Invariant measures for multilane exclusion process

G. Amir¹, C. Bahadoran², O. Busani³ & E. Saada⁴

¹Department of Mathematics, Bar Ilan University, Ramat Gan, Israel ² Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne, Aubière, France ³School of Mathematics, University of Bristol, United Kingdom ⁴CNRS, Laboratoire MAP5, Université de Paris, Campus Saint-Germain-des-Prés, France

"Universality and Integrability in Random Matrix Theory and Interacting Particle Systems" MSRI, Fall 2021

Outline

[The model](#page-2-0) [Basic example : The SEP](#page-2-0) [The model : multi-lane exclusion](#page-3-0)

[Invariant measures for SEP : what is known ?](#page-5-0)

[Structure of invariant measures for multi-lane exclusion](#page-12-0) [invariant measures for two-lane SEP](#page-12-0) [The cyclic ladder](#page-32-0)

Basic example : The SEP

- \triangleright Configuration η of particles : for *z* ∈ *S* (countable), $\eta(z) = 0$ or 1. From each site *x*, choice of *y* with $p(x, y)$, (translation invariant if $p(x, y) = p(y - x)$, n.n. if $p(y - x) = 0$ for $|y - x| \neq 1$. ASEP ("asymmetric simple exclusion process") if \sum_{x} *xp*(*x*) > 0. TASEP ("Totally asymmetric simple exclusion process") if $p(1) = 1$ for $S = \mathbb{Z}$.
- \triangleright According to (independent) exponential clocks, jump from *x* to *y* if possible (*exclusion rule*).

Our model : multi-lane exclusion

Sites $V = \mathbb{Z} \times W$ with $W = \{0, \dots, n-1\}$. For $i \in W$, the *i*'th lane of *V* is $\mathbb{L}_i := \{x \in V : x = (x(0), x(1)), x(0) \in \mathbb{Z}, x(1) = i\}$ State space $\mathcal{X} = \{0,1\}^V$, with n.n. jumps on V.

We assume $(d_0 + l_0)(d_1 + l_1) > 0$, so particles can always move on both lanes. But they cannot go from \mathbb{L}_0 to \mathbb{L}_1 if $p = 0$, nor from \mathbb{L}_1 to \mathbb{L}_0 if $q = 0$. If $p = q = 0$, 2 independent SEP's on each lane. Thus if $p + q \neq 0$, interaction between the two lanes. For $i \in W$, $\gamma_i := d_i - l_i$ is the mean drift on lane *i*. Because of symmetries we assume w.l.o.g. that

$$
\gamma_0 \geq 0, \quad \gamma_0 + \gamma_1 \geq 0, \quad p \geq q, \quad p > 0 \tag{1}
$$

Why this model ? Which questions ?

- Two interpretations
	- **Figure Traffic-flow modeling :** *V* is a highway, with lanes \mathbb{L}_i on which cars have different speeds and different directions. The steps between the lanes are the direction a car can follow to change lane.
	- **Particle species :** $i \in W$ is a particle species, the dynamics within each species is a SEP on $\mathbb Z$, and a lane change becomes a spin flip for a particle to change species. By the exclusion rule, a particle cannot change its species if there is already a particle of the other species sitting at the same site. This is the only interaction between the two species.
- An intermediate model between $\mathbb Z$ and $\mathbb Z^2$: already new phenomena

Questions :

- \blacktriangleright Equilibrium : Invariant measures ? in this talk http ://arxiv.org/abs/2105.12974
- \triangleright Out of equilibrium : hydrodynamics ? In preparation

Invariant measures for SEP : what is known ?

[Lig] *Interacting particle systems.* Springer, 2005.

[FLS] Ferrari, P. A., Lebowitz, J. L., Speer, E. (2001). Blocking measures for asymmetric exclusion processes via coupling Bernoulli, 7 no. 6, 935–950.

[BLM] Bramson, M., Liggett, T. M. and Mountford, T. (2002). Characterization of stationary measures for one-dimensional exclusion processes. Ann. Probab. 30, 1539–1575. [BM] Bramson, M. and Mountford, T. (2002). Stationary blocking measures for one-dimensional nonzero mean exclusion processes. Ann. Probab. 30, 1082–1130.

[BL] Bramson, M. and Liggett, T. M. (2005). Exclusion processes in higher dimensions : stationary measures and convergence. Ann. Probab. 33, 2255–2313.

Invariant measures for SEP : what is known ?

[Theorem VIII.2.1, Lig]

 ν_{α} : product measure on S with marginals

$$
\nu_{\alpha}\{\eta:\eta(x)=1\}=\alpha(x) \qquad (2)
$$

(a) If $\forall y \in \mathcal{S}, \, \sum_{x} p(x,y) = 1,$ then $\nu_\alpha \in \mathcal{I}$ for every constant $\alpha \in [0, 1]$ (Bernoulli product measures). (b) If $\pi(.)$ satisfies

$$
\pi(x)p(x,y)=\pi(y)p(y,x),\quad \forall x,y\in S\qquad \qquad (3)
$$

or equivalently

$$
\alpha(x)(1-\alpha(y))p(x,y)=\alpha(y)(1-\alpha(x))p(y,x) \qquad (4)
$$

Then
$$
\nu_{\alpha} \in \mathcal{I}
$$
 where $\alpha(x) = \frac{\pi(x)}{1 + \pi(x)}$ (5)

[Theorem VIII.3.9, Lig]

If
$$
S = \mathbb{Z}^d
$$
, $p(x, y) = p(y - x)$, $(\mathcal{I} \cap S)_e = \{v_\alpha, \alpha \in [0, 1]\}$ (6)

Invariant measures for SEP on $\mathbb Z$: what is known?

 $S = \mathbb{Z}, p(x, y) = p(y - x)$, and irreducibility, i.e. $forall x, y \in \mathbb{Z}, x \rightarrow p$ *y*. A proba. measure μ on $\{0,1\}^{\mathbb{Z}}$ is a *blocking measure* if it concentrates on configurations η s.t.

$$
\sum_{x<0}\eta(x)+\sum_{x>0}[1-\eta(x)]<+\infty
$$

and it is a *profile measure* if

$$
\lim_{x \to -\infty} \mu\{\eta : \eta(x) = 1\} = 0 \text{ and } \lim_{x \to +\infty} \mu\{\eta : \eta(x) = 1\} = 1
$$

Every blocking measure is a profile measure, but not conversely.

Invariant measures for SEP on $\mathbb Z$: what is known?

Assuming w.l.o.g. $\sum_{\mathsf{x}}\mathsf{x} p(\mathsf{x})\geq 0,$ we have

- 1. [BLM] Either (i) $\mathcal{I}_e = \{\nu_{o}, \, \rho \in [0, 1]\}$, or (ii) $\mathcal{I}_e = \{\nu_\rho, \, \rho \in [0, 1]\} \cup \{\mu_n, n \in \mathbb{Z}\},\,$ where μ_0 is a profile measure, and $\mu_n = \tau_n \mu_0$.
- 2. [Lig] If $\sum_{x} x p(x) = 0$, then (i) occurs.
- 3. [FLS] If \sum_{x} *xp*(*x*) $>$ 0; *p*(*x*) and *p*($-x$) are decreasing for *x* ≥ 1 ; for *a* < 1, *a*^{*x*} $p(x)$ ≥ $p(-x)$ ∀*x* ≥ 1 ; then there exists a blocking measure.
- 4. [BM] If $\sum_{x} x p(x) > 0$ and $p(.)$ is finite range, then (ii) occurs and μ_0 is a blocking measure.
- 5. [BLM] If $\sum_{x} x p(x) > 0$; $p(x)$ and $p(-x)$ are decreasing for $x > 1$; $p(x) > p(-x)$ $\forall x > 1$; then (ii) occurs and μ_0 is a blocking measure. The coupling of **FLS** is used.
- 6. [BLM] If $\sum_{x<0} x^2 p(x) = +\infty$, there exists no stationary blocking measure.

An important open problem : determine whether nonblocking stationary profile measures ever exist.

Invariant measures for SEP on $\mathbb{Z} : p(1) + p(-1) = 1$

- *Translation invariant measures.* Homogeneous product Bernoulli proba. measures $\{\mu_{\rho}, \rho \in [0,1]\}, \rho$ is the average particle density per site ([Theorem VIII.2.1 (a), Lig]).
- *Blocking measures for ASEP, p(1) = d, p(-1) = l, d* \neq *l.* Invariant (non translation invariant) proba. measures ([Theorem VIII.2.1 (b), Lig]) :

When
$$
l > 0
$$
, for $c > 0$, $\rho_i^c := \frac{c \left(\frac{d}{l}\right)^l}{1 + c \left(\frac{d}{l}\right)^l}$ (7)

When $l = 0 < d$ (TASEP), for $n \in \mathbb{Z}$ and $c > 0$,

$$
\rho_i^{n,c} := \mathbf{1}_{\{i > n\}} + \frac{c}{1+c} \mathbf{1}_{\{i = n\}}, \quad i \in \mathbb{Z}
$$
 (8)

 $\rho_.$ is a solution of [\(4\)](#page-0-0) iff of the form [\(7\)](#page-9-0) when $l>$ 0, or [\(8\)](#page-9-1) when $l = 0 < d$.

Invariant measures for SEP on $\mathbb{Z} : p(1) + p(-1) = 1$

For such ρ , μ^{ρ} defined by [\(5\)](#page-6-0) is reversible.

• If $l > 0$, μ^{ρ} with $\rho = \rho^c$ given by [\(7\)](#page-9-0) is not extremal invariant. $\mu^{\rho.}$ is supported on the set

$$
\left\{\eta \in \{0,1\}^{\mathbb{Z}}: \sum_{x>0} [1-\eta(x)] + \sum_{x\leq 0} \eta(x) < +\infty \right\}
$$
(9)
-
$$
\sum_{x\leq 0} \eta(x) - \sum_{x\leq 0} [1-\eta(x)] \text{ is conserved by SEP if}
$$

 $\mathcal{H}(\eta) := \sum_{\mathsf{x} \leq 0} \eta(\mathsf{x}) - \sum_{\mathsf{x} > 0} [\mathsf{1} - \eta(\mathsf{x})]$ is conserved by SEP if initially finite ; SEP restricted to a level set of *H* is irreducible ; $H(\tau_n \eta) = H(\eta) + n, \quad \forall n \in \mathbb{Z}.$ Then, for $c > 0$, $n \in \mathbb{Z}$,

$$
\widehat{\mu}_n := \mu^{\rho^c} \left(. \left| H(\eta) = n \right. \right) \tag{10}
$$

does not depend on $c > 0$, is extremal invariant, and $\hat{\mu}_n = \tau_n \hat{\mu}_0$. • For $I = 0$, μ^{ρ} with $\rho = \rho^{n,c}$ given by [\(8\)](#page-9-1) is extremal invariant iff $c = 0$; again denoted by $\hat{\mu}_n$.

$$
\eta_n^*(x) := \mathbf{1}_{\{x > n\}}, \quad \widehat{\mu}_n := \delta_{\eta_n^*} \tag{11}
$$

Invariant measures for SEP in higher dimensions : what is known ?

Not much is known when $\mathcal{S} = \mathbb{Z}^d$.

[BL] gives necessary and sufficient conditions to have $\nu_{\alpha} \in \mathcal{I}$, which gives examples of stationary product measures that are neither homogeneous nor reversible.

Also : conditions for various types of measures to be invariant, but no characterization.

The last section of the paper is devoted to open problems ; among them one on *the cyclic ladder*.

 $\mathcal{I} \cap \mathcal{S}$ for two-lane SEP

two-parameter "Bernoulli product proba. measure" ν^{ρ_0,ρ_1} for $(\rho_0,\rho_1)\in[0,1]^2$, on $\mathcal X$ such that

$$
\nu^{\rho_0,\rho_1}(\eta(x) = 1) = \begin{cases} \rho_0 & x \in \mathbb{L}_0 \\ \rho_1 & x \in \mathbb{L}_1 \end{cases} . \tag{12}
$$

- \blacktriangleright $p = q = 0$: independent SEP's on the lanes $\Rightarrow \nu^{\rho_0, \rho_1} \in \mathcal{I}$ $\forall (\rho_0, \rho_1) \in [0,1]^2.$
- \blacktriangleright $p + q \neq 0$: is there a relation between ρ_0 and ρ_1 under which $\nu^{\rho_0,\rho_1} \in \mathcal{I}$? Let
- $\mathcal{F}:=\left\{(\rho_0,\rho_1)\in[0,1]^2:\, \rho\rho_0(1-\rho_1)-q\rho_1(1-\rho_0)=0\right\}$

This is the reversibility equation [\(4\)](#page-0-0) *in the vertical direction*.

 F expresses an equilibrium relation for vertical jumps : under ν^{ρ_0,ρ_1} , the mean algebraic "creation rate" on each lane (i.e. resulting from jumps from/to the other lane) has to be 0.

Theorem

$$
(\mathcal{I} \cap \mathcal{S})_{e} = \{ \nu^{\rho_0, \rho_1} : (\rho_0, \rho_1) \in \mathcal{F} \} = \{ \nu_{\rho} : \rho \in [0, 2] \}
$$
 (13)

where ρ *represents the total mean density over the two lanes :*

$$
\mathbb{E}_{\nu_{\rho}}[\eta^{0}(0)+\eta^{1}(0)]=\rho \qquad (14)
$$

(η *^{<i>i*} is the configuration on lane *i* : for $z \in \mathbb{Z}$, η ^{*i*} (z) = η (z , *i*)).

Tools :

• $\mathcal F$ can be parametrized by the total density $\rho \rightsquigarrow \widetilde{\rho}_0(\rho), \widetilde{\rho}_1(\rho) = 1 - \widetilde{\rho}_0(\rho).$ For instance, if $p = q \neq 0$,

$$
\mathcal{F} = \{(\rho/2, \rho/2) : \rho \in [0,2]\},\
$$

and if $q = 0 < p$,

 $\mathcal{F} = \{(0, \rho) : \rho \in [0, 1]\} \cup \{(\rho - 1, 1) : \rho \in [1, 2]\}\$

• Next we define

$$
\nu_{\rho} := \nu^{\widetilde{\rho}_0(\rho), \widetilde{\rho}_1(\rho)} \tag{15}
$$

and we have for $i \in \{0, 1\}$,

$$
\mathbf{E}_{\nu_{\rho}}[\eta^{\prime}(0)]=\widetilde{\rho}_{i}(\rho)
$$

• To prove that $\nu^{\rho_0,\rho_1} \in \mathcal{I}$:

Separate the horizontal and vertical evolutions. ν^{ρ_0,ρ_1} is stationary non reversible on each lane (by **Theorem VIII.2.1** (a), Lig]) and reversible on each vertical step (by [Theorem VIII.2.1 (b), Lig]) because $(\rho_0, \rho_1) \in \mathcal{F}$.

$$
L = \sum_{i \in W} L_h^i + \sum_{z \in \mathbb{Z}} L_v^z \tag{16}
$$

where, for $i \in W$, $z \in \mathbb{Z}$,

$$
L_h^i f(\eta) = \sum_{z \in \mathbb{Z}} p((z, i), (z + 1, i)) \eta^i(z) (1 - \eta^i(z + 1)) \times \\ \times \left(f(\eta^{(z, i), (z + 1, i)}) - f(\eta) \right)
$$

$$
L_v^z f(\eta) = \sum_{i, j \in W} p((z, i), (z, j)) \eta^i(z) (1 - \eta^j(z)) \left(f(\eta^{(z, i), (z, j)}) - f(\eta) \right)
$$

 L_h^i acts only on η^i , describes the evolution on \mathbb{L}_i , i.e. a (single-lane) SEP, for which ν^{ρ_0,ρ_1} is invariant. L^z_ν , acts only on $\{z\} \times W$, describes the motion along $\{z\} \times W$, i.e. the displacements from one lane to another at a fixed spatial location *z*, for which ν^{ρ_0, ρ_1} is invariant because $(\rho_0, \rho_1) \in \mathcal{F}$.

• To derive extremality, the scheme of proof mainly adapts the standard one (see $[L\dot{q}]$) + additional arguments to deal with discrepancies (their behavior is more tricky for the two-lane SEP) when $q = l_0 = l_1 = 0$.

If $(n, \xi) \in \mathcal{X} \times \mathcal{X}$, at $x \in V$ there is an *n* discrepancy if $n(x) > \xi(x)$, a ξ discrepancy if $n(x) < \xi(x)$, a coupled particle if $\eta(x) = \xi(x) = 1$, a hole if $\eta(x) = \xi(x) = 0$. An η and a ξ discrepancy are *discrepancies of opposite type*.

x and *y* are *p*-connected if $x \rightarrow_p y$ or $y \rightarrow_p x$. η, ξ in X are *p-ordered* if there exists no $(x, y) \in V \times V$ s.t. *x* and *y* are *p*-connected and (η, ξ) has discrepancies of opposite types at *x* and *y*.

Definition

p(., .) is *weakly irreducible* if, \forall (*x*, *y*) ∈ *V* × *V* s.t. *x* \neq *y*, *x* and *y* are *p*-connected.

When $l_0 = l_1 = q = 0$, $p(.,.)$ is not weakly irreducible.

to deal with $l_0 = l_1 = q = 0$, for which $p(.,.)$ is not weakly irreducible :

Definition

For $(\eta, \xi) \in \mathcal{X} \times \mathcal{X}$, we write $\eta \geq \xi$ if and only if there exist *x*, $y \in \mathbb{Z}$ such that $x < y$ and the following hold : (a) there are discrepancies of opposite type at $(x,1)$ and $(y,0)$; (b) $\eta^0 \leq \xi^0$ and $\eta^1\geq \xi^1$ if the discrepancy at $(x,1)$ is an η discrepancy ; or $\eta^{\mathsf{0}} \geq \xi^{\mathsf{0}}$ and $\eta^{\mathsf{1}} \leq \xi^{\mathsf{1}}$ if the discrepancy at $(\mathsf{x},\mathsf{1})$ is a ξ discrepancy ; (c) There is no discrepancy at $(z, 1)$ if $z > x$, nor any discrepancy at $(z, 0)$ if $z < y$. We define

$$
E_{<} := \{ (\eta, \xi) \in \mathcal{X} \times \mathcal{X} : \eta >< \xi \} \tag{17}
$$

Thanks to translation invariance,

Lemma *Let* $\widetilde{\nu} \in (\widetilde{\mathcal{I}} \cap \widetilde{\mathcal{S}})$ *. If* $I_0 = I_1 = q = 0$ *, then* $\widetilde{\nu}(E_{> \zeta}) = 0$ *.*

Structure of invariant measures for two-lane SEP

Let $\mathcal{D} := \{(\rho, \rho) : \rho \in [0, 2]\}$

 $(\rho^-,\rho^+)\in[0,2]^2\setminus\mathcal{D}$ is a *shock.* A proba. measure μ on $\mathcal X$ is a (ρ^-,ρ^+) -*shock measure* if

$$
\lim_{n \to -\infty} \tau_n \mu = \nu_{\rho^-}, \quad \lim_{n \to +\infty} \tau_n \mu = \nu_{\rho^+}
$$

in the sense of weak convergence. The *amplitude* of the shock (or of the shock measure) is $|\rho^+ - \rho^-|$.

A *partial blocking measure* is a proba. measure whose restriction to one lane is a blocking measure (carrying a (0, 1)-shock for us), and to the other lane is either full or empty (it is a shock measure).

Theorem

$$
\mathcal{I}_{e} = \{\nu_{\rho} : 0 \leq \rho \leq 2\} \cup \mathcal{I}_{1} \cup \mathcal{I}_{2}
$$
 (18)

For k ∈ {1, 2}*,* I*^k is a (possibly empty) set of shock measures of amplitude k, i.e.* $\tau_z \nu_{\rho^-,\rho^+}$, $z \in \mathbb{Z}$ for some shock (ρ^-,ρ^+) .

For
$$
k = 2
$$
, $(\rho^-,\rho^+) \in \mathcal{B}_2 := \{(0,2)\}$.
For $k = 1$, either
 $(\rho^-,\rho^+) \in \mathcal{R}' \subset \mathcal{B}_1 := \{(0,1),(1,0),(1,2),(2,1)\}$, or
 $(\rho^-,\rho^+) \in \mathcal{R} \subset [0,2]^2 \setminus (\mathcal{D} \cup \mathcal{B}_1 \cup \mathcal{B}_2)$.

 I_1 may contain *partial* blocking measures, I_2 is stable by translations. Outside degenerate cases, up to translations along $\mathbb{Z}, |\mathcal{I}_1| \leq 1$ and $|\mathcal{I}_2| \leq 2$. For a subset of parameter values, we can determine I_1 and I_2 , and thus obtain a complete characterization of I*e*.

We now give more details. Recall that

$$
\gamma_0\geq 0,\quad \gamma_0+\gamma_1\geq 0,\quad p\geq q,\quad p>0
$$

Generic case : $\gamma_0 + \gamma_1 \neq 0$ and $q > 0$

(i)
$$
|\mathcal{R}| \le 1
$$
 and $\mathcal{R}' = \emptyset$ hence $|\mathcal{I}_1| \le 1$.
If $\gamma_0 > 0$ and $\gamma_1 > 0$, elements of \mathcal{I}_2 are supported on

$$
\mathcal{X}_2 := \left\{ \eta \in \mathcal{X} : \sum_{x \in V : x(0) > 0} [1 - \eta(x)] + \sum_{x \in V : x(0) \le 0} \eta(x) < +\infty \right\}
$$
(19)

(ii) Assume either : (a) $\theta = d_0/l_0 = d_1/l_1 > 1$; or (b) $l_0 = l_1 = 0$ and d_0 , $d_1 > 0$. Then

$$
\mathcal{I}_2 := \{ \tau_{-z} \breve{\nu}_0 : z \in \mathbb{Z} \} \cup \{ \tau_{-z} \widehat{\nu}_0 : z \in \mathbb{Z} \}
$$
 (20)

where

(a) (4) has the $(0, 1)$ -valued solutions

$$
\rho_{z,i}^c := \frac{c\theta^z \left(\frac{\rho}{q}\right)^i}{1 + c\theta^z \left(\frac{\rho}{q}\right)^i}, \quad (z, i) \in \mathbb{Z} \times W, c > 0 \quad (21)
$$

 $\mu^{\rho^c_\varepsilon}$ is reversible for the two-lane SEP and supported on $\mathcal{X}_2.$ we fix *c* > 0 and define conditioned measures (independent of $c > 0$).

$$
\check{\nu}_n := \mu^{\rho^c} (. |H_2(\eta) = 2n) = \tau_n \check{\nu}_0, \quad n \in \mathbb{Z}
$$

$$
\widehat{\nu}_n := \mu^{\rho^c} (. |H_2(\eta) = 2n + 1) = \tau_n \widehat{\nu}_0, \quad n \in \mathbb{Z}
$$
 (22)

where now

$$
H_2(\eta) := \sum_{x \in V: x(0) \le 0} \eta(x) - \sum_{x \in V: x(0) > 0} [1 - \eta(x)] \qquad (23)
$$

(b)

$$
\breve{\nu}_0 = \delta_{\breve{\eta}} \quad ; \quad \widehat{\nu}_0 = \frac{q}{p+q} \delta_{\widehat{\eta}^0} + \frac{p}{p+q} \delta_{\widehat{\eta}^1}
$$

where for $x \in V$,

$$
\begin{aligned}\n\tilde{\eta}(x) &= \mathbf{1}_{\{x(0) > 0\}} \\
\tilde{\eta}^0(x) &= \mathbf{1}_{\{x(0) > 0\}} + \mathbf{1}_{\{x = (0,0)\}} \\
\tilde{\eta}^1(x) &= \mathbf{1}_{\{x(0) > 0\}} + \mathbf{1}_{\{x = (0,1)\}}.\n\end{aligned}
$$

(iii) A complete description of \mathcal{I}_e :

reduced parameters $(d, r) \in [0, 1] \times [0, 1]$ (by [\(1\)](#page-3-1)):

$$
r:=\frac{q}{p}, \quad d:=\frac{\gamma_0}{\gamma_0+\gamma_1} \text{ if } \gamma_0+\gamma_1\neq 0
$$

and set

$$
r_0:=\frac{1-2\sqrt{-7+\sqrt{52}}}{1+2\sqrt{-7+\sqrt{52}}}=0,042\cdots \hspace{1.5cm} (24)
$$

 $\exists Z \subset [0,1] \times [0,1]$, open, containing $\{1/2\} \times (0, r_0)$, such that $\mathcal{R} = \mathcal{R}' = \emptyset$, $\forall (\mathbf{d}, \mathbf{r}) \in \mathcal{Z}$. In particular, if $\mathbf{r} \in (0, r_0)$, $\mathbf{d}_1 = \lambda \mathbf{d}_0$ and $l_1 = \lambda l_0$ with λ close enough to 1, then [\(18\)](#page-20-0) holds with \mathcal{I}_2 as in (ii).

Case 2 : $\gamma_0 + \gamma_1 = 0$ and $q > 0$

(i) Assume $\gamma_0 = \gamma_1 = 0$. Then $\mathcal{R} = \mathcal{R}' = \mathcal{I}_2 = \emptyset$, hence $\mathcal{I}_e = \{\nu_o : \rho \in [0, 2]\}.$

Remark. When $p = q$, the dynamics is symmetric and the result is well-known. However when $p \neq q$, the two-lane SEP is not a symmetric exclusion process, and our result is new.

(ii) Assume $p = q$. The model is diffusive and nongradient, and we conjecture that the only invariant measures are Bernoulli.

```
(iii) Assume \gamma_0 \neq 0, \gamma_1 \neq 0 and p \neq q.
Then \mathcal{R} = \emptyset and |\mathcal{R}'| \leq 2.
```
$Case 3: *a* = 0$

A complete description of \mathcal{I}_e when $\gamma_0 \neq \gamma_1$:

(i) (a). If $\gamma_0 > 0$ and $\gamma_1 > 0$, then $\mathcal{R}' = \{(0, 1); (1, 2)\}$; $\mathcal{R} = \emptyset$ if $\gamma_0 \neq \gamma_1$, or contained in $\{(3/2, 1/2)\}\$ if $\gamma_0 = \gamma_1$. I_1 consists of partial blocking measures. $\mathcal{I}_2 = \emptyset$ unless $I_0 = I_1 = 0$. (b) If $l_0 = l_1 = 0$, \mathcal{I}_2 consists of blocking measures. (ii) If $\gamma_1 < 0 < \gamma_0$, then $\mathcal{R}' = \{(1,0), (1,2)\}, \mathcal{R} = \mathcal{I}_2 = \emptyset$.

 I_1 consists of partial blocking measures.

(iii) If $\gamma_0 = 0 < \gamma_1$, then $\mathcal{R}' = \{(0, 1)\}, \mathcal{R} = \mathcal{I}_2 = \emptyset$. I_1 consists of partial blocking measures.

Remark. In case (i)(a) $\mathcal{I}_2 = \emptyset$ *even* though the drifts are both strictly positive, in sharp contrast with the one-dimensional case.

Details for invariant measures when $q = 0$

$$
\eta_n^*(x) := \mathbf{1}_{\{x > n\}},\tag{25}
$$

By extension, $\eta_{-\infty}^*$ and $\eta_{+\infty}^*$ respectively denote the configurations with all 1's and all 0's.

In cases *(i)–(iii)*, for $n \in \mathbb{Z}$, we denote by $\nu^{\perp, +\infty, n}$ and $\nu^{\perp, n, -\infty}$ the proba. measures on $\mathcal X$ defined by : Under $\nu^{\perp,+\infty,n},$ $η⁰ = η[∗]_{r∞}$ (i.e. lane 0 is empty) and $η¹ ∼ ω_n$, where $\widehat{μ}_n$ is given by (25) if $μ = θ$ (or by stif partial asymmetry) by [\(25\)](#page-10-0) if $I_1 = 0$ (or by ... if partial asymmetry). Under $\nu^{\perp,n,-\infty}$, $\eta^1 = \eta_{-\infty}^*$ (i.e. lane 1 is full) and $\eta^0 \sim \widehat{\mu}_n$, where $\hat{\mu}_n$ is given by [\(25\)](#page-10-0) if $l_0 = 0$ (or by ... if partial asymmetry).

Case (i), (a). We set

$$
\mathcal{I}_1 \ := \ \left\{ \nu^{\perp,+\infty,n} : \ n \in \mathbb{Z} \right\} \cup \left\{ \nu^{\perp,n,-\infty} : \ n \in \mathbb{Z} \right\} \qquad (26)
$$

Case (i), (b). Let $\mathbb{B} := \{ (i, j) \in \mathbb{Z}^2 : i \geq j \}$, and set $\overline{\mathbb{B}}:=\mathbb{B}\cup\lbrace(+\infty,n),(n,-\infty):\ n\in\mathbb{Z}\rbrace.$ For $(i,j)\in\overline{\mathbb{B}},$ let $\nu^{\perp,i,j}$ denote the Dirac measure supported on the configuration $\eta^{\perp, i, j}$:

$$
\eta^{\perp,i,j}(z,0)=\eta_i^*(z), \quad \eta^{\perp,i,j}(z,1)=\eta_j^*(z) \qquad (27)
$$

for every $z \in \mathbb{Z}$.

$$
\mathcal{I}_2 := \left\{ \nu^{\perp, i, j} : (i, j) \in \mathbb{B} \right\} \tag{28}
$$

Case (ii). For $n \in \mathbb{Z}$, we denote by $\nu^{\perp,+\infty,n\leftarrow}$ the proba. measure on X defined by :

Lane symmetry operator σ defined by $(\sigma \eta)(z, i) = \eta(-z, i)$ for $\eta \in \mathcal{X}, (z, i) \in V$. Under $\nu^{\perp,+\infty,n\leftarrow}$, $\eta^0 = \eta^*_{+\infty}$ and $\sigma\eta^1 \sim \widehat{\mu}_n$, where $\widehat{\mu}_n$ is given by (25) if $L = 0$ (or by if partial asymmetry) [\(25\)](#page-10-0) if $I_1 = 0$ (or by ... if partial asymmetry).

$$
\mathcal{I}_1 := \left\{ \nu^{\perp, +\infty, n \leftarrow} : n \in \mathbb{Z} \right\} \cup \left\{ \nu^{\perp, n, -\infty} : n \in \mathbb{Z} \right\} \tag{29}
$$

Case (iii).

$$
\mathcal{I}_1 := \left\{ \nu^{\perp, +\infty, n} : n \in \mathbb{Z} \right\} \tag{30}
$$

Questions left open

We do not know if for certain parameter values it is possible to have $\mathcal{I}_1 \neq \emptyset$ with a shock of amplitude 1 that is not a partial blocking measure. In the case $p = q$ it is believed in [BL] that this probably does not occur.

We conjecture that when $pq > 0$, $\gamma_0 > 0$ and $\gamma_1 > 0$, then $\mathcal{I}_2 \neq \emptyset$.

Extension

Our model and approach extend to more general *multi-lane* exclusion processes with an arbitrary (finite) number of lanes. The cyclic ladder

Assumption

 $W = T_n$ *is a torus, and* $q(i, j) = Q(j - i)$ *for some* $Q: \mathbb{T}_n \to [0, +\infty)$ *is an irreducible translation-invariant kernel.* For $\rho \in [0, n]$, ν_{ρ} is the product measure on X s.t.

$$
\forall (z,i) \in \mathbb{Z} \times W, \quad \nu_{\rho} \{\eta(z,i)=1\} = \frac{\rho}{n}
$$
 (31)

[BL,page 2309] : a proba. measure on X is *rotationally invariant* if it is invariant by τ' , the translation operator along \boldsymbol{W} .

Open question 1. for the ladder process :

when *dⁱ* and *l ⁱ* are independent of *i* (i.e. the horizontal dynamics is the same on each lane), are *all* invariant measures rotationally invariant ?

Theorem
\n(0)
$$
(\mathcal{I} \cap S)_e = \{\nu_\rho, \rho \in [0, n]\}.
$$

\n(1) For $k = 1, ..., n$, let $(\rho_k^-, \rho_k^+) = (\frac{n-k}{2}, \frac{n+k}{2} = n - \rho_k^-)$. Then :
\n(a)

$$
\mathcal{I}_{\mathbf{e}} = \{\nu_{\rho} : \rho \in [0, n]\} \cup \bigcup_{k=1}^{n} \mathcal{I}_{k}
$$
 (32)

where \mathcal{I}_k is a (possibly empty) set of at most k (ρ^-_k) \bar{k} , ρ_k^+)-shock *measures of amplitude k.*

(b) If $\forall i \in W$, $\gamma_i > 0$, \mathcal{I}_n *is supported on* \mathcal{X}_n *(cf.* [\(19\)](#page-21-0)). *(c) If* ∀*i* ∈ *W*, *di*/*l ⁱ does not depend on i,* I*ⁿ consists of n explicit blocking measures* ν*ⁱ .*

(up to horizontal translations)

(2) If $\forall i \in W$, $\gamma_i := d_i - l_i = 0$, then $\mathcal{I}_e = {\nu_\rho : \rho \in [0, n]}$. *(3) If dⁱ and lⁱ do not depend on i, any invariant measure is rotationally invariant.*

Theorem : Detailed scheme of proof

▶ Step 1 : comparing an invariant measure with its **translate.** Let $\mu \in \mathcal{I}_e$. We prove that $\mu \leq \tau \mu$ or $\tau \mu \leq \mu$ (stochastic order). This is equivalent (Strassen theorem) to a coupling $\overline{\mu}(d\eta, d\xi)$ of $\mu(d\eta)$ and $\tau\mu(d\xi)$ under which $\eta \leq \xi$ or $\xi \leq \eta$ a.s. This step is an adaptation to our model of [BLM] when $q > 0$.

Main ingredients : attractiveness, weak irreducibility, finite propagation property, characterization of (I ∩ S)*e*, and space-time ergodicity for the measures in this set. *Non-weakly irreducible case.* When $q = 0$, again additional arguments, different from the translation invariant case, are necessary to fill the gap between $\{n \leq \xi\} \cup \{\xi \leq n\}$; they involve introducing an intermediate relation : $\eta \bowtie \xi$ iff $\eta >> \xi$, and both the number of $z \in \mathbb{Z}^+$ on lane 1 not occupied by a coupled particle and the number of $z \in \mathbb{Z}^+$ on lane 0 not occupied by a hole are finite.

▶ Step 2 : mean shock.

If $\tau\mu = \mu$, back to $(\mathcal{I} \cap \mathcal{S})_e$. If e.g. $\mu < \tau\mu$, the total number of discrepancies $D(\eta, \xi)$ under $\overline{\mu}$ is constant (extremality). Its expectation is a telescoping sum equal to the difference of mean densities at $\pm\infty$ ("mean" shock).

Single lane ASEP : simplifying feature.

Since max density is 1, no choice but 0/1 mean density at ±∞, *hence* asymptotic to B(0/1) at ±∞. It cannot be 1 at $-\infty$ and 0 at $+\infty$ (HDL for ASEP : not stationary for Burgers but develops rarefaction).

Thus for single-lane ASEP :

- I_e contains only profile measures.
- \blacktriangleright The following steps 3–4 not are needed for ASEP.

▶ Step 3 : mean shock implies shock. From step 2 and Cesaro averaging, \exists limits $\mu_+ \in (\mathcal{I} \cap \mathcal{S})$ at $\pm\infty$.

Problem : show that $\mu_+ \in (I \cap S)_{e}$. *Then* $\mu_+ = \mu_{\rho^{\pm}}$, i.e. it is a (ρ^-,ρ^+) -shock measure.

By step 2, $|\rho^+ - \rho^-| \in \{1, 2\}.$

 $|p^+ - p^-| = 2$: then $\{p^-, p^+\} = \{0, 2\}$. *Profile measures*, analogous to ASEP. Sometimes explicit blocking measures.

►
$$
|\rho^+ - \rho^-|
$$
 = 1 : shock measure. *Problem* : what are possible (ρ^-,ρ^+) ?

▶ Step 4 : restricting possible shocks.

Possible (ρ [−], ρ+)-shocks ? Analysis of the *flux function* :

$$
G(\rho) := \gamma_0 \rho_0 (1 - \rho_0) + \gamma_1 \rho_1 (1 - \rho_1)
$$

for a unique (ρ_0 , ρ_1) such that

 $(\rho_0, \rho_1) \in \mathcal{F}$, $\rho_0 + \rho_1 = \rho$

Remark. Vertical jumps, i.e. with rates (*p*, *q*), do not contribute to *G*.

Necessary conditions.

- ► *Flux continuity condition* (C) : $G(\rho^+) = G(\rho^-)$.
- Entropy condition $(E): \rho^{\pm}$ optimizer on $[\rho^{+} \wedge \rho^{-}, \rho^{+} \vee \rho^{-}]$ (e.g. $G(\rho^+) = G(\rho^-) = \min_{\rho \in [\rho^-, \rho^+]}\nG$ if $\rho^- < \rho^+$).

▶ Step 4 : restricting possible shocks. Define

$$
\mathcal{D} = \{ (\rho^-, \rho^+) \in [0, 2]^2 : \rho^- = \rho^+ \} \quad ([0, 2]^2 \setminus \mathcal{D} : \text{shocks})
$$

$$
\mathcal{B}_1 = \{ (0, 1), (1, 2), (2, 1) \} \quad \text{(partial blockage)}
$$

$$
\mathcal{R}_0 = \{(\rho^-, \rho^+) \in [0, 2]^2 \setminus (\mathcal{D} \cup \mathcal{B}_1) : |\rho^+ - \rho^-| = 1, (C), (E)\}\
$$

Proposition

When
$$
\gamma_0 + \gamma_1 \neq 0
$$
, let $d := \frac{\gamma_0}{\gamma_0 + \gamma_1}$ and $r := \frac{q}{p}$.

For all parameter values, $|\mathcal{R}_0|$ **< 1.**

For an explicit $r_0 \simeq 0.042$, there is a neighbourhood Z of ${d = 1/2} \times {r \in [0, r_0) \cup (1/r_0, +\infty]}$ *such that* $R_0 = \emptyset$ *for all* $(d, r) \in \mathcal{Z}$.

▶ Step 5 : uniqueness of a shock.

Proposition *If* $|\rho^+ - \rho^-| = k \in \{1, 2\}$, there are (up to shifts) at most k (ρ [−], ρ+)*-shock measures in* I*e.*

Principle of proof. Show that two shock-measures μ and ν are comparable. Then, extending an argument of [BLM] for ASEP profile measures, squeeze ν between successive translates of μ .

▶ Step 5 : uniqueness of a shock.

Optimal for $k = 2$. Explicit construction of 2 extremal (0, 2)-blocking measures for some parameter values.

Idea. For *blocking* measures, i.e. when

$$
H_2(\eta) := \sum_{x \leq 0} [\eta(x, 0) + \eta(x, 1)] - \sum_{x > 0} [(1 - \eta(x, 0)) + (1 - \eta(x, 1))]
$$

is finite, then H_2 is a conserved quantity.

Since $H_2(\tau \eta) = H_2(\eta) - 2$, blocking space $\{H_2 < +\infty\}$ split into odd/even components ; at most one measure on each.

Remark. The Proposition does *not* require blocking.

\blacktriangleright Step 6 : The case $q=0$.

One can compare each lane with an ASEP and use convergence results for ASEP to obtain more information and complete characterization of I_e in all cases except

 $\gamma_0 = \gamma_1$.

Thank you for your Attention