KPZ equation with a small noise, deep upper tail and limit shape

Yier Lin

MSRI, November 4, 2021

Joint work with Pierre Yves Gaudreau Lamarre (University of Chicago), Li-Cheng Tsai (Rutgers University)

 \sim \sim

→ 重 ▶

 298

Ξ

■ Introduced by [Kardar-Parisi-Zhang 86]

$$
\partial_t h(t,x) = \frac{1}{2} \partial_{xx} h(t,x) + \frac{1}{2} (\partial_x h(t,x))^2 + \xi(t,x),
$$

 ξ is the space-time white noise, $\mathbb{E}[\xi(t,x)\xi(s,y)] = \delta(t-s)\delta(x-y)$.

■ The solution theory is ill posed in the classical way.

4. 0. 6

ミド メモド

重

The SHE

Look at the stochastic heat equation (SHE)

$$
\partial_t Z(t,x) = \frac{1}{2} \partial_{xx} Z(t,x) + Z(t,x) \xi(t,x),
$$

We say $h(t, x) := \log Z(t, x)$ is the Hopf-Cole solution to be the KPZ equation.

Mild solution of the SHE

$$
Z(t,x) = \int_{\mathbb{R}} p(t, x - y) Z(0, y) dy
$$

$$
+ \int_0^t \int_{\mathbb{R}} p(t - s, x - y) Z(s, y) \xi(s, y) ds dy.
$$

 $p(t, x) := \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$ is the heat kernel.

■ Iterating above one obtain the chaos expansion of $Z(t, x)$.

イロト イ団 トイヨト イヨト 一番

 $2Q$

- [Mueller 91] positivity of the solution to the SHE.
- Dirac-Delta initial data

$$
\partial_t Z(t,x) = \frac{1}{2} \partial_{xx} Z(t,x) + \xi(t,x) Z(t,x), \qquad Z(0,\cdot) = \delta(\cdot).
$$

[Moreno-Flores 14] $Z(t, x)$ is positive for any $(t, x) \in \mathbb{R}_+ \times \mathbb{R}$.

We refer $h = \log Z$ to be the solution to the KPZ equation starting from the narrow wedge initial data.

メロト メタト メミト メミトー

 298 唐山

Review of previous results

- Focus on narrow wedge initial data.
- One point fluctuation [Amir-Corwin-Quastel 11]
	- Multi-point results [Quastel-Sarkar 20], [Virag 20].
- Tail behavior, one point large deviations (long time lower tail) [Ghosal-Corwin 18], [Tsai 18], [Cafasso-Claeys 19] (long time upper tail) [Das-Tsai 19] (short time behavior) [L.-Tsai 20].
- Law of iterated logarithm [Das-Ghosal 21]
- Also (more) results in the physics literature by Kamenev, Krajenbrink, Le Doussal, Meerson, Sasorov...

4 0 8

→ (伊) → (唐) → (唐) …

E.

 QQ

■ Consider

$$
\partial_t h_{\varepsilon}(t,x) = \frac{1}{2} \partial_{xx} h_{\varepsilon}(t,x) + \frac{1}{2} (\partial_x h_{\varepsilon}(t,x))^2 + \sqrt{\varepsilon} \xi(t,x).
$$

with narrow wedge initial data.

Letting $\varepsilon \to 0$, it is intuitive that $h_{\varepsilon} \to \mathbf{h} = \log p(t, x)$ which solves

$$
\partial_t \mathbf{h}(t,x) = \frac{1}{2} \partial_{xx} \mathbf{h}(t,x) + \frac{1}{2} (\partial_x \mathbf{h}(t,x))^2
$$

Conditioning: Force $h_{\varepsilon}(2,0) > \lambda$, what is the limit shape of h_{ε} on $[0,2] \times \mathbb{R}$ for large λ ?

すロチ (御) (道) (道) (道) (道)

Theorem (Gaudreau Lamarre-L.-Tsai 21)

Fix arbitrary $\delta > 0$. Define $h_{\varepsilon,\lambda}(t,x) = \lambda^{-1} h_{\varepsilon}(t,\lambda^{\frac{1}{2}}x)$, we have

$$
\lim_{\lambda \to \infty} \lim_{\varepsilon \to 0} \mathbb{P}\Big(dist_{\delta}(h_{\varepsilon,\lambda}, h_*) < \delta \, \big| \, h_{\varepsilon}(2,0) \ge \lambda \Big) = 1,
$$

where $dist_{\delta}(f,g) = ||f - g||_{L^{\infty}([\delta,2] \times [-\delta^{-1},\delta^{-1}])}$ and

$$
\mathsf{h}_*(t,x) = \begin{cases} \frac{t}{2} - |x|, & |x| \le t, \\ -\frac{x^2}{2t} & |x| \ge t. \end{cases}
$$

This result confirms the prediction by [Kamenev-Meerson-Sasarov 16].

御き メミメ メミメー

惜し 298

4 0 8

■ The theorem is equivalent to show that

$$
\lim_{\lambda \to \infty} \lim_{\varepsilon \to 0} \mathbb{P}\Big(\text{dist}_{\delta}(\lambda^{-1} \log Z_{\varepsilon,\lambda}, \mathsf{h}_*) \,\big|\, Z_{\varepsilon}(2,0) \geq e^{\lambda}\Big) = 1
$$

where $Z_{\varepsilon,\lambda}(\cdot,\cdot)=Z_{\varepsilon}(\cdot,\lambda^{\frac{1}{2}}\cdot)$ solves the SHE

$$
\partial_t Z_{\varepsilon}(t,x) = \frac{1}{2} \partial_{xx} Z_{\varepsilon}(t,x) + \sqrt{\varepsilon} \xi(t,x) Z_{\varepsilon}(t,x),
$$

$$
Z_{\varepsilon}(0,\cdot) = \delta(\cdot).
$$

We start with a result of functional large deviation principle with Z_{ε} .

イロメ イ部メ イ君メ イ君メー

■

Theorem (L.-Tsai 20)

Fix $\delta > 0$. $\{Z_{\varepsilon}(\cdot,\cdot)\}_{{\varepsilon}\in(0,1)} \subseteq C([\delta,2]\times\mathbb{R})$ satisfies a LDP with speed ${\varepsilon}^{-1}$ and a good rate function

$$
I(f) = \inf \left\{ \frac{1}{2} ||\rho||_{L^2([0,2]\times \mathbb{R})}^2 : \mathsf{Z}(\rho) = f, \rho \in L^2([0,2]\times \mathbb{R}) \right\}.
$$

where $\mathsf{Z}(\rho) = \mathsf{Z}(\rho; t, x)$ is defined as the mild solution of

$$
\partial_t \mathsf{Z}(\rho; t, x) = \frac{1}{2} \partial_{xx} \mathsf{Z}(\rho; t, x) + \rho(t, x) \mathsf{Z}(\rho; t, x), \qquad \mathsf{Z}(\rho; 0, \cdot) = \delta(\cdot).
$$

More explicitly,

$$
\mathsf{Z}(\rho; t, x) := p(t, x) \mathbb{E} \Big[\exp \Big(\int_0^2 \rho(s, B_b(s)) ds \Big) \Big].
$$

 $p(t, x)$ is the heat kernel and B_b is a Brownian bridge from $(0, 0)$ to $(2, 0)$.

4 0 8

メタト メミト メミト

唐山 298 **Let**

$$
\widetilde{\mathcal{K}}_{\lambda} = \arg \inf \left\{ \frac{1}{2} ||\rho||^2_{L^2([0,2]\times \mathbb{R})} : \mathsf{Z}(\rho; 2,0) \geq e^{\lambda} \right\}.
$$

By scaling, $\widetilde{\mathcal{K}}_{\lambda} = {\lambda \rho(\lambda \cdot, \lambda^{\frac{1}{2}} \cdot) : \rho \in \mathcal{K}_{\lambda}}$, where

$$
\mathcal{K}_\lambda = \arg\inf \left\{ \frac{1}{2\lambda} ||\rho||^2_{L^2([0,2\lambda]\times\mathbb{R})} : \mathsf{Z}(\rho; 2\lambda, 0) \geq \frac{1}{\sqrt{\lambda}} e^{\lambda} \right\}.
$$

Proposition (Gaudreau Lamarre-L.-Tsai 21)

We have

$$
\lim_{\varepsilon \to 0} \mathbb{P}\Big(dist_{\delta}(\lambda^{-1} \log Z_{\varepsilon,\lambda}, \mathsf{h}_{\lambda}(\mathcal{K}_{\lambda})) < \delta) \, \big| \, Z_{\varepsilon}(2,0) \geq e^{\lambda} \Big) = 1.
$$

where $h_{\lambda}(\rho; t, x) := \lambda^{-1} \log(\lambda^{\frac{1}{2}} \mathsf{Z}(\rho; \lambda t, \lambda x)).$

The main theorem will be concluded if we can show that

$$
\lim_{\lambda \to \infty} \operatorname{dist}_{\delta}(h_{\lambda}(\mathcal{K}_{\lambda}), h_{*}) = 0
$$

So, what is the $\lambda \to \infty$ limit of \mathcal{K}_{λ} ?

4 0 8

メタト メミト メミト 一毛 …

Proposition (Gaudreau Lamarre-L.-Tsai 21)

Recall that

$$
\mathcal{K}_\lambda = \arg\inf \left\{ \frac{1}{2\lambda} \|\rho\|_{L^2([0,2\lambda]\times\mathbb{R})}^2 : \mathsf{Z}(\rho; 2\lambda, 0) \geq \frac{1}{\sqrt{\lambda}} e^{\lambda} \right\}.
$$

We have

$$
\lim_{\lambda \to \infty} \frac{1}{2\lambda} \sup \{ ||\rho - \operatorname{sech}^2||_{L^2([0,2\lambda] \times \mathbb{R})} : \rho \in \mathcal{K}_{\lambda} \} = 0,
$$

(ロ) (個) (星) (星)

高。

Heuristic for the proposition

Assume ρ is **time-independent** and write $\rho(t, \cdot) = \varphi(\cdot)$. Then

$$
\mathcal{K}_{\lambda} = \arg \inf \left\{ \|\varphi\|_{L^2(\mathbb{R})}^2 : \mathsf{Z}(\varphi; 2\lambda, 0) \geq \frac{1}{\sqrt{\lambda}} e^{\lambda} \right\}.
$$

View the PDE as $\frac{d}{dt}Z(t) = A^{\varphi}Z(t)$, where $A^{\varphi} = \frac{1}{2}\partial_{xx} + \varphi$. $Z(\varphi; 2\lambda, 0)$ should grow as $\exp(2\lambda F(\tilde{\varphi}))$ as $\lambda \to \infty$, where

$$
F(\varphi) = \sup \Big\{ \int_{\mathbb{R}} \varphi g^2 - \frac{1}{2} g'^2 : g \in H^1(\mathbb{R}) \text{ and } ||g||_{L^2(\mathbb{R})} = 1 \Big\}.
$$

■ Since $\mathsf{Z}(\varphi; 2\lambda, 0) \sim \exp(2\lambda F(\varphi))$, \mathcal{K}_{λ} approximates

$$
\arg\inf\left\{ \|\varphi\|_{L^2(\mathbb{R})}^2 : F(\varphi) \ge \frac{1}{2} \right\}.
$$

This set is given by $\{\operatorname{sech}^2(\cdot - v)\}_{v \in \mathbb{R}}$ (see next page).

Lemma $(L⁴$ Gagliardo-Nirenberg-Sobolev inequality)

For $g \in L^2(\mathbb{R})$ and $g' \in L^2(\mathbb{R})$, we have

$$
||g||_{L^{4}(\mathbb{R})} \leq 3^{-\frac{1}{8}} ||g'||_{L^{2}(\mathbb{R})}^{\frac{1}{4}} ||g||_{L^{2}(\mathbb{R})}^{\frac{3}{4}}
$$

By solving a differential equation, it is known e.g. [Dolbeault-Esteban-Laptev-Loss 14] that the equality holds iff

$$
g(x) = a \cdot \operatorname{sech}(b(x - v))
$$

for some fixed a, b, v .

Lemma (Gaudreau Lamarre-L.-Tsai 21)

$$
F(\varphi) = \sup \Big\{ \int_{\mathbb{R}} \varphi g^2 - \frac{1}{2} g'^2 : g \in H^1(\mathbb{R}) \text{ and } ||g||_{L^2(\mathbb{R})} = 1 \Big\}
$$

$$
\leq \frac{1}{2} \Big(\frac{3}{4} \Big)^{\frac{2}{3}} ||\varphi||_{L^2(\mathbb{R})}^{\frac{4}{3}}
$$

The inequality becomes an equality if and only if $\varphi(x) = \alpha^2 sech^2(\alpha(x - v))$.

イロト イ部 トメ ミト メ ミト

 $2Q$

重

- **Characterization of** \mathcal{K}_{λ} **.**
	- \mathcal{K}_{λ} is not empty.
	- \mathcal{K}_{λ} only contains non-negative symmetric and decreasing function in space.
	- L²-norm estimate of $\rho \in \mathcal{K}_{\lambda}$.

すロト (御) すきとすきといき。

Recall that

$$
\mathcal{K}_\lambda = \arg\inf \left\{ \frac{1}{2\lambda} \|\rho\|_{L^2([0,2\lambda]\times\mathbb{R})}^2 : \mathsf{Z}(\rho; 2\lambda, 0) \geq \frac{1}{\sqrt{\lambda}} e^{\lambda} \right\}.
$$

The problem is that $\{\|\rho\|_{L^2([0,2\lambda]\times\mathbb{R})}\leq r\}$ is not compact in the L^2 topology.

Remedy: we can find larger space β such that

- **The map Z** : $\rho \to \mathsf{Z}(\rho; 2\lambda, 0)$ is continuous from \mathcal{B} to \mathbb{R} .
- $\|\phi\|_{L^2([0,2\lambda]\times\mathbb{R})} \leq r$ forms a **compact** set in β .

◆ロト→個ト→電ト→電ト→電

The following lemma intrinsically follows from [Chen 10].

Lemma

For φ continuous and bounded,

$$
\lim_{\lambda \to \infty} \lambda^{-1} \log \mathbb{E}_{0 \to 0} \left[\exp \left(\int_0^{\lambda} \varphi(B_b(s)) \right) \right] = F(\varphi).
$$

As a consequence,

$$
\mathsf{Z}(\text{sech}^2; 2\lambda, 0) = p(2\lambda, 0)\mathbb{E}_{0\to 0}\left[\exp\left(\int_0^{2\lambda} \text{sech}^2(B_b(s))ds\right)\right] \sim e^{\lambda}.
$$

Corollary

For
$$
\rho \in \mathcal{K}_{\lambda}
$$
, $\frac{1}{2\lambda} ||\rho||^2_{L^2([0,2\lambda]\times\mathbb{R})} \leq \frac{4}{3} + o_{\lambda}(1)$.

K ロ ト K 御 ト K 産 ト K 産 ト …

 $E = \Omega Q$

L^2 -norm estimate

■ What does
$$
\mathsf{Z}(\rho; 2\lambda, 0) \geq \frac{1}{\sqrt{\lambda}} e^{\lambda}
$$
 tell about the L^2 norm of ρ .

Proposition

We have

$$
\mathsf{Z}(\rho; 2\lambda, 0) \leq C \exp\Big(\int_0^{2\lambda} F(\rho(r, \cdot)) dr\Big).
$$

Proof idea.

...

Assume that $Z(0, x) = f(x) \in C_c^{\infty}(\mathbb{R})$ and $\rho \in C_c^{\infty}(\mathbb{R}^2)$. Then

$$
\partial_r \mathsf{Z}(r,x) = \frac{1}{2} \partial_{xx} \mathsf{Z}(r,x) + \rho(r,x) \mathsf{Z}(r,x).
$$

Multiply both sides by $Z(r, x)$ and integrate in x,

$$
\frac{1}{2}\partial_r \|Z(r,\cdot)\|_{L^2(\mathbb{R})}^2 \le F(\rho(r,\cdot)) \|Z(r,\cdot)\|_{L^2(\mathbb{R})}^2
$$

Integrate in r , $||Z(t,\cdot)||_{L^2(\mathbb{R})}^2 \le \exp\left(2\int_0^t F(\rho(r,\cdot))dr\right) ||f||_{L^2(\mathbb{R})}^2$

4. 0. 6

メタト メミト メミト

重

 $2Q$

If $\rho \in \mathcal{K}_{\lambda}$, 1 $\frac{1}{2\lambda} \|\rho\|_{L^2([0,2\lambda]\times\mathbb{R})}^2 \leq \frac{4}{3}$ $\frac{1}{3} + o_{\lambda}(1)$.

For $\rho \in \mathcal{K}_{\lambda}$, we have

$$
\frac{1}{\sqrt{\lambda}}e^{\lambda} \le \mathsf{Z}(\rho; 2\lambda, 0) \le C \exp\left(\int_0^{2\lambda} F(\rho(r, \cdot)) dr\right)
$$

$$
\le C \exp\left(\int_0^{2\lambda} \frac{1}{2} \left(\frac{3}{4}\right)^{\frac{2}{3}} ||\rho(r, \cdot)||_{L^2(\mathbb{R})}^{\frac{4}{3}} dr\right)
$$

$$
\le C \exp\left(\int_0^{2\lambda} \frac{1}{4} \left(||\rho(r, \cdot)||_{L^2(\mathbb{R})}^2 + \frac{2}{3}\right) dr\right) \le C e^{\lambda + O_{\lambda}(1)}
$$

 $F(\rho(r, \cdot))$ can not be far from $\frac{1}{2}(\frac{3}{4})^{\frac{2}{3}}\|\rho(r, \cdot)\|_{L^2(\mathbb{R})}^{\frac{4}{3}}$.

 $\|\rho(r,\,\boldsymbol{\cdot}\,)\|_{L^2(\mathbb{R})}^2$ can not be far away from $\frac{4}{3}$.

K 唐 K (K 唐 K) →

 $2Q$ 惜し

Lemma

Consider a sequence of symmetric decreasing function $\{\varphi_n\}_{n=1}^{\infty}$ satisfying $\|\varphi_n\|_{L^2(\mathbb{R})}^2 = \frac{4}{3}$ and $F(\varphi_n) \to \frac{1}{2}$, then $\varphi_n \to sech^2$ in $L^2(\mathbb{R})$.

This is enough to show $K_{\lambda} \to \text{sech}^2$. To conclude the limit shape, need to show $h_{\lambda}(\mathcal{K}_{\lambda}) \to h_{*}$ where $h_{\lambda}(\rho; t, x) := \lambda^{-1} \log(\lambda^{\frac{1}{2}} \mathsf{Z}(\rho; \lambda t, \lambda x)).$

We show

 $h_{\lambda}(\mathcal{K}_{\lambda})$ and $h_{\lambda}(\mathrm{sech}^2)$ is close.

 $h_{\lambda}(\mathrm{sech}^2) \to h_*$.

重き メモドー

画

■ We have

$$
h_{\lambda}(\text{sech}^{2}) = \lambda^{-1} \log \lambda^{\frac{1}{2}} \mathsf{Z}(\text{sech}^{2}; \lambda t; \lambda x)
$$

= $\lambda^{-1} \log \mathbb{E}_{\lambda x \to 0} \left[\exp \left(\int_{0}^{\lambda t} \text{sech}^{2}(B_{b}(s)ds) \right) \right] - \frac{x^{2}}{2t} - \lambda^{-1} \log \sqrt{4\pi}$

 \blacksquare Let η be the hitting time of zero. We have

$$
\mathbb{E}_{\lambda x \to 0} \left[\exp \left(\int_0^{\lambda t} \mathrm{sech}^2(B_b(s) ds) \right) \right] \approx \mathbb{E} \left[\exp \left(\frac{1}{2} (\lambda t - \eta) \right) \right].
$$

We have $\mathbb{P}(\eta \approx \lambda s) \approx \exp(-\frac{\lambda x^2(t-s)}{2st})$. Hence the limit is

$$
\sup \left\{ \frac{1}{2}(t-s) - \frac{x^2(t-s)}{2st} \right\} = h_*(t,x) + \frac{x^2}{2t}.
$$

イロト イ団 トメ ミトメ ミトリ (を)

The physics work [Krajenbrink-Le Doussal 21] solves the finite λ **limit shape** (conditioning on $h_{\varepsilon}(2,0) > \lambda$ for fixed λ and send $\varepsilon \to 0$) by solving the $\{P,Q\}$ system

$$
\partial_t Q = \frac{1}{2} \partial_x^2 Q + P Q^2,
$$

$$
-\partial_t P = \frac{1}{2} \partial_x^2 P + P^2 Q.
$$

which (formally) can be seen from the variational formula. A major problem would be building (rigorous) relation between the solution to the $\{P,Q\}$ system and the large deviation of the KPZ equation.

メロト メ母 トメ ヨ トメ ヨ トー

惜し 298

Thank you!

イロト イ団 ト イモト イモト

重し 2990