} \subset e} T_e$,

counting number of hyperedges containing i, j.

•
$$A^e_{ij} := \mathbf{1}\{i, j \in e, e \in E\}.$$

$$\operatorname{tr} \mathcal{A}^{k} = \sum_{\substack{i_{0}, i_{2}, \dots, i_{k-1} \\ e_{1}, \dots, e_{k}}} \mathcal{A}_{i_{0}i_{1}} \mathcal{A}_{i_{2}i_{3}} \cdots \mathcal{A}_{i_{k-1}i_{0}}^{i_{k-1}i_{0}}$$
$$= \sum_{\substack{i_{0}, i_{1}, \dots, i_{k-1} \\ e_{1}, \dots, e_{k}}} \mathcal{A}_{i_{0}i_{1}}^{e_{1}} \cdots \mathcal{A}_{i_{k-2}i_{k-1}}^{e_{k-1}} \mathcal{A}_{i_{k-1}i_{0}}^{e_{k}},$$

which counts the number of closed walks of length k in H: $(i_0, e_1, i_1, \ldots, i_{k-1}, e_k, i_0)$.

• Define the adjacency matrix of H as $A_{ij} := \sum_{e \in E: \{i,j\} \subset e} T_e$,

counting number of hyperedges containing i, j.

•
$$A_{ij}^e := \mathbf{1}\{i, j \in e, e \in E\}.$$

$$\mathsf{tr} \mathcal{A}^{k} = \sum_{\substack{i_{0}, i_{2}, \dots, i_{k-1} \\ \mathbf{e}_{1}, \dots, i_{k} = 1 \\ \mathbf{e}_{1}, \dots, \mathbf{e}_{k}}} \mathcal{A}_{i_{0}i_{1}}^{\mathbf{e}_{1}} \cdots \mathcal{A}_{i_{k-2}i_{k-1}}^{\mathbf{e}_{k-1}} \mathcal{A}_{i_{k-1}i_{0}}^{\mathbf{e}_{k}}$$

which counts the number of closed walks of length k in H: $(i_0, e_1, i_1, \ldots, i_{k-1}, e_k, i_0)$.

• A walk of length ℓ : $(v_0, e_1, v_1, \cdots e_\ell, v_\ell)$ such that $v_i \neq v_{i+1}$ and $\{v_{i-1}, v_i\} \subset e_i$.

• A walk of length ℓ : $(v_0, e_1, v_1, \cdots e_\ell, v_\ell)$ such that $v_i \neq v_{i+1}$ and $\{v_{i-1}, v_i\} \subset e_i$.

A self-avoiding walk of length ℓ in H is a walk w = (v₀, e₁, v₁, · · · , e_ℓ, v_ℓ) such that only consecutive hyperedges intersect at one vertex.

• A walk of length ℓ : $(v_0, e_1, v_1, \cdots e_\ell, v_\ell)$ such that $v_i \neq v_{i+1}$ and $\{v_{i-1}, v_i\} \subset e_i$.

A self-avoiding walk of length ℓ in H is a walk w = (v₀, e₁, v₁, · · · , e_ℓ, v_ℓ) such that only consecutive hyperedges intersect at one vertex.

• A walk of length ℓ : $(v_0, e_1, v_1, \cdots e_\ell, v_\ell)$ such that $v_i \neq v_{i+1}$ and $\{v_{i-1}, v_i\} \subset e_i$.

A self-avoiding walk of length ℓ in H is a walk w = (v₀, e₁, v₁, · · · , e_ℓ, v_ℓ) such that only consecutive hyperedges intersect at one vertex.

self-avoiding walk matrix B^(l): B^(l)_{ij} counts the number of self-avoiding walks of length l from i to j.

Model parameters

• $\alpha := (d-1) \frac{a+(2^{d-1}-1)b}{2^{d-1}}$, expected degree of any vertex

Model parameters

- $\alpha := (d-1) \frac{a+(2^{d-1}-1)b}{2^{d-1}}$, expected degree of any vertex
- $\beta := (d-1)\frac{a-b}{2^{d-1}}$, discrepancy between numbers of +, labels of any vertex neighborhood

Model parameters

- $\alpha := (d-1) \frac{a+(2^{d-1}-1)b}{2^{d-1}}$, expected degree of any vertex
- $\beta := (d-1)\frac{a-b}{2^{d-1}}$, discrepancy between numbers of +, labels of any vertex neighborhood
- Angelini et al. (15): conjectured $\beta^2 = \alpha$ is the detection threshold for all $d \ge 2$.

Theorem (Pal-Z., 21)

Assume $\beta^2 > \alpha$. Set $\ell = c \log(n)$ for a proper constant c. Let x be a unit second eigenvector of $B^{(\ell)}$. There exists a constant t such that, defining the label estimate $\hat{\sigma}_i$ as

$$\hat{\sigma}_i = egin{cases} +1 & ext{if } x_i \sqrt{n} \geq t, \ -1 & ext{otherwise}, \end{cases}$$

then $\hat{\sigma}$ is correlated with σ asymptotically almost surely.

Theorem (Pal-Z., 21)

Assume $\beta^2 > \alpha$. Set $\ell = c \log(n)$ for a proper constant c. Let x be a unit second eigenvector of $B^{(\ell)}$. There exists a constant t such that, defining the label estimate $\hat{\sigma}_i$ as

$$\hat{\sigma}_i = egin{cases} +1 & \textit{if } x_i \sqrt{n} \geq t, \ -1 & \textit{otherwise}, \end{cases}$$

then $\hat{\sigma}$ is correlated with σ asymptotically almost surely.

- Dimension reduction: construct $B^{(\ell)}$ of n^2 entries from the adjacency tensor T of n^d entries.
- Spectral clustering: detect the community according to the second eigenvector.

Local structure: multi-type Poisson hypertrees

- Start with a root ρ with label τ(ρ), generate Pois (^α/_{d-1}) many hyperedges that pairwise intersects at ρ.
- Assign a type (the number of + labels) to each hyperedge independently.
- Keep constructing subsequent generations by induction.

• Show $v_2(B^{(\ell)}) \approx B^{(\ell)}\sigma$.

• Show $v_2(B^{(\ell)}) \approx B^{(\ell)}\sigma$.

•
$$(B^{(\ell)}\sigma)_i = \sum_j B^{(\ell)}_{ij}\sigma_j$$
. Assume the ℓ -neighborhood of i is a hypertree, then
 $B^{(\ell)}_{ij} = \mathbf{1}\{d(i,j) = \ell\} \implies (B^{(\ell)}\sigma)_i = \sum_{j:d(i,j)=\ell}\sigma_j$.

- Show $v_2(B^{(\ell)}) \approx B^{(\ell)}\sigma$.
- $(B^{(\ell)}\sigma)_i = \sum_j B^{(\ell)}_{ij}\sigma_j$. Assume the ℓ -neighborhood of i is a hypertree, then $B^{(\ell)}_{ij} = \mathbf{1}\{d(i,j) = \ell\} \implies (B^{(\ell)}\sigma)_i = \sum_{j:d(i,j) = \ell} \sigma_j$.
- The sign of $(B^{(\ell)}\sigma)_i$ is correlated with σ_i .

- Show $v_2(B^{(\ell)}) \approx B^{(\ell)}\sigma$.
- $(B^{(\ell)}\sigma)_i = \sum_j B^{(\ell)}_{ij}\sigma_j$. Assume the ℓ -neighborhood of i is a hypertree, then $B^{(\ell)}_{ij} = \mathbf{1}\{d(i,j) = \ell\} \implies (B^{(\ell)}\sigma)_i = \sum_{j:d(i,j) = \ell} \sigma_j$.
- The sign of $(B^{(\ell)}\sigma)_i$ is correlated with σ_i .

Local Analysis

Local Analysis

Exploration process on hypergraphs. Control the boundary size and number of \pm labels at distance t.
Yizhe Zhu (UCSD)

• Counting centered SAWs :
$$\Delta_{ij}^{(\ell)} := \sum_{w \in \mathsf{SAW}_{ij}} \prod_{t=1}^{\ell} (A_{i_{t-1}i_t}^{e_{i_t}} - \overline{A}_{i_{t-1}i_t}^{e_{i_t}}).$$

• Counting centered SAWs :
$$\Delta_{ij}^{(\ell)} := \sum_{w \in \mathsf{SAW}_{ij}} \prod_{t=1}^{\ell} (A_{i_{t-1}i_t}^{e_{i_t}} - \overline{A}_{i_{t-1}i_t}^{e_{i_t}}).$$

•
$$B^{(\ell)} = \Delta^{(\ell)} + \sum_{m=1}^{\ell} (\Delta^{(\ell-m)} \overline{A} B^{(m-1)}) - \sum_{m=1}^{\ell} \Gamma^{(\ell,m)}$$

• Counting centered SAWs :
$$\Delta_{ij}^{(\ell)} := \sum_{w \in \mathsf{SAW}_{ij}} \prod_{t=1}^{\ell} (A_{i_{t-1}i_t}^{e_{i_t}} - \overline{A}_{i_{t-1}i_t}^{e_{i_t}}).$$

•
$$B^{(\ell)} = \Delta^{(\ell)} + \sum_{m=1}^{\ell} (\Delta^{(\ell-m)} \overline{A} B^{(m-1)}) - \sum_{m=1}^{\ell} \Gamma^{(\ell,m)}$$

 Eρ(Δ^(ℓ))^{2k} ≤ Etr(Δ^(ℓ))^{2k}, estimate by counting concatenations of 2k many self-avoiding walks of length ℓ.

• Counting centered SAWs :
$$\Delta_{ij}^{(\ell)} := \sum_{w \in \mathsf{SAW}_{ij}} \prod_{t=1}^{\ell} (A_{i_{t-1}i_t}^{e_{i_t}} - \overline{A}_{i_{t-1}i_t}^{e_{i_t}}).$$

•
$$B^{(\ell)} = \Delta^{(\ell)} + \sum_{m=1}^{\ell} (\Delta^{(\ell-m)} \overline{A} B^{(m-1)}) - \sum_{m=1}^{\ell} \Gamma^{(\ell,m)}$$

 Eρ(Δ^(ℓ))^{2k} ≤ Etr(Δ^(ℓ))^{2k}, estimate by counting concatenations of 2k many self-avoiding walks of length ℓ.

Figure: concatenations of 4 SAWs of length 5

Spectral gap for $B^{(\ell)}$

When $\beta^2 > \alpha$, $B^{(\ell)}$ has a spectral gap asymptotically almost surely:

• $\lambda_1(B^{(\ell)}) = \Theta(\alpha^{\ell})$ up to a log *n* factor.

•
$$\lambda_2(B^{(\ell)}) = \Omega(\beta^{\ell})$$
, and $\lambda_2(B^{(\ell)}) = O(n^{-\gamma}\alpha^{\ell})$ for some $\gamma > 0$.

•
$$\lambda_3(B^{(\ell)}) = O(n^{\epsilon} \alpha^{\ell/2})$$
 for any $\epsilon > 0$.

Further Problems

- Non-backtracking operator for random hypergraphs with *k* blocks (work in progress with Ludovic Stephan)
- Non-uniform hypergraphs (with Ioana Dumitriu and Haixiao Wang)
- Impossibility for detection below the threshold
- Applications in tensor completion

Tensor Analog of Matrix Problems

Tensor Analog of Matrix Problems

Statistical and computational gap

• Tensor PCA: $X = \lambda v^{\otimes k} + Z$

Montanari-Richard (14), Chen (18), Ben Arous-Mei-Montanari-Nica (17), Ben Arous-Gheissari-Jagannath (18), Wein-Alaoui-Moore (19), Huang-Huang-Yang-Cheng (20), Ding-Hopkins-Steurer (20), Ben Arous-Huang-Huang (21),...

Tensor completion

Jain-Oh (14), Ge-Huang-Jin-Yuan (15), Barak-Moitra (16), Xia-Yuan (17, 19), Yuan-Zhang (17), Ge-Ma (17), Potechin-Steurer (17), Montanari-Sun (18), Ghadermarzy-Plan-Yilmaz (18), ...

Tensor Analog of Matrix Problems

Statistical and computational gap

• Tensor PCA: $X = \lambda v^{\otimes k} + Z$

Montanari-Richard (14), Chen (18), Ben Arous-Mei-Montanari-Nica (17), Ben Arous-Gheissari-Jagannath (18), Wein-Alaoui-Moore (19), Huang-Huang-Yang-Cheng (20), Ding-Hopkins-Steurer (20), Ben Arous-Huang-Huang (21),...

Tensor completion

Jain-Oh (14), Ge-Huang-Jin-Yuan (15), Barak-Moitra (16), Xia-Yuan (17, 19), Yuan-Zhang (17), Ge-Ma (17), Potechin-Steurer (17), Montanari-Sun (18), Ghadermarzy-Plan-Yilmaz (18), . . .

No such gap in many hypergraph community detection problems:

Exact recovery: Kim-Bandeira-Goemans (17, 18), Ahn-Lee-Suh (18), Chien-Lin-Wang (18), Zhang-Tan (21).

Conclusion

- Community detection on random hypergraphs can be analyzed by spectral methods on sparse random matrices.
- Moment methods can be applied to random hypergraphs.
- Sparse random tensors are not well understood.

Thank You!