KPZ equation with a small noise, deep upper tail and limit shape

Yier Lin

MSRI, November 4, 2021

Joint work with Pierre Yves Gaudreau Lamarre (University of Chicago), Li-Cheng Tsai (Rutgers University)

∃ ⊳

■ Introduced by [Kardar-Parisi-Zhang 86]

$$\partial_t h(t,x) = \frac{1}{2} \partial_{xx} h(t,x) + \frac{1}{2} (\partial_x h(t,x))^2 + \xi(t,x),$$

 ξ is the space-time white noise, $\mathbb{E}[\xi(t, x)\xi(s, y)] = \delta(t - s)\delta(x - y).$

• The solution theory is ill posed in the classical way.

< ≣ ▶

The SHE

■ Look at the stochastic heat equation (SHE)

$$\partial_t Z(t,x) = \frac{1}{2} \partial_{xx} Z(t,x) + Z(t,x)\xi(t,x),$$

We say $h(t, x) := \log Z(t, x)$ is the Hopf-Cole solution to be the KPZ equation.

Mild solution of the SHE

$$\begin{split} Z(t,x) &= \int_{\mathbb{R}} p(t,x-y) Z(0,y) dy \\ &+ \int_{0}^{t} \int_{\mathbb{R}} p(t-s,x-y) Z(s,y) \xi(s,y) ds dy. \end{split}$$

 $p(t,x) := \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$ is the heat kernel.

Iterating above one obtain the chaos expansion of Z(t, x).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- [Mueller 91] positivity of the solution to the SHE.
- Dirac-Delta initial data

$$\partial_t Z(t,x) = \frac{1}{2} \partial_{xx} Z(t,x) + \xi(t,x) Z(t,x), \qquad Z(0, \, \boldsymbol{\cdot}) = \delta(\, \boldsymbol{\cdot}\,).$$

[Moreno-Flores 14] Z(t, x) is positive for any $(t, x) \in \mathbb{R}_+ \times \mathbb{R}$.

• We refer $h = \log Z$ to be the solution to the KPZ equation starting from the narrow wedge initial data.

Review of previous results

- Focus on narrow wedge initial data.
- One point fluctuation [Amir-Corwin-Quastel 11]
 - Multi-point results [Quastel-Sarkar 20], [Virag 20].
- Tail behavior, one point large deviations (long time lower tail)
 [Ghosal-Corwin 18], [Tsai 18], [Cafasso-Claeys 19] (long time upper tail)
 [Das-Tsai 19] (short time behavior) [L.-Tsai 20].
- Law of iterated logarithm [Das-Ghosal 21]
- Also (more) results in the physics literature by Kamenev, Krajenbrink, Le Doussal, Meerson, Sasorov...

A (1) A (2) A (2) A

-

Consider

$$\partial_t h_{\varepsilon}(t,x) = \frac{1}{2} \partial_{xx} h_{\varepsilon}(t,x) + \frac{1}{2} (\partial_x h_{\varepsilon}(t,x))^2 + \sqrt{\varepsilon} \xi(t,x).$$

with narrow wedge initial data.

• Letting $\varepsilon \to 0$, it is intuitive that $h_{\varepsilon} \to \mathbf{h} = \log p(t, x)$ which solves

$$\partial_t \mathbf{h}(t,x) = \frac{1}{2} \partial_{xx} \mathbf{h}(t,x) + \frac{1}{2} (\partial_x \mathbf{h}(t,x))^2$$

• Conditioning: Force $h_{\varepsilon}(2,0) > \lambda$, what is the limit shape of h_{ε} on $[0,2] \times \mathbb{R}$ for large λ ?

Theorem (Gaudreau Lamarre-L.-Tsai 21)

Fix arbitrary $\delta > 0$. Define $h_{\varepsilon,\lambda}(t,x) = \lambda^{-1}h_{\varepsilon}(t,\lambda^{\frac{1}{2}}x)$, we have $\lim_{\lambda \to \infty} \lim_{\varepsilon \to 0} \mathbb{P}\left(dist_{\delta}(h_{\varepsilon,\lambda},\mathsf{h}_{*}) < \delta \mid h_{\varepsilon}(2,0) \ge \lambda\right) = 1,$ where $dist_{\delta}(f,g) = \|f - g\|_{L^{\infty}([\delta,2] \times [-\delta^{-1},\delta^{-1}])}$ and $\mathsf{h}_{*}(t,x) = \begin{cases} \frac{t}{2} - |x|, & |x| \le t, \\ -\frac{x^{2}}{2t} & |x| \ge t. \end{cases}$

This result confirms the prediction by [Kamenev-Meerson-Sasarov 16].

個人 《日》 《日》 - 日

■ The theorem is equivalent to show that

$$\lim_{\lambda \to \infty} \lim_{\varepsilon \to 0} \mathbb{P} \Big(\operatorname{dist}_{\delta}(\lambda^{-1} \log Z_{\varepsilon,\lambda}, \mathsf{h}_*) \, \big| \, Z_{\varepsilon}(2,0) \ge e^{\lambda} \Big) = 1$$

where $Z_{\varepsilon,\lambda}(\cdot, \cdot) = Z_{\varepsilon}(\cdot, \lambda^{\frac{1}{2}} \cdot)$ solves the SHE

$$\partial_t Z_{\varepsilon}(t,x) = \frac{1}{2} \partial_{xx} Z_{\varepsilon}(t,x) + \sqrt{\varepsilon} \xi(t,x) Z_{\varepsilon}(t,x),$$

$$Z_{\varepsilon}(0, \cdot) = \delta(\cdot).$$

• We start with a result of functional large deviation principle with Z_{ε} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (L.-Tsai 20)

Fix $\delta > 0$. $\{Z_{\varepsilon}(\cdot, \cdot)\}_{\varepsilon \in (0,1)} \subseteq C([\delta, 2] \times \mathbb{R})$ satisfies a LDP with speed ε^{-1} and a good rate function

$$I(f) = \inf \left\{ \frac{1}{2} \|\rho\|_{L^2([0,2]\times\mathbb{R})}^2 : \mathsf{Z}(\rho) = f, \rho \in L^2([0,2]\times\mathbb{R}) \right\}$$

where $\mathsf{Z}(\rho)=\mathsf{Z}(\rho;t,x)$ is defined as the mild solution of

$$\partial_t \mathsf{Z}(\rho; t, x) = \frac{1}{2} \partial_{xx} \mathsf{Z}(\rho; t, x) + \rho(t, x) \mathsf{Z}(\rho; t, x), \qquad \mathsf{Z}(\rho; 0, \boldsymbol{\cdot}) = \delta(\boldsymbol{\cdot}).$$

More explicitly,

$$\mathsf{Z}(\rho;t,x) := p(t,x) \mathbb{E}\Big[\exp\Big(\int_0^2 \rho(s,B_b(s))ds\Big)\Big].$$

p(t, x) is the heat kernel and B_b is a Brownian bridge from (0, 0) to (2, 0).

æ

Let

$$\widetilde{\mathcal{K}}_{\lambda} = \arg \inf \left\{ \frac{1}{2} \|\rho\|_{L^{2}([0,2]\times\mathbb{R})}^{2} : \mathsf{Z}(\rho;2,0) \ge e^{\lambda} \right\}.$$

• By scaling, $\widetilde{\mathcal{K}}_{\lambda} = \{\lambda \rho(\lambda \cdot, \lambda^{\frac{1}{2}} \cdot) : \rho \in \mathcal{K}_{\lambda}\},$ where

$$\mathcal{K}_{\lambda} = \arg \inf \left\{ \frac{1}{2\lambda} \|\rho\|_{L^{2}([0,2\lambda] \times \mathbb{R})}^{2} : \mathsf{Z}(\rho; 2\lambda, 0) \geq \frac{1}{\sqrt{\lambda}} e^{\lambda} \right\}.$$

Proposition (Gaudreau Lamarre-L.-Tsai 21)

We have

$$\lim_{\varepsilon \to 0} \mathbb{P}\Big(\operatorname{dist}_{\delta}(\lambda^{-1} \log Z_{\varepsilon,\lambda}, \mathsf{h}_{\lambda}(\mathcal{K}_{\lambda})) < \delta) \, \big| \, Z_{\varepsilon}(2,0) \ge e^{\lambda} \Big) = 1$$

where $\mathbf{h}_{\lambda}(\rho; t, x) := \lambda^{-1} \log(\lambda^{\frac{1}{2}} \mathsf{Z}(\rho; \lambda t, \lambda x)).$

The main theorem will be concluded if we can show that

$$\lim_{\lambda \to \infty} \operatorname{dist}_{\delta}(\mathsf{h}_{\lambda}(\mathcal{K}_{\lambda}), \mathsf{h}_{*}) = 0$$

So, what is the $\lambda \to \infty$ limit of \mathcal{K}_{λ} ?

▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Proposition (Gaudreau Lamarre-L.-Tsai 21)

Recall that

$$\mathcal{K}_{\lambda} = \arg \inf \Big\{ \frac{1}{2\lambda} \|\rho\|_{L^{2}([0,2\lambda] \times \mathbb{R})}^{2} : \mathsf{Z}(\rho; 2\lambda, 0) \geq \frac{1}{\sqrt{\lambda}} e^{\lambda} \Big\}.$$

 $We \ have$

$$\lim_{\lambda \to \infty} \frac{1}{2\lambda} \sup\{\|\rho - \operatorname{sech}^2\|_{L^2([0,2\lambda] \times \mathbb{R})} : \rho \in \mathcal{K}_\lambda\} = 0,$$

| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶

æ

Heuristic for the proposition

Assume ρ is **time-independent** and write $\rho(t, \cdot) = \varphi(\cdot)$. Then

$$\mathcal{K}_{\lambda} = \arg \inf \Big\{ \|\varphi\|_{L^{2}(\mathbb{R})}^{2} : \mathsf{Z}(\varphi; 2\lambda, 0) \geq \frac{1}{\sqrt{\lambda}} e^{\lambda} \Big\}.$$

• View the PDE as $\frac{d}{dt} Z(t) = A^{\varphi} Z(t)$, where $A^{\varphi} = \frac{1}{2} \partial_{xx} + \varphi$. $Z(\varphi; 2\lambda, 0)$ should grow as $\exp(2\lambda F(\varphi))$ as $\lambda \to \infty$, where

$$F(\varphi) = \sup \left\{ \int_{\mathbb{R}} \varphi g^2 - \frac{1}{2} g'^2 : g \in H^1(\mathbb{R}) \text{ and } \|g\|_{L^2(\mathbb{R})} = 1 \right\}.$$

Since $Z(\varphi; 2\lambda, 0) \sim \exp(2\lambda F(\varphi)), \mathcal{K}_{\lambda}$ approximates

$$\arg\inf\left\{\|\varphi\|_{L^2(\mathbb{R})}^2: F(\varphi) \ge \frac{1}{2}\right\}.$$

• This set is given by $\{\operatorname{sech}^2(\cdot - v)\}_{v \in \mathbb{R}}$ (see next page).

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● � � �

Lemma (L^4 Gagliardo-Nirenberg-Sobolev inequality)

For $g \in L^2(\mathbb{R})$ and $g' \in L^2(\mathbb{R})$, we have

$$\|g\|_{L^4(\mathbb{R})} \le 3^{-\frac{1}{8}} \|g'\|_{L^2(\mathbb{R})}^{\frac{1}{4}} \|g\|_{L^2(\mathbb{R})}^{\frac{3}{4}}$$

By solving a differential equation, it is known e.g. [Dolbeault-Esteban-Laptev-Loss 14] that the equality holds iff

$$g(x) = a \cdot \operatorname{sech}(b(x-v))$$

for some fixed a, b, v.

Lemma (Gaudreau Lamarre-L.-Tsai 21)

$$\begin{split} F(\varphi) &= \sup \left\{ \int_{\mathbb{R}} \varphi g^2 - \frac{1}{2} g'^2 : g \in H^1(\mathbb{R}) \text{ and } \|g\|_{L^2(\mathbb{R})} = 1 \right\} \\ &\leq \frac{1}{2} \left(\frac{3}{4}\right)^{\frac{2}{3}} \|\varphi\|_{L^2(\mathbb{R})}^{\frac{4}{3}} \end{split}$$

The inequality becomes an equality if and only if $\varphi(x) = \alpha^2 \operatorname{sech}^2(\alpha(x-v))$.

イロト イロト イヨト イヨト 三日

- Characterization of \mathcal{K}_{λ} .
 - \mathcal{K}_{λ} is not empty.
 - \blacksquare \mathcal{K}_{λ} only contains non-negative symmetric and decreasing function in space.
 - L^2 -norm estimate of $\rho \in \mathcal{K}_{\lambda}$.

Recall that

$$\mathcal{K}_{\lambda} = \arg \inf \left\{ \frac{1}{2\lambda} \|\rho\|_{L^{2}([0,2\lambda] \times \mathbb{R})}^{2} : \mathsf{Z}(\rho; 2\lambda, 0) \geq \frac{1}{\sqrt{\lambda}} e^{\lambda} \right\}.$$

• The problem is that $\{\|\rho\|_{L^2([0,2\lambda]\times\mathbb{R})} \leq r\}$ is not compact in the L^2 topology.

Remedy: we can find larger space \mathcal{B} such that

• The map $\mathsf{Z}: \rho \to \mathsf{Z}(\rho; 2\lambda, 0)$ is continuous from \mathcal{B} to \mathbb{R} .

$$\{\|\rho\|_{L^2([0,2\lambda]\times\mathbb{R})} \leq r\} \text{ forms a compact set in } \mathcal{B}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The following lemma intrinsically follows from [Chen 10].

Lemma

For φ continuous and bounded,

$$\lim_{\lambda \to \infty} \lambda^{-1} \log \mathbb{E}_{0 \to 0} \left[\exp \left(\int_0^\lambda \varphi(B_b(s)) \right) \right] = F(\varphi).$$

As a consequence,

$$\mathsf{Z}(\operatorname{sech}^2; 2\lambda, 0) = p(2\lambda, 0) \mathbb{E}_{0 \to 0} \left[\exp\left(\int_0^{2\lambda} \operatorname{sech}^2(B_b(s)) ds \right) \right] \sim e^{\lambda}.$$

Corollary

For
$$\rho \in \mathcal{K}_{\lambda}$$
, $\frac{1}{2\lambda} \|\rho\|_{L^{2}([0,2\lambda] \times \mathbb{R})}^{2} \leq \frac{4}{3} + o_{\lambda}(1)$.

・ロト ・日ト ・ヨト ・ヨト

∃ 990

L^2 -norm estimate

• What does
$$\mathsf{Z}(\rho; 2\lambda, 0) \geq \frac{1}{\sqrt{\lambda}} e^{\lambda}$$
 tell about the L^2 norm of ρ .

Proposition

 $We \ have$

$$\mathsf{Z}(\rho; 2\lambda, 0) \le C \exp\Big(\int_0^{2\lambda} F(\rho(r, \cdot)) dr\Big).$$

Proof idea.

Assume that $Z(0,x) = f(x) \in C_c^{\infty}(\mathbb{R})$ and $\rho \in C_c^{\infty}(\mathbb{R}^2)$. Then

$$\partial_r \mathsf{Z}(r,x) = \frac{1}{2} \partial_{xx} \mathsf{Z}(r,x) + \rho(r,x) \mathsf{Z}(r,x).$$

Multiply both sides by Z(r, x) and integrate in x,

$$\begin{split} & \frac{1}{2}\partial_r \|\mathsf{Z}(r,\boldsymbol{\cdot})\|_{L^2(\mathbb{R})}^2 \leq F(\rho(r,\boldsymbol{\cdot}))\|\mathsf{Z}(r,\boldsymbol{\cdot})\|_{L^2(\mathbb{R})}^2 \\ & \text{Integrate in } r, \, \|\mathsf{Z}(t,\boldsymbol{\cdot})\|_{L^2(\mathbb{R})}^2 \leq \exp\left(2\int_0^t F(\rho(r,\boldsymbol{\cdot}))dr\right)\|f\|_{L^2(\mathbb{R})}^2 \end{split}$$

< 臣 > < 臣 > □

æ

• If $\rho \in \mathcal{K}_{\lambda}$, $\frac{1}{2\lambda} \|\rho\|_{L^{2}([0,2\lambda] \times \mathbb{R})}^{2} \leq \frac{4}{3} + o_{\lambda}(1).$

For $\rho \in \mathcal{K}_{\lambda}$, we have

$$\begin{split} \frac{1}{\sqrt{\lambda}} e^{\lambda} &\leq \mathsf{Z}(\rho; 2\lambda, 0) \leq C \exp\left(\int_{0}^{2\lambda} F(\rho(r, \cdot)) dr\right) \\ &\leq C \exp\left(\int_{0}^{2\lambda} \frac{1}{2} \left(\frac{3}{4}\right)^{\frac{2}{3}} \|\rho(r, \cdot)\|_{L^{2}(\mathbb{R})}^{\frac{4}{3}} dr\right) \\ &\leq C \exp\left(\int_{0}^{2\lambda} \frac{1}{4} \left(\|\rho(r, \cdot)\|_{L^{2}(\mathbb{R})}^{2} + \frac{2}{3}\right) dr\right) \leq C e^{\lambda + o_{\lambda}(1)} \end{split}$$

• $F(\rho(r, \cdot))$ can not be far from $\frac{1}{2}(\frac{3}{4})^{\frac{2}{3}} \|\rho(r, \cdot)\|_{L^{2}(\mathbb{R})}^{\frac{4}{3}}$.

 $\blacksquare \|\rho(r, \cdot)\|_{L^2(\mathbb{R})}^2 \text{ can not be far away from } \frac{4}{3}.$

Lemma

Consider a sequence of symmetric decreasing function $\{\varphi_n\}_{n=1}^{\infty}$ satisfying $\|\varphi_n\|_{L^2(\mathbb{R})}^2 = \frac{4}{3}$ and $F(\varphi_n) \to \frac{1}{2}$, then $\varphi_n \to \operatorname{sech}^2$ in $L^2(\mathbb{R})$.

This is enough to show $\mathcal{K}_{\lambda} \to \operatorname{sech}^2$. To conclude the limit shape, need to show $h_{\lambda}(\mathcal{K}_{\lambda}) \to h_*$ where $h_{\lambda}(\rho; t, x) := \lambda^{-1} \log(\lambda^{\frac{1}{2}} Z(\rho; \lambda t, \lambda x))$.

We show

- $h_{\lambda}(\mathcal{K}_{\lambda})$ and $h_{\lambda}(\operatorname{sech}^2)$ is close.
- $\bullet \ \mathsf{h}_{\lambda}(\mathrm{sech}^2) \to \mathsf{h}_{*}.$

We have

$$\begin{aligned} \mathbf{h}_{\lambda}(\operatorname{sech}^{2}) &= \lambda^{-1}\log\lambda^{\frac{1}{2}} \mathsf{Z}(\operatorname{sech}^{2};\lambda t;\lambda x) \\ &= \lambda^{-1}\log \mathbb{E}_{\lambda x \to 0} \bigg[\exp \Big(\int_{0}^{\lambda t} \operatorname{sech}^{2}(B_{b}(s)ds) \Big) \bigg] - \frac{x^{2}}{2t} - \lambda^{-1}\log\sqrt{4\pi} \end{aligned}$$

 \blacksquare Let η be the hitting time of zero. We have

$$\mathbb{E}_{\lambda x \to 0} \bigg[\exp \Big(\int_0^{\lambda t} \operatorname{sech}^2(B_b(s) ds) \Big) \bigg] \approx \mathbb{E} \bigg[\exp \big(\frac{1}{2} (\lambda t - \eta) \big) \bigg].$$

• We have $\mathbb{P}(\eta \approx \lambda s) \approx \exp(-\frac{\lambda x^2(t-s)}{2st})$. Hence the limit is

$$\sup\left\{\frac{1}{2}(t-s) - \frac{x^2(t-s)}{2st}\right\} = h_*(t,x) + \frac{x^2}{2t}.$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● ⑦ � ♡

The physics work [Krajenbrink-Le Doussal 21] solves the finite λ limit shape (conditioning on $h_{\varepsilon}(2,0) > \lambda$ for fixed λ and send $\varepsilon \to 0$) by solving the $\{P,Q\}$ system

$$\partial_t Q = \frac{1}{2} \partial_x^2 Q + P Q^2,$$

$$-\partial_t P = \frac{1}{2} \partial_x^2 P + P^2 Q.$$

which (formally) can be seen from the variational formula. A major problem would be building (rigorous) relation between the solution to the $\{P, Q\}$ system and the large deviation of the KPZ equation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Thank you!

Yier Lin KPZ equation with a small noise

물 에 제품에

æ