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Basic example : The SEP
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I Configuration η of particles : for z ∈ S (countable),
η(z) = 0 or 1. From each site x , choice of y with p(x , y),
(translation invariant if p(x , y) = p(y − x), n.n. if
p(y − x) = 0 for |y − x | 6= 1).
ASEP (“asymmetric simple exclusion process”) if∑

x xp(x) > 0.
TASEP (“Totally asymmetric simple exclusion process”) if
p(1) = 1 for S = Z.

I According to (independent) exponential clocks, jump from
x to y if possible (exclusion rule).
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Our model : multi-lane exclusion
Sites V = Z×W with W = {0, · · · ,n − 1}. For i ∈W , the i ’th
lane of V is Li := {x ∈ V : x = (x(0), x(1)), x(0) ∈ Z, x(1) = i}
State space X = {0,1}V , with n.n. jumps on V .

d0l0

p ql1 d1
L1

L0

We assume (d0 + l0)(d1 + l1) > 0, so particles can always move
on both lanes. But they cannot go from L0 to L1 if p = 0, nor
from L1 to L0 if q = 0. If p = q = 0, 2 independent SEP’s on
each lane. Thus if p + q 6= 0, interaction between the two lanes.
For i ∈W , γi := di − li is the mean drift on lane i . Because of
symmetries we assume w.l.o.g. that

γ0 ≥ 0, γ0 + γ1 ≥ 0, p ≥ q, p > 0 (1)
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Why this model? Which questions?
• Two interpretations
I Traffic-flow modeling : V is a highway, with lanes Li on

which cars have different speeds and different directions.
The steps between the lanes are the direction a car can
follow to change lane.

I Particle species : i ∈W is a particle species, the dynamics
within each species is a SEP on Z, and a lane change
becomes a spin flip for a particle to change species. By the
exclusion rule, a particle cannot change its species if there
is already a particle of the other species sitting at the same
site. This is the only interaction between the two species.

• An intermediate model between Z and Z2 : already new
phenomena
Questions :
I Equilibrium : Invariant measures? in this talk

http ://arxiv.org/abs/2105.12974
I Out of equilibrium : hydrodynamics? In preparation
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Invariant measures for SEP : what is known?
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Invariant measures for SEP : what is known?
[Theorem VIII.2.1, Lig]
να : product measure on S with marginals

να{η : η(x) = 1} = α(x) (2)

(a) If ∀y ∈ S,
∑

x p(x , y) = 1, then να ∈ I for every constant
α ∈ [0,1] (Bernoulli product measures).
(b) If π(.) satisfies

π(x)p(x , y) = π(y)p(y , x), ∀x , y ∈ S (3)

or equivalently

α(x)(1− α(y))p(x , y) = α(y)(1− α(x))p(y , x) (4)

Then να ∈ I where α(x) =
π(x)

1 + π(x)
(5)

[Theorem VIII.3.9, Lig]

If S = Zd , p(x , y) = p(y − x), (I ∩ S)e = {να, α ∈ [0,1]} (6)
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Invariant measures for SEP on Z : what is known?

S = Z, p(x , y) = p(y − x), and irreducibility, i.e.
∀x , y ∈ Z, x →p y .
A proba. measure µ on {0,1}Z is a blocking measure if it
concentrates on configurations η s.t.∑

x<0

η(x) +
∑
x>0

[1− η(x)] < +∞

and it is a profile measure if

lim
x→−∞

µ{η : η(x) = 1} = 0 and lim
x→+∞

µ{η : η(x) = 1} = 1

Every blocking measure is a profile measure, but not
conversely.
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Invariant measures for SEP on Z : what is known?
Assuming w.l.o.g.

∑
x xp(x) ≥ 0, we have

1. [BLM] Either (i) Ie = {νρ, ρ ∈ [0,1]}, or
(ii) Ie = {νρ, ρ ∈ [0,1]} ∪ {µn, n ∈ Z}, where µ0 is a profile
measure, and µn = τnµ0.

2. [Lig] If
∑

x xp(x) = 0, then (i) occurs.
3. [FLS] If

∑
x xp(x) > 0 ; p(x) and p(−x) are decreasing for

x ≥ 1 ; for a < 1, axp(x) ≥ p(−x) ∀x ≥ 1 ; then there exists
a blocking measure.

4. [BM] If
∑

x xp(x) > 0 and p(.) is finite range, then (ii)
occurs and µ0 is a blocking measure.

5. [BLM] If
∑

x xp(x) > 0 ; p(x) and p(−x) are decreasing for
x ≥ 1 ; p(x) ≥ p(−x)∀x ≥ 1 ; then (ii) occurs and µ0 is a
blocking measure. The coupling of [FLS] is used.

6. [BLM] If
∑

x<0 x2p(x) = +∞, there exists no stationary
blocking measure.

An important open problem : determine whether nonblocking
stationary profile measures ever exist.
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Invariant measures for SEP on Z : p(1) + p(−1) = 1
• Translation invariant measures. Homogeneous product
Bernoulli proba. measures {µρ, ρ ∈ [0,1]}, ρ is the average
particle density per site ([Theorem VIII.2.1 (a), Lig]).
• Blocking measures for ASEP, p(1) = d ,p(−1) = l , d 6= l .
Invariant (non translation invariant) proba. measures ([Theorem
VIII.2.1 (b), Lig]) :

When l > 0, for c > 0, ρc
i :=

c
(

d
l

)i

1 + c
(

d
l

)i (7)

When l = 0 < d (TASEP), for n ∈ Z and c ≥ 0,

ρn,c
i := 1{i>n} +

c
1 + c

1{i=n}, i ∈ Z (8)

ρ. is a solution of (4) iff of the form (7) when l > 0, or (8) when
l = 0 < d .
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Invariant measures for SEP on Z : p(1) + p(−1) = 1
For such ρ., µρ. defined by (5) is reversible.
• If l > 0, µρ. with ρ. = ρc

. given by (7) is not extremal invariant.
µρ. is supported on the setη ∈ {0,1}Z :

∑
x>0

[1− η(x)] +
∑
x≤0

η(x) < +∞

 (9)

H(η) :=
∑

x≤0 η(x)−
∑

x>0[1− η(x)] is conserved by SEP if
initially finite ; SEP restricted to a level set of H is irreducible ;
H(τnη) = H(η) + n, ∀n ∈ Z.
Then, for c > 0, n ∈ Z,

µ̂n := µρ
c
. (. |H(η) = n ) (10)

does not depend on c > 0, is extremal invariant, and µ̂n = τnµ̂0.
• For l = 0, µρ. with ρ. = ρn,c

. given by (8) is extremal invariant
iff c = 0 ; again denoted by µ̂n.

η∗n(x) := 1{x>n}, µ̂n := δη∗n (11)
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Invariant measures for SEP in higher dimensions :
what is known?

Not much is known when S = Zd .

[BL] gives necessary and sufficient conditions to have να ∈ I,
which gives examples of stationary product measures that are
neither homogeneous nor reversible.
Also : conditions for various types of measures to be invariant,
but no characterization.
The last section of the paper is devoted to open problems ;
among them one on the cyclic ladder.
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I ∩ S for two-lane SEP
two-parameter “Bernoulli product proba. measure” νρ0,ρ1 for
(ρ0, ρ1) ∈ [0,1]2, on X such that

νρ0,ρ1 (η (x) = 1) =

{
ρ0 x ∈ L0
ρ1 x ∈ L1

. (12)

I p = q = 0 : independent SEP’s on the lanes⇒ νρ0,ρ1 ∈ I
∀(ρ0, ρ1) ∈ [0,1]2.

I p + q 6= 0 : is there a relation between ρ0 and ρ1 under
which νρ0,ρ1 ∈ I ? Let

F :=
{

(ρ0, ρ1) ∈ [0,1]2 : pρ0(1− ρ1)− qρ1(1− ρ0) = 0
}

This is the reversibility equation (4) in the vertical direction.

F expresses an equilibrium relation for vertical jumps : under
νρ0,ρ1 , the mean algebraic “creation rate” on each lane (i.e.
resulting from jumps from/to the other lane) has to be 0.
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Theorem

(I ∩ S)e = {νρ0,ρ1 : (ρ0, ρ1) ∈ F} = {νρ : ρ ∈ [0,2]} (13)

where ρ represents the total mean density over the two lanes :

Eνρ [η0(0) + η1(0)] = ρ (14)

(ηi is the configuration on lane i : for z ∈ Z, ηi (z) = η (z, i)).

Tools :
• F can be parametrized by the total density

ρ ρ̃0(ρ), ρ̃1(ρ) = 1− ρ̃0(ρ).
For instance, if p = q 6= 0,

F = {(ρ/2, ρ/2) : ρ ∈ [0,2]},
and if q = 0 < p,

F = {(0, ρ) : ρ ∈ [0,1]} ∪ {(ρ− 1,1) : ρ ∈ [1,2]}
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• Next we define
νρ := ν ρ̃0(ρ),ρ̃1(ρ) (15)

and we have for i ∈ {0,1},

IEνρ [ηi(0)] = ρ̃i(ρ)

• To prove that νρ0,ρ1 ∈ I :
Separate the horizontal and vertical evolutions. νρ0,ρ1 is
stationary non reversible on each lane (by [Theorem VIII.2.1
(a), Lig]) and reversible on each vertical step (by [Theorem
VIII.2.1 (b), Lig]) because (ρ0, ρ1) ∈ F .
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L =
∑
i∈W

Li
h +

∑
z∈Z

Lz
v (16)

where, for i ∈W , z ∈ Z,

Li
hf (η) =

∑
z∈Z

p ((z, i), (z + 1, i)) ηi(z)(1− ηi(z + 1))×

×
(

f
(
η(z,i),(z+1,i)

)
− f (η)

)
Lz

v f (η) =
∑

i,j∈W

p ((z, i), (z, j)) ηi(z)(1− ηj(z))
(

f
(
η(z,i),(z,j)

)
− f (η)

)
Li

h acts only on ηi , describes the evolution on Li , i.e. a
(single-lane) SEP, for which νρ0,ρ1 is invariant.
Lz

v , acts only on {z} ×W , describes the motion along {z} ×W ,
i.e. the displacements from one lane to another at a fixed spatial
location z, for which νρ0,ρ1 is invariant because (ρ0, ρ1) ∈ F .
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• To derive extremality, the scheme of proof mainly adapts the
standard one (see [Lig]) + additional arguments to deal with
discrepancies (their behavior is more tricky for the two-lane
SEP) when q = l0 = l1 = 0.

If (η, ξ) ∈ X × X , at x ∈ V there is an η discrepancy if
η(x) > ξ(x), a ξ discrepancy if η(x) < ξ(x), a coupled particle if
η(x) = ξ(x) = 1, a hole if η(x) = ξ(x) = 0. An η and a ξ
discrepancy are discrepancies of opposite type.

x and y are p-connected if x →p y or y →p x .
η, ξ in X are p-ordered if there exists no (x , y) ∈ V × V s.t. x
and y are p-connected and (η, ξ) has discrepancies of opposite
types at x and y .

Definition
p(., .) is weakly irreducible if, ∀(x , y) ∈ V × V s.t. x 6= y , x and
y are p-connected.
When l0 = l1 = q = 0, p(., .) is not weakly irreducible.
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to deal with l0 = l1 = q = 0, for which p(., .) is not weakly
irreducible :

Definition
For (η, ξ) ∈ X × X , we write η >< ξ if and only if there exist
x , y ∈ Z such that x < y and the following hold : (a) there are
discrepancies of opposite type at (x ,1) and (y ,0) ; (b) η0 ≤ ξ0

and η1 ≥ ξ1 if the discrepancy at (x ,1) is an η discrepancy ; or
η0 ≥ ξ0 and η1 ≤ ξ1 if the discrepancy at (x ,1) is a ξ
discrepancy ; (c) There is no discrepancy at (z,1) if z > x , nor
any discrepancy at (z,0) if z < y .
We define

E>< := {(η, ξ) ∈ X × X : η >< ξ} (17)

Thanks to translation invariance,

Lemma
Let ν̃ ∈ (Ĩ ∩ S̃). If l0 = l1 = q = 0, then ν̃(E><) = 0.
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Structure of invariant measures for two-lane SEP

Let D := {(ρ, ρ) : ρ ∈ [0,2]}

(ρ−, ρ+) ∈ [0,2]2 \ D is a shock.
A proba. measure µ on X is a (ρ−, ρ+)-shock measure if

lim
n→−∞

τnµ = νρ− , lim
n→+∞

τnµ = νρ+

in the sense of weak convergence. The amplitude of the shock
(or of the shock measure) is |ρ+ − ρ−|.

A partial blocking measure is a proba. measure whose
restriction to one lane is a blocking measure (carrying a
(0,1)-shock for us), and to the other lane is either full or empty
(it is a shock measure).
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Theorem

Ie = {νρ : 0 ≤ ρ ≤ 2} ∪ I1 ∪ I2 (18)

For k ∈ {1,2}, Ik is a (possibly empty) set of shock measures
of amplitude k, i.e. τzνρ−,ρ+ , z ∈ Z for some shock (ρ−, ρ+).

For k = 2, (ρ−, ρ+) ∈ B2 := {(0,2)}.
For k = 1, either
(ρ−, ρ+) ∈ R′ ⊂ B1 := {(0,1), (1,0), (1,2), (2,1)}, or
(ρ−, ρ+) ∈ R ⊂ [0,2]2 \ (D ∪ B1 ∪ B2).

I1 may contain partial blocking measures, I2 is stable by
translations. Outside degenerate cases, up to translations
along Z, |I1| ≤ 1 and |I2| ≤ 2. For a subset of parameter
values, we can determine I1 and I2, and thus obtain a
complete characterization of Ie.

We now give more details. Recall that

γ0 ≥ 0, γ0 + γ1 ≥ 0, p ≥ q, p > 0
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Generic case : γ0 + γ1 6= 0 and q > 0

(i) |R| ≤ 1 and R′ = ∅ hence |I1| ≤ 1.
If γ0 > 0 and γ1 > 0, elements of I2 are supported on

X2 :=

η ∈ X :
∑

x∈V : x(0)>0

[1− η(x)] +
∑

x∈V : x(0)≤0

η(x) < +∞


(19)

(ii) Assume either : (a) θ = d0/l0 = d1/l1 > 1 ; or (b) l0 = l1 = 0
and d0,d1 > 0. Then

I2 := {τ−z ν̆0 : z ∈ Z} ∪ {τ−z ν̂0 : z ∈ Z} (20)

where
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(a) (4) has the (0,1)-valued solutions

ρc
z,i :=

cθz
(

p
q

)i

1 + cθz
(

p
q

)i , (z, i) ∈ Z×W , c > 0 (21)

µρ
c
. is reversible for the two-lane SEP and supported on X2.

we fix c > 0 and define conditioned measures (independent of
c > 0).

ν̌n := µρ
c
. (. |H2(η) = 2n ) = τnν̌0, n ∈ Z

ν̂n := µρ
c
. (. |H2(η) = 2n + 1) = τnν̂0, n ∈ Z (22)

where now

H2(η) :=
∑

x∈V : x(0)≤0

η(x)−
∑

x∈V : x(0)>0

[1− η(x)] (23)
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(b)

ν̆0 = δη̆ ; ν̂0 =
q

p + q
δη̂0 +

p
p + q

δη̂1

where for x ∈ V ,

η̆ (x) = 1{x(0)>0}

η̂0 (x) = 1{x(0)>0} + 1{x=(0,0)}

η̂1 (x) = 1{x(0)>0} + 1{x=(0,1)}.
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(iii) A complete description of Ie :

reduced parameters (d , r) ∈ [0,1]× [0,1] (by (1)) :

r :=
q
p
, d :=

γ0

γ0 + γ1
if γ0 + γ1 6= 0

and set

r0 :=
1− 2

√
−7 +

√
52

1 + 2
√
−7 +

√
52

= 0,042 · · · (24)

∃ Z ⊂ [0,1]× [0,1], open, containing {1/2} × (0, r0), such that
R = R′ = ∅, ∀(d , r) ∈ Z. In particular, if r ∈ (0, r0), d1 = λd0
and l1 = λl0 with λ close enough to 1, then (18) holds with I2 as
in (ii).
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Case 2 : γ0 + γ1 = 0 and q > 0

(i) Assume γ0 = γ1 = 0.
Then R = R′ = I2 = ∅, hence Ie = {νρ : ρ ∈ [0,2]}.

Remark. When p = q, the dynamics is symmetric and the result
is well-known. However when p 6= q, the two-lane SEP is not a
symmetric exclusion process, and our result is new.

(ii) Assume p = q.
The model is diffusive and nongradient, and we conjecture that
the only invariant measures are Bernoulli.

(iii) Assume γ0 6= 0, γ1 6= 0 and p 6= q.
Then R = ∅ and |R′| ≤ 2.
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Case 3 : q = 0

A complete description of Ie when γ0 6= γ1 :

(i) (a). If γ0 > 0 and γ1 > 0, then R′ = {(0,1); (1,2)} ;
R = ∅ if γ0 6= γ1, or contained in {(3/2,1/2)} if γ0 = γ1.
I1 consists of partial blocking measures.
I2 = ∅ unless l0 = l1 = 0.
(b) If l0 = l1 = 0, I2 consists of blocking measures.

(ii) If γ1 < 0 < γ0, then R′ = {(1,0), (1,2)}, R = I2 = ∅.
I1 consists of partial blocking measures.

(iii) If γ0 = 0 < γ1, then R′ = {(0,1)}, R = I2 = ∅.
I1 consists of partial blocking measures.

Remark. In case (i)(a) I2 = ∅ even though the drifts are both
strictly positive, in sharp contrast with the one-dimensional
case.
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Details for invariant measures when q = 0

η∗n(x) := 1{x>n}, (25)

By extension, η∗−∞ and η∗+∞ respectively denote the
configurations with all 1’s and all 0’s.

In cases (i)–(iii), for n ∈ Z, we denote by ν⊥,+∞,n and ν⊥,n,−∞

the proba. measures on X defined by : Under ν⊥,+∞,n,
η0 = η∗+∞ (i.e. lane 0 is empty) and η1 ∼ µ̂n, where µ̂n is given
by (25) if l1 = 0 (or by ... if partial asymmetry).
Under ν⊥,n,−∞, η1 = η∗−∞ (i.e. lane 1 is full) and η0 ∼ µ̂n. where
µ̂n is given by (25) if l0 = 0 (or by ... if partial asymmetry).

Case (i), (a). We set

I1 :=
{
ν⊥,+∞,n : n ∈ Z

}
∪
{
ν⊥,n,−∞ : n ∈ Z

}
(26)
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Case (i), (b). Let B := {(i , j) ∈ Z2 : i ≥ j}, and set
B := B ∪ {(+∞,n), (n,−∞) : n ∈ Z}. For (i , j) ∈ B, let ν⊥,i,j

denote the Dirac measure supported on the configuration η⊥,i,j :

η⊥,i,j(z,0) = η∗i (z), η⊥,i,j(z,1) = η∗j (z) (27)

for every z ∈ Z.

I2 :=
{
ν⊥,i,j : (i , j) ∈ B

}
(28)

Case (ii). For n ∈ Z, we denote by ν⊥,+∞,n← the proba.
measure on X defined by :
Lane symmetry operator σ defined by (ση)(z, i) = η(−z, i) for
η ∈ X , (z, i) ∈ V .
Under ν⊥,+∞,n←, η0 = η∗+∞ and ση1 ∼ µ̂n , where µ̂n is given by
(25) if l1 = 0 (or by ... if partial asymmetry).

I1 :=
{
ν⊥,+∞,n← : n ∈ Z

}
∪
{
ν⊥,n,−∞ : n ∈ Z

}
(29)

Case (iii).
I1 :=

{
ν⊥,+∞,n : n ∈ Z

}
(30)
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Questions left open

We do not know if for certain parameter values it is possible to
have I1 6= ∅ with a shock of amplitude 1 that is not a partial
blocking measure. In the case p = q it is believed in [BL] that
this probably does not occur.

We conjecture that when pq > 0, γ0 > 0 and γ1 > 0, then
I2 6= ∅.

Extension
Our model and approach extend to more general multi-lane
exclusion processes with an arbitrary (finite) number of lanes.
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The cyclic ladder

Assumption
W = Tn is a torus, and q(i , j) = Q(j − i) for some
Q : Tn → [0,+∞) is an irreducible translation-invariant kernel.
For ρ ∈ [0,n], νρ is the product measure on X s.t.

∀(z, i) ∈ Z×W , νρ {η(z, i) = 1} =
ρ

n
(31)

[BL,page 2309] : a proba. measure on X is rotationally invariant
if it is invariant by τ ′, the translation operator along W .

Open question 1. for the ladder process :
when di and li are independent of i (i.e. the horizontal dynamics
is the same on each lane), are all invariant measures
rotationally invariant?
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Theorem
(0) (I ∩ S)e = {νρ, ρ ∈ [0,n]}.
(1) For k = 1, . . . ,n, let (ρ−k , ρ

+
k ) =

(
n−k

2 , n+k
2 = n − ρ−k

)
. Then :

(a)

Ie = {νρ : ρ ∈ [0,n]} ∪
n⋃

k=1

Ik (32)

where Ik is a (possibly empty) set of at most k (ρ−k , ρ
+
k )-shock

measures of amplitude k.
(b) If ∀i ∈W , γi > 0, In is supported on Xn (cf. (19)).
(c) If ∀i ∈W , di/li does not depend on i, In consists of n
explicit blocking measures νi .
(up to horizontal translations)
(2) If ∀i ∈W , γi := di − li = 0, then Ie = {νρ : ρ ∈ [0,n]}.
(3) If di and li do not depend on i, any invariant measure is
rotationally invariant.
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Theorem : Detailed scheme of proof
I Step 1 : comparing an invariant measure with its

translate. Let µ ∈ Ie. We prove that µ ≤ τµ or τµ ≤ µ
(stochastic order). This is equivalent (Strassen theorem) to
a coupling µ(dη,dξ) of µ(dη) and τµ(dξ) under which
η ≤ ξ or ξ ≤ η a.s. This step is an adaptation to our model
of [BLM] when q > 0.

Main ingredients : attractiveness, weak irreducibility, finite
propagation property, characterization of (I ∩ S)e, and
space-time ergodicity for the measures in this set.
Non-weakly irreducible case. When q = 0, again additional
arguments, different from the translation invariant case, are
necessary to fill the gap between {η ≤ ξ} ∪ {ξ ≤ η} ; they
involve introducing an intermediate relation : η ./ ξ iff
η >< ξ, and both the number of z ∈ Z+ on lane 1 not
occupied by a coupled particle and the number of z ∈ Z−
on lane 0 not occupied by a hole are finite.
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Scheme of proof

I Step 2 : mean shock.
If τµ = µ, back to (I ∩ S)e. If e.g. µ < τµ, the total number
of discrepancies D(η, ξ) under µ is constant (extremality).
Its expectation is a telescoping sum equal to the difference
of mean densities at ±∞ (“mean” shock).

Single lane ASEP : simplifying feature.
Since max density is 1, no choice but 0/1 mean density at
±∞, hence asymptotic to B(0/1) at ±∞. It cannot be 1 at
−∞ and 0 at +∞ (HDL for ASEP : not stationary for
Burgers but develops rarefaction).

Thus for single-lane ASEP :
I Ie contains only profile measures.
I The following steps 3–4 not are needed for ASEP.
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Scheme of proof

I Step 3 : mean shock implies shock.
From step 2 and Cesaro averaging, ∃ limits µ± ∈ (I ∩ S) at
±∞.

Problem : show that µ± ∈ (I ∩ S)e. Then µ± = µρ± , i.e. it is
a (ρ−, ρ+)-shock measure.

By step 2, |ρ+ − ρ−| ∈ {1,2}.

I |ρ+ − ρ−| = 2 : then {ρ−, ρ+} = {0,2}. Profile measures,
analogous to ASEP. Sometimes explicit blocking measures.

I |ρ+ − ρ−| = 1 : shock measure. Problem : what are possible
(ρ−, ρ+) ?
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Scheme of proof

I Step 4 : restricting possible shocks.
Possible (ρ−, ρ+)-shocks? Analysis of the flux function :

G(ρ) := γ0ρ0(1− ρ0) + γ1ρ1(1− ρ1)

for a unique (ρ0, ρ1) such that

(ρ0, ρ1) ∈ F , ρ0 + ρ1 = ρ

Remark. Vertical jumps, i.e. with rates (p,q), do not
contribute to G.

Necessary conditions.
I Flux continuity condition (C) : G(ρ+) = G(ρ−).
I Entropy condition (E) : ρ± optimizer on [ρ+ ∧ ρ−, ρ+ ∨ ρ−]

(e.g. G(ρ+) = G(ρ−) = minρ∈[ρ−,ρ+] G if ρ− < ρ+).
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Scheme of proof

I Step 4 : restricting possible shocks. Define

D = {(ρ−, ρ+) ∈ [0,2]2 : ρ− = ρ+} ([0,2]2 \ D : shocks)
B1 = {(0,1), (1,2), (2,1)} (partial blockage)
R0 = {(ρ−, ρ+) ∈ [0,2]2 \ (D ∪ B1) : |ρ+ − ρ−| = 1, (C), (E)}

Proposition

When γ0 + γ1 6= 0, let d :=
γ0

γ0 + γ1
and r :=

q
p

.

I For all parameter values, |R0| ≤ 1.
I For an explicit r0 ' 0,042, there is a neighbourhood Z of
{d = 1/2} × {r ∈ [0, r0) ∪ (1/r0,+∞]} such that R0 = ∅ for all
(d , r) ∈ Z.
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Scheme of proof

I Step 5 : uniqueness of a shock.

Proposition
If |ρ+ − ρ−| = k ∈ {1,2}, there are (up to shifts) at most k
(ρ−, ρ+)-shock measures in Ie.

Principle of proof. Show that two shock-measures µ and ν
are comparable. Then, extending an argument of [BLM] for
ASEP profile measures, squeeze ν between successive
translates of µ.
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Scheme of proof

I Step 5 : uniqueness of a shock.
Optimal for k = 2. Explicit construction of 2 extremal
(0,2)-blocking measures for some parameter values.

Idea. For blocking measures, i.e. when

H2(η) :=
∑
x≤0

[η(x ,0) + η(x ,1)]−
∑
x>0

[(1− η(x ,0)) + (1− η(x ,1))]

is finite, then H2 is a conserved quantity.

Since H2(τη) = H2(η)− 2, blocking space {H2 < +∞} split
into odd/even components ; at most one measure on each.

Remark. The Proposition does not require blocking.
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Scheme of proof

I Step 6 : The case q = 0.
One can compare each lane with an ASEP and use
convergence results for ASEP to obtain more information
and complete characterization of Ie in all cases except
γ0 = γ1.
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Thank you for your
Attention
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