Invariant measures for multilane exclusion process

G. Amir¹, C. Bahadoran², O. Busani³ & E. Saada⁴

¹Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
²Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne, Aubière, France
³School of Mathematics, University of Bristol, United Kingdom
⁴CNRS, Laboratoire MAP5, Université de Paris, Campus Saint-Germain-des-Prés, France

"Universality and Integrability in Random Matrix Theory and Interacting Particle Systems" MSRI, Fall 2021

Outline

The model Basic example : The SEP The model : multi-lane exclusion

Invariant measures for SEP : what is known?

Structure of invariant measures for multi-lane exclusion invariant measures for two-lane SEP The cyclic ladder

Basic example : The SEP

- Configuration η of particles : for z ∈ S (countable), η(z) = 0 or 1. From each site x, choice of y with p(x, y), (translation invariant if p(x, y) = p(y − x), n.n. if p(y − x) = 0 for |y − x| ≠ 1).
 ASEP ("asymmetric simple exclusion process") if ∑_x xp(x) > 0.
 TASEP ("Totally asymmetric simple exclusion process") if p(1) = 1 for S = Z.
- According to (independent) exponential clocks, jump from x to y if possible (*exclusion rule*).

Our model : multi-lane exclusion

Sites $V = \mathbb{Z} \times W$ with $W = \{0, \dots, n-1\}$. For $i \in W$, the *i*'th lane of V is $\mathbb{L}_i := \{x \in V : x = (x(0), x(1)), x(0) \in \mathbb{Z}, x(1) = i\}$ State space $\mathcal{X} = \{0, 1\}^V$, with n.n. jumps on V.

We assume $(d_0 + l_0)(d_1 + l_1) > 0$, so particles can always move on both lanes. But they cannot go from \mathbb{L}_0 to \mathbb{L}_1 if p = 0, nor from \mathbb{L}_1 to \mathbb{L}_0 if q = 0. If p = q = 0, 2 independent SEP's on each lane. Thus if $p + q \neq 0$, interaction between the two lanes. For $i \in W$, $\gamma_i := d_i - l_i$ is the mean drift on lane *i*. Because of symmetries we assume w.l.o.g. that

$$\gamma_0 \geq 0, \quad \gamma_0 + \gamma_1 \geq 0, \quad p \geq q, \quad p > 0$$
 (1)

Why this model? Which questions?

- Two interpretations
 - Traffic-flow modeling : V is a highway, with lanes L_i on which cars have different speeds and different directions. The steps between the lanes are the direction a car can follow to change lane.
 - Particle species : *i* ∈ *W* is a particle species, the dynamics within each species is a SEP on Z, and a lane change becomes a spin flip for a particle to change species. By the exclusion rule, a particle cannot change its species if there is already a particle of the other species sitting at the same site. This is the only interaction between the two species.
- An intermediate model between $\mathbb Z$ and $\mathbb Z^2$: already new phenomena

Questions :

- Equilibrium : Invariant measures? in this talk http://arxiv.org/abs/2105.12974
- Out of equilibrium : hydrodynamics? In preparation

Invariant measures for SEP : what is known?

[Lig] Interacting particle systems. Springer, 2005.

[FLS] Ferrari, P. A., Lebowitz, J. L., Speer, E. (2001). Blocking measures for asymmetric exclusion processes via coupling Bernoulli, 7 no. 6, 935–950.

[BLM] Bramson, M., Liggett, T. M. and Mountford, T. (2002).
Characterization of stationary measures for one-dimensional exclusion processes. Ann. Probab. 30, 1539–1575.
[BM] Bramson, M. and Mountford, T. (2002). Stationary blocking measures for one-dimensional nonzero mean exclusion processes. Ann. Probab. 30, 1082–1130.

[BL] Bramson, M. and Liggett, T. M. (2005). Exclusion processes in higher dimensions : stationary measures and convergence. Ann. Probab. 33, 2255–2313.

Invariant measures for SEP : what is known?

[Theorem VIII.2.1, Lig]

 u_{α} : product measure on *S* with marginals

$$\nu_{\alpha}\{\eta:\eta(\mathbf{x})=\mathbf{1}\}=\alpha(\mathbf{x})$$
(2)

(a) If $\forall y \in S$, $\sum_{x} p(x, y) = 1$, then $\nu_{\alpha} \in \mathcal{I}$ for every constant $\alpha \in [0, 1]$ (Bernoulli product measures). (b) If $\pi(.)$ satisfies

$$\pi(x)p(x,y) = \pi(y)p(y,x), \quad \forall x,y \in S$$
 (3)

or equivalently

$$\alpha(x)(1-\alpha(y))p(x,y) = \alpha(y)(1-\alpha(x))p(y,x)$$
(4)

Then
$$\nu_{\alpha} \in \mathcal{I}$$
 where $\alpha(x) = \frac{\pi(x)}{1 + \pi(x)}$ (5)

[Theorem VIII.3.9, Lig]

If
$$S = \mathbb{Z}^d$$
, $p(x, y) = p(y - x)$, $(\mathcal{I} \cap S)_{\theta} = \{\nu_{\alpha}, \alpha \in [0, 1]\}$ (6)

Invariant measures for SEP on \mathbb{Z} : what is known?

 $S = \mathbb{Z}$, p(x, y) = p(y - x), and irreducibility, i.e. $\forall x, y \in \mathbb{Z}, x \rightarrow_p y$. A proba. measure μ on $\{0, 1\}^{\mathbb{Z}}$ is a *blocking measure* if it concentrates on configurations η s.t.

$$\sum_{x<0}\eta(x)+\sum_{x>0}[1-\eta(x)]<+\infty$$

and it is a profile measure if

$$\lim_{x \to -\infty} \mu\{\eta : \eta(x) = 1\} = 0 \quad \text{and} \quad \lim_{x \to +\infty} \mu\{\eta : \eta(x) = 1\} = 1$$

Every blocking measure is a profile measure, but not conversely.

Invariant measures for SEP on \mathbb{Z} : what is known?

Assuming w.l.o.g. $\sum_{x} xp(x) \ge 0$, we have

- 1. [BLM] Either (i) $\mathcal{I}_{e} = \{\nu_{\rho}, \rho \in [0, 1]\}$, or (ii) $\mathcal{I}_{e} = \{\nu_{\rho}, \rho \in [0, 1]\} \cup \{\mu_{n}, n \in \mathbb{Z}\}$, where μ_{0} is a profile measure, and $\mu_{n} = \tau_{n}\mu_{0}$.
- 2. [Lig] If $\sum_{x} xp(x) = 0$, then (i) occurs.
- 3. [FLS] If $\sum_{x} xp(x) > 0$; p(x) and p(-x) are decreasing for $x \ge 1$; for a < 1, $a^{x}p(x) \ge p(-x) \forall x \ge 1$; then there exists a blocking measure.
- 4. [BM] If $\sum_{x} xp(x) > 0$ and p(.) is finite range, then (ii) occurs and μ_0 is a blocking measure.
- 5. [BLM] If $\sum_{x} xp(x) > 0$; p(x) and p(-x) are decreasing for $x \ge 1$; $p(x) \ge p(-x) \forall x \ge 1$; then (ii) occurs and μ_0 is a blocking measure. The coupling of [FLS] is used.
- 6. [BLM] If $\sum_{x<0} x^2 p(x) = +\infty$, there exists no stationary blocking measure.

An important open problem : determine whether nonblocking stationary profile measures ever exist.

Invariant measures for SEP on \mathbb{Z} : p(1) + p(-1) = 1

- *Translation invariant measures.* Homogeneous product Bernoulli proba. measures $\{\mu_{\rho}, \rho \in [0, 1]\}, \rho$ is the average particle density per site ([Theorem VIII.2.1 (a), Lig]).
- Blocking measures for ASEP, p(1) = d, p(-1) = l, $d \neq l$. Invariant (non translation invariant) proba. measures ([Theorem VIII.2.1 (b), Lig]) :

When
$$l > 0$$
, for $c > 0$, $\rho_i^c := \frac{c \left(\frac{d}{l}\right)^i}{1 + c \left(\frac{d}{l}\right)^i}$ (7)

When l = 0 < d (TASEP), for $n \in \mathbb{Z}$ and $c \ge 0$,

$$\rho_i^{n,c} := \mathbf{1}_{\{i > n\}} + \frac{c}{1+c} \mathbf{1}_{\{i=n\}}, \quad i \in \mathbb{Z}$$
(8)

 $\rho_{.}$ is a solution of (4) iff of the form (7) when l > 0, or (8) when l = 0 < d.

 $H(\eta)$

Invariant measures for SEP on \mathbb{Z} : p(1) + p(-1) = 1

For such $\rho_{\cdot},\,\mu^{\rho_{\cdot}}$ defined by (5) is reversible.

• If I > 0, μ^{ρ} with $\rho_{\cdot} = \rho_{\cdot}^{c}$ given by (7) is not extremal invariant. μ^{ρ} is supported on the set

$$\left\{ \eta \in \{0,1\}^{\mathbb{Z}} : \sum_{x>0} [1-\eta(x)] + \sum_{x\le 0} \eta(x) < +\infty \right\}$$
(9)
$$:= \sum_{x\le 0} \eta(x) - \sum_{x>0} [1-\eta(x)] \text{ is conserved by SEP if}$$

initially finite; SEP restricted to a level set of *H* is irreducible; $H(\tau_n\eta) = H(\eta) + n, \quad \forall n \in \mathbb{Z}.$ Then, for $c > 0, n \in \mathbb{Z}$,

$$\widehat{\mu}_{n} := \mu^{\rho^{c}} \left(\cdot | \mathcal{H}(\eta) = n \right)$$
(10)

does not depend on c > 0, is extremal invariant, and $\hat{\mu}_n = \tau_n \hat{\mu}_0$. • For I = 0, μ^{ρ} with $\rho = \rho_{.}^{n,c}$ given by (8) is extremal invariant iff c = 0; again denoted by $\hat{\mu}_n$.

$$\eta_n^*(\mathbf{x}) := \mathbf{1}_{\{\mathbf{x} > n\}}, \quad \widehat{\mu}_n := \delta_{\eta_n^*} \tag{11}$$

Invariant measures for SEP in higher dimensions : what is known?

Not much is known when $S = \mathbb{Z}^d$.

[BL] gives necessary and sufficient conditions to have $\nu_{\alpha} \in \mathcal{I}$, which gives examples of stationary product measures that are neither homogeneous nor reversible.

Also : conditions for various types of measures to be invariant, but no characterization.

The last section of the paper is devoted to open problems; among them one on *the cyclic ladder*.

$\mathcal{I}\cap\mathcal{S}$ for two-lane SEP

two-parameter "Bernoulli product proba. measure" ν^{ρ_0,ρ_1} for $(\rho_0,\rho_1) \in [0,1]^2$, on \mathcal{X} such that

$$\nu^{\rho_{0},\rho_{1}}\left(\eta\left(x\right)=1\right)=\left\{\begin{array}{cc}\rho_{0} \quad x\in\mathbb{L}_{0}\\\rho_{1} \quad x\in\mathbb{L}_{1}\end{array}\right.$$
(12)

- ▶ p = q = 0 : independent SEP's on the lanes $\Rightarrow \nu^{\rho_0,\rho_1} \in \mathcal{I}$ $\forall (\rho_0, \rho_1) \in [0, 1]^2.$
- *p* + *q* ≠ 0 : is there a relation between ρ₀ and ρ₁ under which ν^{ρ₀,ρ₁} ∈ *I* ? Let

$$\mathcal{F} := \left\{ (\rho_0, \rho_1) \in [0, 1]^2 : p \rho_0 (1 - \rho_1) - q \rho_1 (1 - \rho_0) = 0 \right\}$$

This is the reversibility equation (4) in the vertical direction.

 \mathcal{F} expresses an equilibrium relation for vertical jumps : under ν^{ρ_0,ρ_1} , the mean algebraic "creation rate" on each lane (i.e. resulting from jumps from/to the other lane) has to be 0.

Theorem

$$(\mathcal{I} \cap \mathcal{S})_{e} = \{\nu^{\rho_{0},\rho_{1}} : (\rho_{0},\rho_{1}) \in \mathcal{F}\} = \{\nu_{\rho} : \rho \in [0,2]\}$$
(13)

where ρ represents the total mean density over the two lanes :

$$\mathbb{E}_{\nu_{\rho}}[\eta^{0}(0) + \eta^{1}(0)] = \rho$$
(14)

 $(\eta^{i} \text{ is the configuration on lane } i : \text{for } z \in \mathbb{Z}, \, \eta^{i}(z) = \eta(z, i)).$

Tools :

• \mathcal{F} can be parametrized by the total density $\rho \rightsquigarrow \widetilde{\rho}_0(\rho), \widetilde{\rho}_1(\rho) = 1 - \widetilde{\rho}_0(\rho).$

For instance, if $p = q \neq 0$,

$$\mathcal{F} = \{ (\rho/2, \rho/2) : \rho \in [0, 2] \},\$$

and if q = 0 < p,

 $\mathcal{F} = \{(\mathbf{0}, \rho) : \rho \in [\mathbf{0}, \mathbf{1}]\} \cup \{(\rho - \mathbf{1}, \mathbf{1}) : \rho \in [\mathbf{1}, \mathbf{2}]\}$

Next we define

$$\nu_{\rho} := \nu^{\widetilde{\rho}_0(\rho), \widetilde{\rho}_1(\rho)} \tag{15}$$

and we have for $i \in \{0, 1\}$,

$$\mathbb{E}_{\nu_{\rho}}[\eta^{i}(\mathsf{0})] = \widetilde{\rho}_{i}(\rho)$$

• To prove that $\nu^{\rho_0,\rho_1} \in \mathcal{I}$:

Separate the horizontal and vertical evolutions. ν^{ρ_0,ρ_1} is stationary non reversible on each lane (by [Theorem VIII.2.1 (a), Lig]) and reversible on each vertical step (by [Theorem VIII.2.1 (b), Lig]) because $(\rho_0, \rho_1) \in \mathcal{F}$.

$$L = \sum_{i \in W} L_h^i + \sum_{z \in \mathbb{Z}} L_v^z$$
(16)

where, for $i \in W, z \in \mathbb{Z}$,

$$\begin{split} L_{h}^{i}f(\eta) &= \sum_{z \in \mathbb{Z}} p((z,i),(z+1,i)) \eta^{i}(z)(1-\eta^{i}(z+1)) \times \\ &\times \left(f\left(\eta^{(z,i),(z+1,i)}\right) - f(\eta) \right) \\ L_{v}^{z}f(\eta) &= \sum_{i,j \in W} p((z,i),(z,j)) \eta^{i}(z)(1-\eta^{j}(z)) \left(f\left(\eta^{(z,i),(z,j)}\right) - f(\eta) \right) \end{split}$$

 L_h^i acts only on η^i , describes the evolution on \mathbb{L}_i , i.e. a (single-lane) SEP, for which ν^{ρ_0,ρ_1} is invariant. L_v^z , acts only on $\{z\} \times W$, describes the motion along $\{z\} \times W$, i.e. the displacements from one lane to another at a fixed spatial location z, for which ν^{ρ_0,ρ_1} is invariant because $(\rho_0,\rho_1) \in \mathcal{F}$. • To derive extremality, the scheme of proof mainly adapts the standard one (see [Lig]) + additional arguments to deal with discrepancies (their behavior is more tricky for the two-lane SEP) when $q = l_0 = l_1 = 0$.

If $(\eta, \xi) \in \mathcal{X} \times \mathcal{X}$, at $x \in V$ there is an η discrepancy if $\eta(x) > \xi(x)$, a ξ discrepancy if $\eta(x) < \xi(x)$, a coupled particle if $\eta(x) = \xi(x) = 1$, a hole if $\eta(x) = \xi(x) = 0$. An η and a ξ discrepancy are discrepancies of opposite type.

x and *y* are *p*-connected if $x \rightarrow_p y$ or $y \rightarrow_p x$. η, ξ in \mathcal{X} are *p*-ordered if there exists no $(x, y) \in V \times V$ s.t. *x* and *y* are *p*-connected and (η, ξ) has discrepancies of opposite types at *x* and *y*.

Definition

p(.,.) is weakly irreducible if, $\forall (x, y) \in V \times V$ s.t. $x \neq y$, x and y are p-connected.

When $l_0 = l_1 = q = 0$, p(.,.) is not weakly irreducible.

to deal with $l_0 = l_1 = q = 0$, for which p(.,.) is not weakly irreducible :

Definition

For $(\eta, \xi) \in \mathcal{X} \times \mathcal{X}$, we write $\eta > < \xi$ if and only if there exist $x, y \in \mathbb{Z}$ such that x < y and the following hold : (a) there are discrepancies of opposite type at (x, 1) and (y, 0); (b) $\eta^0 \le \xi^0$ and $\eta^1 \ge \xi^1$ if the discrepancy at (x, 1) is an η discrepancy; or $\eta^0 \ge \xi^0$ and $\eta^1 \le \xi^1$ if the discrepancy at (x, 1) is a ξ discrepancy; (c) There is no discrepancy at (z, 1) if z > x, nor any discrepancy at (z, 0) if z < y. We define

$$\boldsymbol{E}_{><} := \{ (\eta, \xi) \in \mathcal{X} \times \mathcal{X} : \eta > < \xi \}$$
(17)

Thanks to translation invariance,

Lemma Let $\tilde{\nu} \in (\tilde{\mathcal{I}} \cap \tilde{\mathcal{S}})$. If $l_0 = l_1 = q = 0$, then $\tilde{\nu}(E_{><}) = 0$.

Structure of invariant measures for two-lane SEP

Let $\mathcal{D} := \{(\rho, \rho) : \rho \in [0, 2]\}$ $(\rho^-, \rho^+) \in [0, 2]^2 \setminus \mathcal{D} \text{ is a shock.}$ A proba. measure μ on \mathcal{X} is a (ρ^-, ρ^+) -shock measure if

$$\lim_{n \to -\infty} \tau_n \mu = \nu_{\rho^-}, \quad \lim_{n \to +\infty} \tau_n \mu = \nu_{\rho^+}$$

in the sense of weak convergence. The *amplitude* of the shock (or of the shock measure) is $|\rho^+ - \rho^-|$.

A partial blocking measure is a proba. measure whose restriction to one lane is a blocking measure (carrying a (0, 1)-shock for us), and to the other lane is either full or empty (it is a shock measure).

Theorem

$$\mathcal{I}_{\boldsymbol{e}} = \{\nu_{\rho} : \mathbf{0} \le \rho \le \mathbf{2}\} \cup \mathcal{I}_{1} \cup \mathcal{I}_{2}$$
(18)

For $k \in \{1, 2\}$, \mathcal{I}_k is a (possibly empty) set of shock measures of amplitude k, i.e. $\tau_z \nu_{\rho^-, \rho^+}$, $z \in \mathbb{Z}$ for some shock (ρ^-, ρ^+) .

For
$$k = 2$$
, $(\rho^-, \rho^+) \in \mathcal{B}_2 := \{(0, 2)\}.$
For $k = 1$, either
 $(\rho^-, \rho^+) \in \mathcal{R}' \subset \mathcal{B}_1 := \{(0, 1), (1, 0), (1, 2), (2, 1)\}, \text{ or }$
 $(\rho^-, \rho^+) \in \mathcal{R} \subset [0, 2]^2 \setminus (\mathcal{D} \cup \mathcal{B}_1 \cup \mathcal{B}_2).$

 \mathcal{I}_1 may contain *partial* blocking measures, \mathcal{I}_2 is stable by translations. Outside degenerate cases, up to translations along \mathbb{Z} , $|\mathcal{I}_1| \leq 1$ and $|\mathcal{I}_2| \leq 2$. For a subset of parameter values, we can determine \mathcal{I}_1 and \mathcal{I}_2 , and thus obtain a complete characterization of \mathcal{I}_e .

We now give more details. Recall that

$$\gamma_0 \geq 0, \quad \gamma_0 + \gamma_1 \geq 0, \quad p \geq q, \quad p > 0$$

Generic case : $\gamma_0 + \gamma_1 \neq 0$ and q > 0

(i)
$$|\mathcal{R}| \leq 1$$
 and $\mathcal{R}' = \emptyset$ hence $|\mathcal{I}_1| \leq 1$.
If $\gamma_0 > 0$ and $\gamma_1 > 0$, elements of \mathcal{I}_2 are supported on

$$\mathcal{X}_{2} := \left\{ \eta \in \mathcal{X} : \sum_{x \in V: \, x(0) > 0} [1 - \eta(x)] + \sum_{x \in V: \, x(0) \le 0} \eta(x) < +\infty \right\}$$
(19)

(ii) Assume either : (a) $\theta = d_0/l_0 = d_1/l_1 > 1$; or (b) $l_0 = l_1 = 0$ and $d_0, d_1 > 0$. Then

$$\mathcal{I}_{2} := \{ \tau_{-z} \breve{\nu}_{0} : z \in \mathbb{Z} \} \cup \{ \tau_{-z} \widehat{\nu}_{0} : z \in \mathbb{Z} \}$$
(20)

where

(a) (4) has the (0, 1)-valued solutions

$$\rho_{z,i}^{c} := \frac{c\theta^{z} \left(\frac{p}{q}\right)^{i}}{1 + c\theta^{z} \left(\frac{p}{q}\right)^{i}}, \quad (z,i) \in \mathbb{Z} \times W, c > 0$$
(21)

 μ^{ρ^c} is reversible for the two-lane SEP and supported on \mathcal{X}_2 . we fix c > 0 and define conditioned measures (independent of c > 0).

$$\check{\nu}_{n} := \mu^{\rho_{\cdot}^{c}} \left(\left| H_{2}(\eta) = 2n \right) = \tau_{n} \check{\nu}_{0}, \quad n \in \mathbb{Z} \\
\widehat{\nu}_{n} := \mu^{\rho_{\cdot}^{c}} \left(\left| H_{2}(\eta) = 2n + 1 \right. \right) = \tau_{n} \widehat{\nu}_{0}, \quad n \in \mathbb{Z} \quad (22)$$

where now

$$H_2(\eta) := \sum_{x \in V: \, x(0) \le 0} \eta(x) - \sum_{x \in V: \, x(0) > 0} [1 - \eta(x)]$$
(23)

(b)

$$\check{
u}_0 = \delta_{\check{\eta}}$$
 ; $\widehat{
u}_0 = rac{q}{p+q}\delta_{\widehat{\eta}^0} + rac{p}{p+q}\delta_{\widehat{\eta}^1}$

where for $x \in V$,

$$\begin{split} \breve{\eta}(x) &= \mathbf{1}_{\{x(0)>0\}} \\ \widehat{\eta}^{0}(x) &= \mathbf{1}_{\{x(0)>0\}} + \mathbf{1}_{\{x=(0,0)\}} \\ \widehat{\eta}^{1}(x) &= \mathbf{1}_{\{x(0)>0\}} + \mathbf{1}_{\{x=(0,1)\}}. \end{split}$$

(iii) A complete description of \mathcal{I}_e :

reduced parameters $(d, r) \in [0, 1] \times [0, 1]$ (by (1)) :

$$r:=rac{m{q}}{m{p}}, \quad m{d}:=rac{\gamma_0}{\gamma_0+\gamma_1} ext{ if } \gamma_0+\gamma_1
eq 0$$

and set

$$r_0 := \frac{1 - 2\sqrt{-7 + \sqrt{52}}}{1 + 2\sqrt{-7 + \sqrt{52}}} = 0,042\cdots$$
 (24)

 $\exists \mathcal{Z} \subset [0,1] \times [0,1]$, open, containing $\{1/2\} \times (0, r_0)$, such that $\mathcal{R} = \mathcal{R}' = \emptyset$, $\forall (d, r) \in \mathcal{Z}$. In particular, if $r \in (0, r_0)$, $d_1 = \lambda d_0$ and $l_1 = \lambda l_0$ with λ close enough to 1, then (18) holds with \mathcal{I}_2 as in (ii).

Case 2 : $\gamma_0 + \gamma_1 = 0$ and q > 0

(i) Assume $\gamma_0 = \gamma_1 = 0$. Then $\mathcal{R} = \mathcal{R}' = \mathcal{I}_2 = \emptyset$, hence $\mathcal{I}_e = \{\nu_\rho : \rho \in [0, 2]\}$.

Remark. When p = q, the dynamics is symmetric and the result is well-known. However when $p \neq q$, the two-lane SEP is not a symmetric exclusion process, and our result is new.

(ii) Assume p = q. The model is diffusive and nongradient, and we conjecture that the only invariant measures are Bernoulli.

(iii) Assume $\gamma_0 \neq 0$, $\gamma_1 \neq 0$ and $p \neq q$. Then $\mathcal{R} = \emptyset$ and $|\mathcal{R}'| \leq 2$.

Case 3 : *q* = 0

A complete description of \mathcal{I}_e when $\gamma_0 \neq \gamma_1$:

(i) (a). If $\gamma_0 > 0$ and $\gamma_1 > 0$, then $\mathcal{R}' = \{(0, 1); (1, 2)\};$ $\mathcal{R} = \emptyset$ if $\gamma_0 \neq \gamma_1$, or contained in $\{(3/2, 1/2)\}$ if $\gamma_0 = \gamma_1$. \mathcal{I}_1 consists of partial blocking measures. $\mathcal{I}_2 = \emptyset$ unless $I_0 = I_1 = 0$. (b) If $I_0 = I_1 = 0$, \mathcal{I}_2 consists of blocking measures. (ii) If $\gamma_0 = \gamma_1 = 0$, $\mathcal{I}_2 = 0$, $\mathcal{I}_2 = 0$, $\mathcal{I}_3 = 0$, $\mathcal{I}_4 = 0$, $\mathcal{I}_5 = 0$, $\mathcal{I}_5 = 0$, $\mathcal{I}_6 = 0$, $\mathcal{I}_7 = 0$, $\mathcal{I}_8 = 0$, \mathcal{I}

(ii) If $\gamma_1 < 0 < \gamma_0$, then $\mathcal{R}' = \{(1,0), (1,2)\}, \mathcal{R} = \mathcal{I}_2 = \emptyset$. \mathcal{I}_1 consists of partial blocking measures.

(iii) If $\gamma_0 = 0 < \gamma_1$, then $\mathcal{R}' = \{(0, 1)\}, \mathcal{R} = \mathcal{I}_2 = \emptyset$. \mathcal{I}_1 consists of partial blocking measures.

Remark. In case (i)(a) $\mathcal{I}_2 = \emptyset$ even though the drifts are both strictly positive, in sharp contrast with the one-dimensional case.

Details for invariant measures when q = 0

$$\eta_n^*(x) := \mathbf{1}_{\{x > n\}},$$
 (25)

By extension, $\eta^*_{-\infty}$ and $\eta^*_{+\infty}$ respectively denote the configurations with all 1's and all 0's.

In cases (*i*)–(*iii*), for $n \in \mathbb{Z}$, we denote by $\nu^{\perp,+\infty,n}$ and $\nu^{\perp,n,-\infty}$ the proba. measures on \mathcal{X} defined by : Under $\nu^{\perp,+\infty,n}$, $\eta^0 = \eta^*_{+\infty}$ (i.e. lane 0 is empty) and $\eta^1 \sim \hat{\mu}_n$, where $\hat{\mu}_n$ is given by (25) if $l_1 = 0$ (or by ... if partial asymmetry). Under $\nu^{\perp,n,-\infty}$, $\eta^1 = \eta^*_{-\infty}$ (i.e. lane 1 is full) and $\eta^0 \sim \hat{\mu}_n$. where $\hat{\mu}_n$ is given by (25) if $l_0 = 0$ (or by ... if partial asymmetry).

Case (i), (a). We set

$$\mathcal{I}_{1} := \left\{ \nu^{\perp, +\infty, n} : n \in \mathbb{Z} \right\} \cup \left\{ \nu^{\perp, n, -\infty} : n \in \mathbb{Z} \right\}$$
(26)

Case (i), (b). Let $\mathbb{B} := \{(i,j) \in \mathbb{Z}^2 : i \ge j\}$, and set $\overline{\mathbb{B}} := \mathbb{B} \cup \{(+\infty, n), (n, -\infty) : n \in \mathbb{Z}\}$. For $(i,j) \in \overline{\mathbb{B}}$, let $\nu^{\perp,i,j}$ denote the Dirac measure supported on the configuration $\eta^{\perp,i,j}$:

$$\eta^{\perp,i,j}(z,0) = \eta_i^*(z), \quad \eta^{\perp,i,j}(z,1) = \eta_j^*(z)$$
 (27)

for every $z \in \mathbb{Z}$.

$$\mathcal{I}_{2} := \left\{ \nu^{\perp,i,j} : (i,j) \in \mathbb{B} \right\}$$
(28)

Case (ii). For $n \in \mathbb{Z}$, we denote by $\nu^{\perp,+\infty,n\leftarrow}$ the proba. measure on \mathcal{X} defined by :

Lane symmetry operator σ defined by $(\sigma\eta)(z, i) = \eta(-z, i)$ for $\eta \in \mathcal{X}, (z, i) \in V$. Under $\nu^{\perp, +\infty, n\leftarrow}, \eta^0 = \eta^*_{+\infty}$ and $\sigma\eta^1 \sim \hat{\mu}_n$, where $\hat{\mu}_n$ is given by (25) if $l_1 = 0$ (or by ... if partial asymmetry).

$$\mathcal{I}_{1} := \left\{ \nu^{\perp, +\infty, n \leftarrow} : n \in \mathbb{Z} \right\} \cup \left\{ \nu^{\perp, n, -\infty} : n \in \mathbb{Z} \right\}$$
(29)

Case (iii).

$$\mathcal{I}_{1} := \left\{ \nu^{\perp, +\infty, n} : n \in \mathbb{Z} \right\}$$
(30)

Questions left open

We do not know if for certain parameter values it is possible to have $\mathcal{I}_1 \neq \emptyset$ with a shock of amplitude 1 that is not a partial blocking measure. In the case p = q it is believed in [BL] that this probably does not occur.

We conjecture that when pq > 0, $\gamma_0 > 0$ and $\gamma_1 > 0$, then $\mathcal{I}_2 \neq \emptyset$.

Extension

Our model and approach extend to more general *multi-lane* exclusion processes with an arbitrary (finite) number of lanes.

The cyclic ladder

Assumption

 $W = \mathbb{T}_n$ is a torus, and q(i, j) = Q(j - i) for some $Q : \mathbb{T}_n \to [0, +\infty)$ is an irreducible translation-invariant kernel. For $\rho \in [0, n]$, ν_{ρ} is the product measure on \mathcal{X} s.t.

$$\forall (z,i) \in \mathbb{Z} \times W, \quad \nu_{\rho} \{\eta(z,i) = 1\} = \frac{\rho}{n}$$
(31)

[BL,page 2309] : a proba. measure on \mathcal{X} is *rotationally invariant* if it is invariant by τ' , the translation operator along W.

Open question 1. for the ladder process :

when d_i and l_i are independent of *i* (i.e. the horizontal dynamics is the same on each lane), are *all* invariant measures rotationally invariant?

Theorem
(0)
$$(\mathcal{I} \cap \mathcal{S})_e = \{\nu_{\rho}, \rho \in [0, n]\}.$$

(1) For $k = 1, ..., n$, let $(\rho_k^-, \rho_k^+) = \left(\frac{n-k}{2}, \frac{n+k}{2} = n - \rho_k^-\right)$. Then :
(a)

$$\mathcal{I}_{e} = \{\nu_{\rho} : \rho \in [0, n]\} \cup \bigcup_{k=1} \mathcal{I}_{k}$$
(32)

where \mathcal{I}_k is a (possibly empty) set of at most k (ρ_k^-, ρ_k^+)-shock measures of amplitude k.

(b) If $\forall i \in W$, $\gamma_i > 0$, \mathcal{I}_n is supported on \mathcal{X}_n (cf. (19)). (c) If $\forall i \in W$, d_i/I_i does not depend on i, \mathcal{I}_n consists of n explicit blocking measures ν_i .

(up to horizontal translations)

(2) If $\forall i \in W$, $\gamma_i := d_i - l_i = 0$, then $\mathcal{I}_e = \{\nu_\rho : \rho \in [0, n]\}$.

(3) If d_i and l_i do not depend on i, any invariant measure is rotationally invariant.

Theorem : Detailed scheme of proof

Step 1 : comparing an invariant measure with its translate. Let μ ∈ 𝒯_e. We prove that μ ≤ τμ or τμ ≤ μ (stochastic order). This is equivalent (Strassen theorem) to a coupling μ(dη, dξ) of μ(dη) and τμ(dξ) under which η ≤ ξ or ξ ≤ η a.s. This step is an adaptation to our model of [BLM] when q > 0.

Main ingredients : attractiveness, weak irreducibility, finite propagation property, characterization of $(\mathcal{I} \cap S)_e$, and space-time ergodicity for the measures in this set. *Non-weakly irreducible case.* When q = 0, again additional arguments, different from the translation invariant case, are necessary to fill the gap between $\{\eta \leq \xi\} \cup \{\xi \leq \eta\}$; they involve introducing an intermediate relation : $\eta \bowtie \xi$ iff $\eta >< \xi$, and both the number of $z \in \mathbb{Z}^+$ on lane 1 not occupied by a coupled particle and the number of $z \in \mathbb{Z}^-$ on lane 0 not occupied by a hole are finite.

Step 2 : mean shock.

If $\tau \mu = \mu$, back to $(\mathcal{I} \cap S)_e$. If e.g. $\mu < \tau \mu$, the total number of discrepancies $D(\eta, \xi)$ under $\overline{\mu}$ is constant (extremality). Its expectation is a telescoping sum equal to the difference of mean densities at $\pm \infty$ ("mean" shock).

Single lane ASEP : simplifying feature.

Since max density is 1, no choice but 0/1 mean density at $\pm \infty$, *hence* asymptotic to $\mathcal{B}(0/1)$ at $\pm \infty$. It cannot be 1 at $-\infty$ and 0 at $+\infty$ (HDL for ASEP : not stationary for Burgers but develops rarefaction).

Thus for single-lane ASEP :

- \mathcal{I}_e contains only profile measures.
- The following steps 3–4 not are needed for ASEP.

Step 3 : mean shock implies shock. From step 2 and Cesaro averaging, ∃ limits µ_± ∈ (I ∩ S) at ±∞.

Problem : show that $\mu_{\pm} \in (\mathcal{I} \cap \mathcal{S})_e$. Then $\mu_{\pm} = \mu_{\rho^{\pm}}$, i.e. it is a (ρ^-, ρ^+) -shock measure.

By step 2, $|\rho^+ - \rho^-| \in \{1, 2\}$.

▶ $|\rho^+ - \rho^-| = 2$: then $\{\rho^-, \rho^+\} = \{0, 2\}$. *Profile measures*, analogous to ASEP. Sometimes explicit blocking measures.

▶
$$|\rho^+ - \rho^-| = 1$$
 : shock measure. *Problem* : what are possible (ρ^-, ρ^+) ?

Step 4 : restricting possible shocks. Possible (ρ⁻, ρ⁺)-shocks? Analysis of the *flux function* :

$$G(\rho) := \gamma_0 \rho_0 (1 - \rho_0) + \gamma_1 \rho_1 (1 - \rho_1)$$

for a unique (ρ_0, ρ_1) such that

 $(\rho_0, \rho_1) \in \mathcal{F}, \quad \rho_0 + \rho_1 = \rho$

Remark. Vertical jumps, i.e. with rates (p, q), do not contribute to *G*.

Necessary conditions.

- Flux continuity condition (C) : $G(\rho^+) = G(\rho^-)$.
- Entropy condition (E) : ρ[±] optimizer on [ρ⁺ ∧ ρ⁻, ρ⁺ ∨ ρ⁻] (e.g. G(ρ⁺) = G(ρ⁻) = min_{ρ∈[ρ⁻,ρ⁺]} G if ρ⁻ < ρ⁺).

Step 4 : restricting possible shocks. Define

$$\mathcal{D} = \{(\rho^{-}, \rho^{+}) \in [0, 2]^{2} : \rho^{-} = \rho^{+}\} \quad ([0, 2]^{2} \setminus \mathcal{D} : \text{shocks})$$

$$\mathcal{B}_{1} = \{(0, 1), (1, 2), (2, 1)\} \quad (\text{partial blockage})$$

$$\mathcal{R}_{0} = \{(\rho^{-}, \rho^{+}) \in [0, 2]^{2} \setminus (\mathcal{D} \cup \mathcal{B}_{1}) : |\rho^{+} - \rho^{-}| = 1, (C), (E)\}$$

Proposition

When
$$\gamma_0 + \gamma_1 \neq 0$$
, let $d := \frac{\gamma_0}{\gamma_0 + \gamma_1}$ and $r := \frac{q}{p}$.

- For all parameter values, $|\mathcal{R}_0| \leq 1$.
- For an explicit $r_0 \simeq 0,042$, there is a neighbourhood \mathcal{Z} of $\{d = 1/2\} \times \{r \in [0, r_0) \cup (1/r_0, +\infty]\}$ such that $\mathcal{R}_0 = \emptyset$ for all $(d, r) \in \mathcal{Z}$.

Step 5 : uniqueness of a shock.

Proposition If $|\rho^+ - \rho^-| = k \in \{1, 2\}$, there are (up to shifts) at most k (ρ^-, ρ^+) -shock measures in \mathcal{I}_e .

Principle of proof. Show that two shock-measures μ and ν are comparable. Then, extending an argument of [BLM] for ASEP profile measures, squeeze ν between successive translates of μ .

Step 5 : uniqueness of a shock.

Optimal for k = 2. Explicit construction of 2 extremal (0,2)-blocking measures for some parameter values.

Idea. For blocking measures, i.e. when

$$H_{2}(\eta) := \sum_{x \leq 0} [\eta(x,0) + \eta(x,1)] - \sum_{x > 0} [(1 - \eta(x,0)) + (1 - \eta(x,1))]$$

is finite, then H_2 is a conserved quantity.

Since $H_2(\tau\eta) = H_2(\eta) - 2$, blocking space $\{H_2 < +\infty\}$ split into odd/even components; at most one measure on each.

Remark. The Proposition does *not* require blocking.

Step 6 : The case q = 0.

One can compare each lane with an ASEP and use convergence results for ASEP to obtain more information and complete characterization of \mathcal{I}_e in all cases except

 $\gamma_0 = \gamma_1.$

Thank you for your Attention