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The KPZ equation

Introduced by [Kardar-Parisi-Zhang 86]

∂th(t, x) =
1

2
∂xxh(t, x) +

1

2
(∂xh(t, x))2 + ξ(t, x),

ξ is the space-time white noise, E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x− y).

The solution theory is ill posed in the classical way.
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The SHE

Look at the stochastic heat equation (SHE)

∂tZ(t, x) =
1

2
∂xxZ(t, x) + Z(t, x)ξ(t, x),

We say h(t, x) := logZ(t, x) is the Hopf-Cole solution to be the KPZ
equation.

Mild solution of the SHE

Z(t, x) =

∫
R
p(t, x− y)Z(0, y)dy

+

∫ t

0

∫
R
p(t− s, x− y)Z(s, y)ξ(s, y)dsdy.

p(t, x) := 1√
2πt

e−
x2

2t is the heat kernel.

Iterating above one obtain the chaos expansion of Z(t, x).
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KPZ equation

[Mueller 91] positivity of the solution to the SHE.

Dirac-Delta initial data

∂tZ(t, x) =
1

2
∂xxZ(t, x) + ξ(t, x)Z(t, x), Z(0, ·) = δ(·).

[Moreno-Flores 14] Z(t, x) is positive for any (t, x) ∈ R+ × R.

We refer h = logZ to be the solution to the KPZ equation starting from the
narrow wedge initial data.
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Review of previous results

Focus on narrow wedge initial data.

One point fluctuation [Amir-Corwin-Quastel 11]

Multi-point results [Quastel-Sarkar 20], [Virag 20].

Tail behavior, one point large deviations (long time lower tail)
[Ghosal-Corwin 18], [Tsai 18], [Cafasso-Claeys 19] (long time upper tail)
[Das-Tsai 19] (short time behavior) [L.-Tsai 20].

Law of iterated logarithm [Das-Ghosal 21]

Also (more) results in the physics literature by Kamenev, Krajenbrink, Le
Doussal, Meerson, Sasorov...

Yier Lin KPZ equation with a small noise



KPZ equation with a small noise

Consider

∂thε(t, x) =
1

2
∂xxhε(t, x) +

1

2
(∂xhε(t, x))2 +

√
εξ(t, x).

with narrow wedge initial data.

Letting ε→ 0, it is intuitive that hε → h = log p(t, x) which solves

∂th(t, x) =
1

2
∂xxh(t, x) +

1

2
(∂xh(t, x))2

Conditioning: Force hε(2, 0) > λ, what is the limit shape of hε on [0, 2]× R
for large λ?
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Deep Upper tail and limit shape

Theorem (Gaudreau Lamarre-L.-Tsai 21)

Fix arbitrary δ > 0. Define hε,λ(t, x) = λ−1hε(t, λ
1
2 x), we have

lim
λ→∞

lim
ε→0

P
(

distδ(hε,λ, h∗) < δ
∣∣hε(2, 0) ≥ λ

)
= 1,

where distδ(f, g) = ‖f − g‖L∞([δ,2]×[−δ−1,δ−1]) and

h∗(t, x) =

{
t
2
− |x|, |x| ≤ t,
−x

2

2t
|x| ≥ t.
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This result confirms the prediction by
[Kamenev-Meerson-Sasarov 16].

Yier Lin KPZ equation with a small noise



SHE language

The theorem is equivalent to show that

lim
λ→∞

lim
ε→0

P
(

distδ(λ
−1 logZε,λ, h∗)

∣∣Zε(2, 0) ≥ eλ
)

= 1

where Zε,λ(·, ·) = Zε(·, λ 1
2 ·) solves the SHE

∂tZε(t, x) =
1

2
∂xxZε(t, x) +

√
εξ(t, x)Zε(t, x),

Zε(0, ·) = δ(·).
We start with a result of functional large deviation principle with Zε.
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Functional large deviation principle

Theorem (L.-Tsai 20)

Fix δ > 0. {Zε(·, ·)}ε∈(0,1) ⊆ C([δ, 2]× R) satisfies a LDP with speed ε−1 and a
good rate function

I(f) = inf
{1

2
‖ρ‖2

L2([0,2]×R) : Z(ρ) = f, ρ ∈ L2([0, 2]× R)
}
.

where Z(ρ) = Z(ρ; t, x) is defined as the mild solution of

∂tZ(ρ; t, x) =
1

2
∂xxZ(ρ; t, x) + ρ(t, x)Z(ρ; t, x), Z(ρ; 0, ·) = δ(·).

More explicitly,

Z(ρ; t, x) := p(t, x)E
[

exp
(∫ 2

0
ρ(s,Bb(s))ds

)]
.

p(t, x) is the heat kernel and Bb is a Brownian bridge from (0, 0) to (2, 0).
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An important observable

Let

K̃λ = arg inf
{

1
2
‖ρ‖2

L2([0,2]×R) : Z(ρ; 2, 0) ≥ eλ
}
.

By scaling, K̃λ = {λρ(λ·, λ 1
2 ·) : ρ ∈ Kλ}, where

Kλ = arg inf
{

1
2λ
‖ρ‖2

L2([0,2λ]×R) : Z(ρ; 2λ, 0) ≥
1
√
λ
eλ
}
.

Proposition (Gaudreau Lamarre-L.-Tsai 21)

We have

lim
ε→0

P
(

distδ(λ
−1 logZε,λ, hλ(Kλ)) < δ)

∣∣Zε(2, 0) ≥ eλ
)

= 1.

where hλ(ρ; t, x) := λ−1 log(λ
1
2 Z(ρ;λt, λx)).

The main theorem will be concluded if we can show that

lim
λ→∞

distδ(hλ(Kλ), h∗) = 0

So, what is the λ→∞ limit of Kλ?
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λ→ ∞ limit of Kλ

Proposition (Gaudreau Lamarre-L.-Tsai 21)

Recall that

Kλ = arg inf
{

1
2λ
‖ρ‖2

L2([0,2λ]×R) : Z(ρ; 2λ, 0) ≥
1
√
λ
eλ
}
.

We have

lim
λ→∞

1

2λ
sup{‖ρ− sech2‖L2([0,2λ]×R) : ρ ∈ Kλ} = 0,
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Heuristic for the proposition

Assume ρ is time-independent and write ρ(t, ·) = ϕ(·). Then

Kλ = arg inf
{
‖ϕ‖2

L2(R) : Z(ϕ; 2λ, 0) ≥
1
√
λ
eλ
}
.

View the PDE as d
dt
Z(t) = AϕZ(t), where Aϕ = 1

2
∂xx + ϕ. Z(ϕ; 2λ, 0) should

grow as exp(2λF (ϕ)) as λ→∞, where

F (ϕ) = sup
{∫

R
ϕg2 −

1

2
g′2 : g ∈ H1(R) and ‖g‖L2(R) = 1

}
.

Since Z(ϕ; 2λ, 0) ∼ exp(2λF (ϕ)), Kλ approximates

arg inf
{
‖ϕ‖2

L2(R) : F (ϕ) ≥
1

2

}
.

This set is given by {sech2(· − v)}v∈R (see next page).
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A L4 GNS inequality

Lemma (L4 Gagliardo-Nirenberg-Sobolev inequality)

For g ∈ L2(R) and g′ ∈ L2(R), we have

‖g‖L4(R) ≤ 3−
1
8 ‖g′‖

1
4

L2(R)‖g‖
3
4

L2(R)

By solving a differential equation, it is known e.g. [Dolbeault-Esteban-Laptev-Loss
14] that the equality holds iff

g(x) = a · sech(b(x− v))

for some fixed a, b, v.

Lemma (Gaudreau Lamarre-L.-Tsai 21)

F (ϕ) = sup
{∫

R
ϕg2 −

1

2
g′2 : g ∈ H1(R) and ‖g‖L2(R) = 1

}
≤

1

2

(3

4

) 2
3 ‖ϕ‖

4
3

L2(R)

The inequality becomes an equality if and only if ϕ(x) = α2sech2(α(x− v)).
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Some Challenges for the proof

Characterization of Kλ.

Kλ is not empty.

Kλ only contains non-negative symmetric and decreasing function in
space.

L2-norm estimate of ρ ∈ Kλ.
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Kλ is not empty

Recall that

Kλ = arg inf
{

1
2λ
‖ρ‖2

L2([0,2λ]×R) : Z(ρ; 2λ, 0) ≥
1
√
λ
eλ
}
.

The problem is that {‖ρ‖L2([0,2λ]×R) ≤ r} is not compact in the L2 topology.

Remedy: we can find larger space B such that

The map Z : ρ→ Z(ρ; 2λ, 0) is continuous from B to R.

{‖ρ‖L2([0,2λ]×R) ≤ r} forms a compact set in B.
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L2-norm estimate

The following lemma intrinsically follows from [Chen 10].

Lemma

For ϕ continuous and bounded,

lim
λ→∞

λ−1 logE0→0

[
exp

(∫ λ

0
ϕ(Bb(s))

)]
= F (ϕ).

As a consequence,

Z(sech2; 2λ, 0) = p(2λ, 0)E0→0

[
exp

(∫ 2λ

0
sech2(Bb(s))ds

)]
∼ eλ.

Corollary

For ρ ∈ Kλ, 1
2λ
‖ρ‖2

L2([0,2λ]×R) ≤
4
3

+ oλ(1).
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L2-norm estimate

What does Z(ρ; 2λ, 0) ≥ 1√
λ
eλ tell about the L2 norm of ρ.

Proposition

We have

Z(ρ; 2λ, 0) ≤ C exp
(∫ 2λ

0
F (ρ(r, ·))dr

)
.

Proof idea.

Assume that Z(0, x) = f(x) ∈ C∞c (R) and ρ ∈ C∞c (R2). Then

∂rZ(r, x) =
1

2
∂xxZ(r, x) + ρ(r, x)Z(r, x).

Multiply both sides by Z(r, x) and integrate in x,

1

2
∂r‖Z(r, ·)‖2L2(R) ≤ F (ρ(r, ·))‖Z(r, ·)‖2L2(R)

Integrate in r, ‖Z(t, ·)‖2L2(R) ≤ exp

(
2
∫ t
0 F (ρ(r, ·))dr

)
‖f‖2

L2(R)

...
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Key step

If ρ ∈ Kλ,
1

2λ
‖ρ‖2

L2([0,2λ]×R) ≤
4

3
+ oλ(1).

For ρ ∈ Kλ, we have

1
√
λ
eλ ≤ Z(ρ; 2λ, 0) ≤ C exp

(∫ 2λ

0
F (ρ(r, ·))dr

)
≤C exp

(∫ 2λ

0

1

2

(3

4

) 2
3 ‖ρ(r, ·)‖ 4

3

L2(R)dr

)
≤C exp

(∫ 2λ

0

1

4

(
‖ρ(r, ·)‖2L2(R) + 2

3

)
dr

)
≤ Ceλ+oλ(1)

F (ρ(r, ·)) can not be far from 1
2

( 3
4

)
2
3 ‖ρ(r, ·)‖ 4

3

L2(R).

‖ρ(r, ·)‖2L2(R) can not be far away from 4
3

.
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A perturbation analysis

Lemma

Consider a sequence of symmetric decreasing function {ϕn}∞n=1 satisfying

‖ϕn‖2L2(R) = 4
3

and F (ϕn)→ 1
2

, then ϕn → sech2 in L2(R).

This is enough to show Kλ → sech2. To conclude the limit shape, need to show

hλ(Kλ)→ h∗ where hλ(ρ; t, x) := λ−1 log(λ
1
2 Z(ρ;λt, λx)).

We show

hλ(Kλ) and hλ(sech2) is close.

hλ(sech2)→ h∗.
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Asymptotic limit

We have

hλ(sech2) = λ−1 log λ
1
2 Z(sech2;λt;λx)

= λ−1 logEλx→0

[
exp

(∫ λt

0
sech2(Bb(s)ds)

)]
−
x2

2t
− λ−1 log

√
4π

Let η be the hitting time of zero. We have

Eλx→0

[
exp

(∫ λt

0
sech2(Bb(s)ds)

)]
≈ E

[
exp

(
1
2

(λt− η)
)]
.

We have P(η ≈ λs) ≈ exp(−λx
2(t−s)
2st

). Hence the limit is

sup

{
1

2
(t− s)−

x2(t− s)
2st

}
= h∗(t, x) +

x2

2t
.
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A final remark

The physics work [Krajenbrink-Le Doussal 21] solves the finite λ limit shape
(conditioning on hε(2, 0) > λ for fixed λ and send ε→ 0) by solving the
{P,Q} system

∂tQ =
1

2
∂2xQ+ PQ2,

−∂tP =
1

2
∂2xP + P 2Q.

which (formally) can be seen from the variational formula. A major problem
would be building (rigorous) relation between the solution to the {P,Q}
system and the large deviation of the KPZ equation.
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Thank you!
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