Lozenge Tilings I 0000000 Multivariate weights 00000 NHLF 0000

イロト イロト イヨト イヨト 二日 二

K-HLF 000000

1

Lozenge tilings and Algebraic Combinatorics

Greta Panova

University of Southern California

MSRI, UIRM Program, Nov. 2021

Greta Panova

2. Asymptotic Algebraic Combinatorics and Representation Theory

(ⓒDan Betea, IHP Paris)

э

Lozenge Tilings | 0000000 Multivariate weight

NHLF 0000 K-HLF 000000

Standard Young Tableaux

Integer partitions $\lambda \vdash n$:

 $\lambda = (\lambda_1, \dots, \lambda_\ell), \ \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_\ell > 0, \ \lambda_1 + \lambda_2 + \dots = n$

Lozenge Tilings | 0000000 Multivariate weight

NHLF 0000 K-HLF 000000

Standard Young Tableaux

Integer partitions $\lambda \vdash n$:

$$\lambda = (\lambda_1, \ldots, \lambda_\ell), \ \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0, \ \lambda_1 + \lambda_2 + \cdots = n$$

Lozenge Tilings | 0000000 Multivariate weight

NHLF 0000 K-HLF 000000

Standard Young Tableaux

Integer partitions $\lambda \vdash n$: $\lambda = (\lambda_1, \ldots, \lambda_\ell), \ \lambda_1 > \lambda_2 > \cdots > \lambda_\ell > 0, \ \lambda_1 + \lambda_2 + \cdots = n$ **Young diagram** of λ : $T = \wedge \begin{array}{|c|c|c|} \hline 1 & 3 & 4 \\ \hline 2 & 5 & 8 \end{array}$ 7 10 **SYT** of shape $\lambda = (\lambda_1, \ldots, \lambda_k)$: $T: \lambda \xrightarrow{\sim} \{1, \ldots, n\}$ and $T_{i,i} < T_{i,i+1}, T_{i+1,i}$ $\lambda = (3, 2, 1)$: 124 36 5 126 35 4 125 34 6 125 36 4 126 34 5 124 35 123 45 123 46 5 + transposed

Hook-length formula [Frame-Robinson-Thrall]:

$$f^{\lambda} := \#\{ \text{SYTs of shape } \lambda \} = \frac{|\lambda|!}{\prod_{u \in \lambda} h_u} = \frac{6!}{5 * 3 * 3 * 1 * 1 * 1} = 16$$

Hook length of box $u = (i, j) \in \lambda$: $h_u = \lambda_i - j + \lambda'_j - i + 1 = \# \blacksquare \in$

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	00000	0000	000000

 V_{λ} – irreducible $GL_N(\mathbb{C})$ module, weight λ

$$s_{\lambda}(x_1,\ldots,x_N) = \chi_{V_{\lambda}} \left(\begin{bmatrix} x_1 & 0 & \cdots \\ 0 & x_2 & \cdots \\ \vdots & \ddots & \cdots \end{bmatrix} \right)$$

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	00000	0000	000000

 V_{λ} – irreducible $GL_N(\mathbb{C})$ module, weight λ

$$s_{\lambda}(x_1,\ldots,x_N) = \chi_{V_{\lambda}} \left(\begin{bmatrix} x_1 & 0 & \cdots \\ 0 & x_2 & \cdots \\ \vdots & \ddots & \cdots \end{bmatrix} \right)$$

Weyl character formula:

$$s_{\lambda}(x_1,\ldots,x_N) := rac{\det \left[x_i^{\lambda_j+N-j}
ight]_{i,j=1}^N}{\prod_{i < j} (x_i - x_j)}$$

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	00000	0000	000000

 V_{λ} – irreducible $GL_N(\mathbb{C})$ module, weight λ

$$s_{\lambda}(x_1,\ldots,x_N) = \chi_{V_{\lambda}} \left(\begin{bmatrix} x_1 & 0 & \cdots \\ 0 & x_2 & \cdots \\ \vdots & \ddots & \cdots \end{bmatrix} \right)$$

Weyl character formula:

$$s_{\lambda}(x_1,\ldots,x_N) := rac{\det \left[x_i^{\lambda_j+N-j}
ight]_{i,j=1}^N}{\prod_{i < j} (x_i - x_j)}$$

Jacobi-Trudi identity:

$$s_{\lambda_1,\ldots,\lambda_k} = \det \begin{bmatrix} h_{\lambda_1} & h_{\lambda_1+1} & \cdots & h_{\lambda_1+k-1} \\ h_{\lambda_2-1} & h_{\lambda_2} & \cdots & h_{\lambda_2+k-2} \\ \vdots & \ddots & h_{\lambda_i+k-j} & \vdots \end{bmatrix}_{i,j=1}^k$$

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	00000	0000	000000

 V_{λ} – irreducible $GL_N(\mathbb{C})$ module, weight λ

$$s_{\lambda}(x_1,\ldots,x_N) = \chi_{V_{\lambda}} \left(\begin{bmatrix} x_1 & 0 & \cdots \\ 0 & x_2 & \cdots \\ \vdots & \ddots & \cdots \end{bmatrix} \right)$$

Weyl character formula:

$$s_{\lambda}(x_1,\ldots,x_N) := rac{\det \left[x_i^{\lambda_j+N-j}
ight]_{i,j=1}^N}{\prod_{i < j} (x_i - x_j)}$$

Jacobi-Trudi identity:

$$s_{\lambda_1,\ldots,\lambda_k} = \det \begin{bmatrix} h_{\lambda_1} & h_{\lambda_{1+1}} & \cdots & h_{\lambda_{1+k-1}} \\ h_{\lambda_2-1} & h_{\lambda_2} & \cdots & h_{\lambda_{2+k-2}} \\ \vdots & \ddots & h_{\lambda_i+k-j} & \vdots \end{bmatrix}_{i,j=1}^k$$

Semi-Standard Young tableaux of shape λ :

$$s_{(2,2)}(x_1, x_2, x_3) = x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2 + x_1^2 x_2 x_3 + x_1 x_2^2 x_3 + x_1 x_2 x_3^2.$$

$$\begin{array}{c} \boxed{11}\\ 2 \\ 2 \\ \hline \end{array}$$

Greta Panova

Lozenge Tilings I •000000 Multivariate weigh

NHLF 0000 K-HLF 000000

Unrestricted and symmetric lozenge tilings

Tilings of the hexagon $a \times b \times c \times a \times b \times c$, s.t.

Limit behavior: fluctuations near the boundary (GUE), limit surface, CLT?

Lozenge Tilings I 0000000 Multivariate weight

NHLF 0000 K-HLF

The Schur generating function: domain setup

Domain $\Omega_{\lambda(N)}$: positions of the N horizontal lozenges on right boundary are:

 $\lambda_1(N) + N - 1 > \lambda_2(N) + N - 2 > \cdots > \lambda_N(N)$

Lozenge Tilings I 000000 Multivariate weight

NHLF 0000 K-HLF 000000

Tilings probability: skew SSYTs

Lozenge tilings with right boundary $\lambda(N)$ \iff

Semi-Standard Young Tableaux T of shape $\lambda(N)$ and entries $1, \ldots, N$.

Lozenge Tilings I 0000000 Multivariate weight: 00000 NHLF 0000 K-HLF 000000

Tilings probability: skew SSYTs

Lozenge tilings with right boundary $\lambda(N)$ \iff Semi-Standard Young Tableaux T of shape $\lambda(N)$ and entries $1, \dots, N$.

Tilings with horizontal lozenges on vertical line k at positions $x^k = (\eta_1, \dots, \eta_k) = \eta$

SSYTs T whose entries 1..k have shape η

Lozenge Tilings I 0000000 Multivariate weight

NHLF 0000 K-HLF 000000

Tilings probability: skew SSYTs

Lozenge tilings with right boundary $\lambda(N)$ \iff Semi-Standard Young Tableaux T of shape $\lambda(N)$ and entries $1, \dots, N$.

Tilings with horizontal lozenges on vertical line k at positions $x^k = (\eta_1, \dots, \eta_k) = \eta$ \iff

SSYTs T whose entries 1..k have shape η

$$\operatorname{Prob}\{x^{k}(\lambda) = \eta\} = \frac{s_{\eta}(1^{k})s_{\lambda/\eta}(1^{N-k})}{s_{\lambda}(1^{N})},$$

Lozenge Tilings I

Multivariate weight: 00000 NHLF 0000 K-HLF 000000

Tilings probability: skew SSYTs

Lozenge tilings with right boundary $\lambda(N)$ \iff Semi-Standard Young Tableaux *T* of shape $\lambda(N)$ and entries 1,..., *N*.

Tilings with horizontal lozenges on vertical line k at positions $x^k = (\eta_1, \dots, \eta_k) = \eta$ \iff

SSYTs T whose entries 1..k have shape η

$$\operatorname{Prob}\{x^k(\lambda) = \eta\} = rac{s_\eta(1^k)s_{\lambda/\eta}(1^{N-k})}{s_\lambda(1^N)},$$

Proposition[Gorin-P'2013] For any variables y_1, \ldots, y_k , the Schur Generating Function of x^k is $S_{\lambda}(y_1, \ldots, y_k) :=$

Lozenge Tilings I 0000000 Multivariate weight

NHLF 0000 K-HLF 000000

The explicit Schur Generating Functions¹

 \mathcal{T}_n - set of tilings, $x^j(\mathcal{T})$ - horizontal lozenge positions on line j of $\mathcal{T} \in \mathcal{T}_n$

¹from [Gorin-P'2013], [P, 2014, 2015]

Lozenge Tilings I 0000000 Multivariate weights

NHLF 0000 K-HLF

The explicit Schur Generating Functions¹

 \mathcal{T}_n - set of tilings, $x^j(\mathcal{T})$ - horizontal lozenge positions on line j of $\mathcal{T} \in \mathcal{T}_n$

$$\mathbb{E}\left[\frac{s_{x^{k}(T)}(y_{1},\ldots,y_{k})}{s_{x^{k}(T)}(\underbrace{1,\ldots,1}_{k})} \middle| T \sim Unif(\mathcal{T}_{n})\right]$$

$$= \sum_{\nu} \frac{s_{\nu}(y_1, \dots, y_k)}{s_{\nu}(1^k)} \operatorname{Pr}(x^k(T) = \nu) = \dots$$

¹from [Gorin-P'2013], [P, 2014, 2015]

Lozenge Tilings I 0000000 Multivariate weight

NHLF 0000 K-HLF

The explicit Schur Generating Functions¹

 \mathcal{T}_n - set of tilings, $x^j(\mathcal{T})$ - horizontal lozenge positions on line j of $\mathcal{T} \in \mathcal{T}_n$

$$\mathbb{E}\left[\frac{s_{x^{k}(T)}(y_{1},\ldots,y_{k})}{s_{x^{k}(T)}(\underbrace{1,\ldots,1}_{k})} \middle| T \sim Unif(\mathcal{T}_{n})\right]$$

$$=\sum_{\nu}\frac{s_{\nu}(y_1,\ldots,y_k)}{s_{\nu}(1^k)}\operatorname{Pr}(x^k(T)=\nu)=..$$

• =
$$S_{\lambda(n)}(y_1, \dots, y_k) = \frac{s_{\lambda(n)}(y_1, \dots, y_k, 1^{n-k})}{s_{\lambda(n)}(1^n)}$$
 for $\mathcal{T}_n = \Omega_{\lambda(n)}$.
• = $\prod_i y_i^{m/2} \cdot \frac{s_0(\frac{m}{2})^{n}(y_1, \dots, y_k, 1^{n-k})}{s_0(\frac{m}{2})^{n}(1^n)}$ for \mathcal{T}_n - symmetric tilings of $n \times m \times n$
• = $S_{(\frac{b}{2})^{a/2}}(y_1, \dots, y_k)^2$ for \mathcal{T}_n - centrally symmetric tilings of $a \times b \times c$... hexagon

¹from [Gorin-P'2013], [P, 2014, 2015]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Lozenge Tilings I 0000000 Multivariate weight

NHLF 0000 K-HLF 000000

MGF asymptotics

Proposition (Gorin-P'2013)

$$\mathbb{E}_{\nu \sim \mathsf{GUE}_k}\left[\frac{s_{\nu-\delta_k}(y_1,\ldots,y_k)}{s_{\nu-\delta_k}(\underbrace{1,\ldots,1}_k)}\right] = \exp\left(\frac{1}{2}(y_1^2+\cdots+y_k^2)\right),$$

Lozenge Tilings I 0000000 Multivariate weight

NHLF 0000

K-HLF 000000

MGF asymptotics

Proposition (Gorin-P'2013) $\mathbb{E}_{\nu \sim G \cup E_k} \left[\frac{s_{\nu - \delta_k}(y_1, \dots, y_k)}{s_{\nu - \delta_k}(\underbrace{1, \dots, 1}_k)} \right] = \exp\left(\frac{1}{2}(y_1^2 + \dots + y_k^2)\right),$

$$\mathbb{E}_{\text{tiling of }\Omega_{\lambda}(N)}\left(\frac{s_{x^{k}}(y_{1},\ldots,y_{k})}{s_{x^{k}}(\underbrace{1,\ldots,1}_{k})}\right) = \frac{s_{\lambda(N)}(y_{1},\ldots,y_{k},1^{N-k})}{s_{\lambda(N)}(1^{N})} =: S_{\lambda(N)}(y_{1},\ldots,y_{k})$$

Proposition (Gorin-P'2013)

For any k real numbers h_1, \ldots, h_k and $\lambda(N)/N \to f$ we have:

$$\lim_{N\to\infty} S_{\lambda(N)}\left(e^{\frac{h_1}{\sqrt{NS(f)}}},\ldots,e^{\frac{h_k}{\sqrt{NS(f)}}}\right)e^{\left(-\frac{E(f)}{\sqrt{NS(f)}}\sum_{i=1}^k h_i\right)} = \exp\left(\frac{1}{2}\sum_{i=1}^k h_i^2\right).$$

Greta Panova

Lozenge Tilings I 0000000 Multivariate weight

NHLF

K-HLF 000000

MGF asymptotics

Proposition (Gorin-P'2013) $\mathbb{E}_{\nu \sim G \cup E_{k}} \left[\frac{s_{\nu - \delta_{k}}(y_{1}, \dots, y_{k})}{s_{\nu - \delta_{k}}(\underbrace{1, \dots, 1})} \right] = \exp\left(\frac{1}{2}(y_{1}^{2} + \dots + y_{k}^{2})\right),$

$$\mathbb{E}_{\text{tiling of }\Omega_{\lambda}(N)}\left(\frac{s_{\lambda^{k}}(y_{1},\ldots,y_{k})}{s_{\lambda^{k}}(\underbrace{1,\ldots,1}_{k})}\right) = \frac{s_{\lambda(N)}(y_{1},\ldots,y_{k},1^{N-k})}{s_{\lambda(N)}(1^{N})} =: S_{\lambda(N)}(y_{1},\ldots,y_{k})$$

Proposition (Gorin-P'2013)

For any k real numbers h_1, \ldots, h_k and $\lambda(N)/N \to f$ we have:

$$\lim_{N\to\infty} S_{\lambda(N)}\left(e^{\frac{h_1}{\sqrt{NS(f)}}},\ldots,e^{\frac{h_k}{\sqrt{NS(f)}}}\right)e^{\left(-\frac{E(f)}{\sqrt{NS(f)}}\sum_{i=1}^k h_i\right)} = \exp\left(\frac{1}{2}\sum_{i=1}^k h_i^2\right).$$

Theorem (Gorin-P'2013)

Let $\Upsilon^k_{\lambda(N)} = \{x^k, x^{k-1}, \ldots\}$ -collection of positions of the horizontal lozenges on lines $k, k - 1, \ldots, 1$ of tiling from $\Omega_{\lambda(N)}$, then

$$\frac{\Upsilon_{\lambda(N)}^{k} - NE(f)}{\sqrt{NS(f)}} \to \mathbb{GUE}_{k} \text{ (GUE-corners process of rank k).}$$

Greta Panova

Algebraic Combinatorics	Lozenge Tilings I
000	0000000

NHLF 0000 K-HLF 000000

Asymptotics of normalized Schur functions

$$S_{\lambda(N)}(x_1,\ldots,x_k) := rac{s_{\lambda(N)}(x_1,\ldots,x_k,\overbrace{1,\ldots,1}^{N-k})}{s_{\lambda(N)}(\overbrace{1,\ldots,1}^{N-k})}$$

Theorem [Gorin-P'2013] For every partition λ and any $x \in \mathbb{C} \setminus \{0, 1\}$ we have

$$S_{\lambda}(x; N, 1) = \frac{(N-1)!}{(x-1)^{N-1}} \frac{1}{2\pi \mathbf{i}} \oint_{C} \frac{x^{z}}{\prod_{i=1}^{N} (z - (\lambda_{i} + N - i))} dz,$$

Lozenge Tilings I 0000000

NHLF 0000 K-HLF 000000

Asymptotics of normalized Schur functions

$$S_{\lambda(N)}(x_1,\ldots,x_k) := rac{s_{\lambda(N)}(x_1,\ldots,x_k,\overbrace{1,\ldots,1}^{N-k})}{s_{\lambda(N)}(\underbrace{1,\ldots,1}_N)}$$

Theorem [Gorin-P'2013] For every partition λ and any $x \in \mathbb{C} \setminus \{0,1\}$ we have

$$S_{\lambda}(x; N, 1) = \frac{(N-1)!}{(x-1)^{N-1}} \frac{1}{2\pi i} \oint_{C} \frac{x^{z}}{\prod_{i=1}^{N} (z - (\lambda_{i} + N - i))} dz,$$

Theorem[Gorin-P'2013] If $\frac{\lambda_i(N)}{N} \to f\left(\frac{i}{N}\right)$ [...], for all fixed $y \neq 0$:

$$\lim_{N\to\infty}\frac{1}{N}\ln S_{\lambda(N)}(e^{y};N,1)=yw_{0}-\mathcal{F}(w_{0})-1-\ln(e^{y}-1),$$

where $\mathcal{F}(w; f) = \int_0^1 \ln(w - f(t) - 1 + t) dt$, w_0 - root of $\frac{\partial}{\partial w} \mathcal{F}(w; f) = y$. If $\frac{\lambda_i(N)}{N} \to f\left(\frac{i}{N}\right)$ [...], for any fixed $h \in \mathbb{R}$:

$$S_{\lambda(N)}(e^{h/\sqrt{N}}; N, 1) = \exp\left(\sqrt{N}E(f)h + \frac{1}{2}S(f)h^2 + o(1)\right),$$

where
$$E(f) = \int_0^1 f(t)dt$$
, $S(f) = \int_0^1 (f(t) - t + 1/2)^2 dt - 1/6 - E(f)^2$.

Greta Panova

Lozenge Tilings I 0000000

NHLF 0000 K-HLF 000000

Asymptotics of normalized Schur functions

$$S_{\lambda(N)}(x_1,\ldots,x_k) := rac{s_{\lambda(N)}(x_1,\ldots,x_k,\overline{1,\ldots,1})}{s_{\lambda(N)}(\underbrace{1,\ldots,1}_N)}$$

Multivariate: [Gorin-P'2013]

$$S_{\lambda}(x_{1},...,x_{k};N) = \prod_{i=1}^{k} \frac{(N-i)!}{(N-1)!(x_{i}-1)^{N-k}} \times \frac{\det\left[\left(x_{i}\frac{\partial}{\partial x_{i}}\right)^{j-1}\right]_{i,j=1}^{k}}{\Delta(x_{1},...,x_{k})} \prod_{j=1}^{k} S_{\lambda}(x_{j};N,1)(x_{j}-1)^{N-1}.$$

Corollary[Gorin-P'2013]

$$\text{If} \quad \frac{\ln\left(S_{\lambda(N)}(x;N,1)\right)}{N} \to \Psi(x) \quad \text{unif. on a compact } M \subset \mathbb{C}. \text{ Then for any } k$$

$$\lim_{N\to\infty}\frac{\ln\left(S_{\lambda(N)}(x_1,\ldots,x_k;N,1)\right)}{N}=\Psi(x_1)+\cdots+\Psi(x_k)$$

uniformly on M^k .

More informally, under various regimes of convergence for $\lambda(N)$ and x_1, \ldots, x_k we have

 $S_{\lambda(N)}(x_1,\ldots,x_k) \sim S_{\lambda(N)}(x_1)\cdots S_{\lambda(N)}(x_k).$

Lozenge Tilings I

Multivariate weights

NHLF 0000 K-HLF 000000

Limit surface for symmetric tilings

Theorem (P, 2014)

Let $n, m \in \mathbb{Z}$, such that $m/n \to a$ as $n \to \infty$, where $a \in (0, +\infty)$. Let $H_n(u, v)$ – height function of a symmetric tiling of $n \times m \times n$... hexagon, i.e.

$$H_n(u, v) = \frac{1}{n} y_{\lfloor nv \rfloor}^{\lfloor nu \rfloor} - v.$$

For all $1 \ge u \ge v \ge 0$, as $n \to \infty$: $H_n(u, v)$ converges unif. in prob. to a deterministic function L(u, v) ("the limit surface").

For any fixed $u \in (0, 1)$, L(u, v) is the distribution function of the measure **m**, given by its moments:

$$\int_{\mathbb{R}} t^{r} \mathbf{m}(dt) = \sum_{\ell=0}^{r} {r \choose \ell} \frac{1}{(\ell+1)!} u^{-r+\ell} \frac{\partial^{\ell}}{\partial z^{\ell}} z^{p} \Phi_{a}^{\prime}(z)^{p-\ell} \bigg|_{z=1},$$

where $\Phi_a(e^y) = y \frac{a}{2} + 2\phi(y; a) - 2$ and...

$$\begin{split} h(y) &= \frac{1}{4} \left(\left(e^{Y} + 1 \right) + \sqrt{\left(e^{Y} + 1 \right)^{2} + 4\left(s^{2} + s \right)\left(e^{Y} - 1 \right)^{2}} \right) \\ \phi(y;s) &= \left(\frac{s}{2} + 1 \right) \ln \left(h(y) - \left(\frac{s}{2} + 1 \right)\left(e^{Y} - 1 \right) \right) - \left(\frac{s}{2} + \frac{1}{2} \right) \ln \left(h(y) - \left(\frac{s}{2} + \frac{1}{2} \right)\left(e^{Y} - 1 \right) \right) \\ &+ \frac{s}{2} \ln \left(h(y) + \frac{s}{2} \left(e^{Y} - 1 \right) \right) - \left(\frac{s}{2} - \frac{1}{2} \right) \ln \left(h(y) + \left(\frac{s}{2} - \frac{1}{2} \right)\left(e^{Y} - 1 \right) \right) \end{split}$$

Theorem (P, 2015)

The scaled height function $H_n(u, v)$ of a centrally symmetric tiling of an $a \times b \times c...$ hexagon converges uniformly in probability to a deterministic function L(u, v) – the limit surface, as $n \to \infty$, where $n = \frac{a+c}{2}$ and a/n, b/n – approx constant. The limit surface coincides with the limit surface for the uniformly random tilings of the hexagon (without symmetry constraints).

Greta Panova

э

Igebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
00	000000	•0000	0000	000000

Lozenge tilings with multivariate weights

Plane partitions with base μ , height d

weights of horizontal lozenges $= x_i - y_j$

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	•0000	0000	000000

Lozenge tilings with multivariate weights

Plane partitions with base μ , height d

weights of horizontal lozenges $= x_i - y_j$

Theorem (Morales-Pak-P'2017)

For tilings with base μ and height d, we have that

$$\sum_{T \in \Omega_{\mu,d}} \prod_{(i,j) \in T} (x_i - y_j) = \det[A_{i,j}(\mu, d)]_{i,j=1}^{d+\ell(\mu)},$$

where

$$\mathsf{A}_{i,j}(\mu,d) := \begin{cases} \frac{(x_i - y_1) \cdots (x_i - y_{d+\ell(\mu)-j})}{(x_i - x_{i+1}) \cdots (x_i - x_{d+\ell(\mu)})}, \\ \frac{(x_i - y_1) \cdots (x_i - y_{\mu_j+d})}{(x_i - x_{i+1}) \cdots (x_i - x_{d+j})}, \\ 0, \end{cases}$$

when $j = \ell(\mu) + 1, \dots, \ell(\mu) + d,$ when $j = i - d, \dots, \ell(\mu),$ when j < i - d.

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	0000000	0000	0000	000000

Corollary (Krattenthaler, Stanley etc)

Consider the set $\mathsf{PP}(\mu,d)$ of plane partitions of base μ and entries less than or equal to d. Then

$$\sum_{P\in PP(\mu,d)} q^{|P|} = q^{\sum_r r\mu_r} \det[C_{i,j}]_{i,j=1}^{\ell+d},$$

where

$$C_{i,j} = \begin{cases} (-1)^{d+\ell-i} q^{(d-i)(d+\ell-j) - \frac{(d-i+\ell)(d-i-\ell-1)}{2}} \frac{1}{(q;q)_{d+\ell-i}}, & \text{when } j = \ell+1, \dots, \ell+d, \\ (-1)^{d+j-i} q^{(d-i)(\mu_j+d) - \frac{(d+j-i)(d-i-j-1)}{2}} \frac{1}{(q;q)_{d+j-i}}, & \text{when } j = i-d, \dots, \ell, \\ 0, & \text{when } j < i-d, \end{cases}$$

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	00000	0000	000000

Theorem (Morales-Pak-P'2017)

The partition function for tilings of the $a \times b \times c \times a \times b \times c$ ($\mu = a \times b, d = c$) hexagon with horizontal lozenges weights $x_i - y_j$ is given by

$$Z(a, b, c) := \sum_{T \in \Omega_{a,b,c}} \prod_{(i,j) \in T} (x_i - y_j) = \det \begin{bmatrix} \begin{cases} \frac{(x_i - y_1) \cdots (x_i - y_{c+a-j})}{(x_i - x_{i+1}) \cdots (x_i - x_{c+a})} & \text{if } j > a \\ \frac{(x_i - y_1) \cdots (x_i - y_{b+c})}{(x_i - x_{i+1}) \cdots (x_i - x_{c+j})} & \text{if } j = i - c, \dots, a \\ 0, & j < i - c \end{bmatrix}_{i,j=1}^{a+c}$$

The probability that a path through
$$(i, d_i)$$
 exists is
Prob(path) = $\frac{\det[A_{i,j}(\mu, d)] \det[\bar{A}_{i,j}(\mu^*, c - d - 1)]}{Z}$
Matrix \bar{A} has $x_i \to x_{a+c+1-i}$ and $y_j \to y_{b+c+1-j}$.
 $\mu^* = 20$

31

Lozenge Tilings I 0000000 Multivariate weights

NHLF 0000 K-HLF 000000

Simulation: base = δ_n

Weights: "hook" weights (4n - i - j) versus uniform (i.e. 1).

raic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
	0000000	00000	0000	000000

Factorial Schur functions, multivariate lozenge tilings

$$s_{\mu}^{(d)}(\mathbf{x}|\mathbf{a}) := rac{\det[(x_j - a_1) \cdots (x_j - a_{\mu_i + d - i})]_{i,j=1}^d}{\prod_{1 \le i < j \le d} (x_i - x_j)},$$

Igebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
00	0000000	00000	0000	000000

Factorial Schur functions, multivariate lozenge tilings

$$s_{\mu}^{(d)}(\mathbf{x}|\mathbf{a}) := rac{\det[(x_j - a_1) \cdots (x_j - a_{\mu_i + d - i})]_{i,j=1}^d}{\prod_{1 \le i < j \le d} (x_i - x_j)},$$

Excited diagrams $\mathcal{E}(\lambda/\mu)$:

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	00000	0000	000000

Factorial Schur functions, multivariate lozenge tilings

$$s_{\mu}^{(d)}(\mathbf{x}|\mathbf{a}) := rac{\det[(x_j - a_1) \cdots (x_j - a_{\mu_i + d - i})]_{i,j=1}^d}{\prod_{1 \le i < j \le d} (x_i - x_j)},$$

Excited diagrams $\mathcal{E}(\lambda/\mu)$:

Theorem (Ikeda-Naruse, Kreiman + Knutson-Tao, Lakshmibai-Raghavan-Sankaran)

Let $\mu \subset \lambda \subset d \times (n-d)$. Let $v(n-d+1-i) = \lambda_i + (n-d+1-i)$ and $v(j) = d + j - \lambda'_j$. Then

$$s_{\mu}^{(d)}(y_{\nu(1)},\ldots,y_{\nu(d)}|y_{1},\ldots,y_{n-1}) = \sum_{D\in\mathcal{E}(\lambda/\mu)}\prod_{(i,j)\in D}(y_{\nu(d-i+1)}-y_{\nu(d+j)})$$

Lozenge Tilings 0000000 Multivariate weight

 K-HLF 000000

Hook formulas for skew shapes

Lozenge Tilings 0000000 Multivariate weight

NHLF 0000 K-HLF 000000

Hook formulas for skew shapes

Hook-length formula [Frame-Robinson-Thrall]:

$$f^{\lambda} := \#\{\text{SYTs of shape } \lambda\} = \frac{|\lambda|!}{\prod_{u \in \lambda} h_u} = \frac{6!}{5 * 3 * 3 * 1 * 1 * 1} = 16$$

Hook length of box $u = (i, j) \in \lambda$: $h_u = \lambda_i - j + \lambda'_j - i + 1 = \# \blacksquare \in \square$

Lozenge Tilings 0000000 NHLF •000 K-HLF 000000

Hook formulas for skew shapes

Hook-length formula [Frame-Robinson-Thrall]:

$$f^{\lambda} := \#\{\mathsf{SYTs of shape } \lambda\} = \frac{|\lambda|!}{\prod_{u \in \lambda} h_u} = \frac{6!}{5 * 3 * 3 * 1 * 1 * 1} = 16$$

Hook length of box $u = (i, j) \in \lambda$: $h_u = \lambda_i - j + \lambda'_j - i + 1 = \# \blacksquare \in$

Standard Young Tableaux of *skew shape* λ/μ :

No product formula:

$$\begin{split} \lambda/\mu &= \delta_{n+2}/\delta_n \colon \underbrace{\begin{vmatrix} 3 & 7 \\ 1 & 5 \\ 2 & 4 \\ 6 \end{vmatrix}}_{1 + E_1 x + E_2} &\longleftrightarrow \quad 6 > 2 < 4 > 1 < 5 > 3 < 7 \quad f^{\delta_{n+2}/\delta_n} = E_{2n+1} \colon \\ 1 + E_1 x + E_2 \frac{x^2}{2!} + E_3 \frac{x^3}{3!} + E_4 \frac{x^4}{4!} + \ldots = \operatorname{sec}(x) + \operatorname{tan}(x). \end{split}$$

Euler numbers: 2, 5, 16, 61....

ozenge Tilings I

NHLF 0000 K-HLF 000000

Hook-Length formula for skew shapes

Excited diagrams: $\mathcal{E}(\lambda/\mu) = \{ D \subset \lambda : \text{ obtained from } \mu \text{ via} \bigoplus \bigoplus \}$

Theorem (Naruse, SLC, September 2014)

$$f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in [\lambda] \setminus D} \frac{1}{h(u)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of excited diagrams of λ/μ .

.ozenge Tilings I 0000000 NHLF 0000 K-HLF 000000

18

Hook-Length formula for skew shapes

Excited diagrams: $\mathcal{E}(\lambda/\mu) = \{D \subset \lambda : \text{ obtained from } \mu \text{ via} \bigoplus \bigoplus \}$

Theorem (Naruse, SLC, September 2014)

$$f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in [\lambda] \setminus D} \frac{1}{h(u)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of excited diagrams of λ/μ .

$$f^{(4321/21)} = 7! \left(\frac{1}{1^4 \cdot 3^3} + \frac{1}{1^3 \cdot 3^3 \cdot 5} + \frac{1}{1^3 \cdot 3^3 \cdot 5} + \frac{1}{1^2 \cdot 3^3 \cdot 5^2} + \frac{1}{1^2 \cdot 3^2 \cdot 5^2 \cdot 7} \right) = 61$$

Lozenge Tilings 0000000 Multivariate weight

NHLF 0000 K-HLF 000000

Hook-Length formula for skew shapes

Excited diagrams: $\mathcal{E}(\lambda/\mu) = \{D \subset \lambda : \text{ obtained from } \mu \text{ via } \longrightarrow \ \}$

Theorem (Morales-Pak-P'16)

For skew SSYTs, we have that

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T \in SSYT(\lambda/\mu)} q^{|T|} = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in [\lambda] \setminus D} \left[rac{q^{\lambda_j^{\ell} - i}}{1 - q^{h(i,j)}}
ight].$$

Lozenge Tilings 0000000 NHLF 0000 K-HLF 000000

18

Hook-Length formula for skew shapes

Excited diagrams: $\mathcal{E}(\lambda/\mu) = \{D \subset \lambda : \text{ obtained from } \mu \text{ via} \longrightarrow \}$

Theorem (Morales-Pak-P'16)

For skew SSYTs, we have that

Lozenge Tilings 0000000 Multivariate weight

NHLF 0000

v*′*; ٦

イロト 不得 トイヨト イヨト 二日

Γ.

K-HLF 000000

Hook-Length formula for skew shapes

Excited diagrams: $\mathcal{E}(\lambda/\mu) = \{D \subset \lambda : \text{ obtained from } \mu \text{ via} \bigoplus \longrightarrow \{ \} \}$

Theorem (Morales-Pak-P'16)

For skew SSYTs, we have that

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T \in SSYT(\lambda/\mu)} q^{|T|} = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in [\lambda] \setminus D} \left\lfloor rac{q^{\lambda_j - i}}{1 - q^{h(i,j)}}
ight
brace$$

Theorem (Morales-Pak-P'16)

For (reverse) plane partitions of skew shape λ/μ :

$$\sum_{\pi \in RPP(\lambda/\mu)} q^{|\pi|} = \sum_{S \in PD(\lambda/\mu)} \prod_{u \in S} \left[\frac{q^{h(u)}}{1 - q^{h(u)}} \right]$$

where $PD(\lambda/\mu) := \{ S \subset [\lambda] : S \subset [\lambda] \setminus D, \text{ for some } D \in \mathcal{E}(\lambda/\mu) \}.$

Algebraic	Combinatorics
000	

Lozenge Tilings I 0000000 Multivariate weight:

NHLF 0000 K-HLF 000000

Applications of NHLF

Algebraic	Combinatorics
000	

Lozenge Tilings I 0000000 Multivariate weight

NHLF 0000 K-HLF 000000

Applications of NHLF

• Product formulas for special $f^{\lambda/\mu}$.

Algebraic	Combinatorics
000	

Lozenge Tilings | 0000000 Multivariate weight

NHLF

K-HLF 000000

Applications of NHLF

• Asymptotics of $f^{\lambda/\mu}$: $\log f^{\lambda^{(n)}/\mu^{(n)}} \sim \frac{1}{2}n \log n$.

• Product formulas for special $f^{\lambda/\mu}$.

• Weighted lozenge tilings.

э

Algebraic	Combinatorics
000	

Lozenge Tilings | 0000000 Multivariate weight

NHLF 0000 K-HLF

Applications of NHLF

• Asymptotics of $f^{\lambda/\mu}$: $\log f^{\lambda^{(n)}/\mu^{(n)}} \sim \frac{1}{2} n \log n$.

• Product formulas for special $f^{\lambda/\mu}$.

• Weighted lozenge tilings.

• Principle evaluations of Schubert polynomials and asymptotics.

 $\Phi(n) := 1! \cdot 2! \cdots (n-1)!, \ \Psi(n) := 1!! \cdot 3!! \cdots (2n-3)!!, \\ \Psi(n;k) := (k+1)!! \cdot (k+3)!! \cdots (k+2n-3)!!, \ \Lambda(n) := (n-2)!(n-4)! \cdots$

Theorem (Morales-Pak-P'17)

The number of skew SYTs of shapes as in (i), (ii), (iii) above, with side lengths parametrized by a, b, c, d, e, are:

$$\begin{split} f^{sh(i)} &= n! \; \frac{\Phi(a)\Phi(b)\Phi(c)\Phi(d)\Phi(e)\Phi(a+b+c)\Phi(c+d+e)\Phi(a+b+c+e+d)}{\Phi(a+b)\Phi(e+d)\Phi(a+c+d)\Phi(b+c+e)\Phi(a+b+2c+e+d)}, \\ f^{sh(ii)} &= n! \; \frac{\Phi(a)\Phi(b)\Phi(c)\Phi(a+b+c)}{\Phi(a+b)\Phi(b+c)\Phi(a+c)} \; \frac{\Psi(c)\Psi(a+b+c)}{\Psi(a+c)\Psi(b+c)\Psi(b+c)\Psi(a+b+2c)}, \\ f^{Sh(ii)} &= \frac{n! \; \Phi(a)\Phi(b)\Phi(c)\Phi(a+b+c)\Psi(c;d+e)\Psi(a+b+c;d+e)\Lambda(2a+2c)\Lambda(2b+2c)}{\Phi(a+b)\Phi(b+c)\Phi(a+c)\Psi(a+c)\Psi(b+c)\Psi(a+b+2c;d+e)\Lambda(2a+2c+d)\Lambda(2b+2c+e)}, \end{split}$$

000 000000	00000	0000	•00000

Increasing Tableaux

<

238

Standard Increasing Tableau

Algebraic Combinatorics 000	Lozenge Tilings I 0000000	Multivariate weights NH 00000 00	ILF K-HLF
	Increasing ⁻	Tableaux	
<	Increasing Tableau	Standard Increasing Tab	oleau
	1268 238 6	1235 234 5	

 $m(T) := \max\{T(i,j)\}, \quad [T_{< k}] = \{(i,j) : T(i,j) < k\}$

Algebraic Combinatorics 000	Lozenge Tilings I 0000000	Multivariate weights 00000	NHLF K-HLF 00000 000000
	Increasing	Tableaux	
<	Increasing Tableau	Standard Increasing T	ableau
	1268 238 6	1235 234 5	

 $m(T) := \max\{T(i,j)\}, \quad [T_{<k}] = \{(i,j) : T(i,j) < k\}$ e.g. $[T_{<4}] =$

 $m(T) := \max\{T(i,j)\}, \quad [T_{< k}] = \{(i,j) : T(i,j) < k\}$ e.g. $[T_{< 4}] = [T_{< 4}] = [T_{< 4}]$

Theorem (Morales-Pak-Panova'21+) Fix $d \ge 1$, $\beta \in \mathbb{R}$. For every $\lambda \vdash n$ with $\ell(\lambda) \le d$, we have:

$$\sum_{T \in SIT(\lambda)} \prod_{k=1}^{m(T)} \left(\left[\prod_{i=1}^{d} \frac{1 + \beta \left([T_{

$$= \frac{1}{(-\beta)^n} \prod_{i=1}^{\ell(\lambda)} \left(1 + \beta (\lambda_i + d - i + 1) \right)^{\lambda_i} \prod_{(i,j) \in \lambda} \frac{1}{h(i,j)}.$$
(K-HLF)$$

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	00000	0000	00000

Theorem (**Multivariate K-HLF**, Morales-Pak-Panova'21+) Fix $d \ge 1$. For every $\lambda \vdash n$ with $\ell(\lambda) \le d$ we have:

$$\begin{split} & \sum_{T \in \mathsf{SIT}(\lambda)} \prod_{k=1}^{m(T)} \left(\left[\prod_{i=1}^{d} \frac{1 + \beta \, y_{[T_{\leq k}]_i + d - i + 1}}{1 + \beta \, y_{\lambda_i + d - i + 1}} \right] - 1 \right)^{-1} \\ & = \frac{1}{\beta^n} \prod_{i=1}^{d} \left(1 + \beta \, y_{\lambda_i + d - i + 1} \right)^{\lambda_i} \prod_{(i,j) \in \lambda} \frac{1}{y_{d+j - \lambda'_j} - y_{\lambda_i + d - i + 1}} \,. \end{split}$$

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	00000	0000	00000

Theorem (**Multivariate K-HLF**, Morales-Pak-Panova'21+) Fix $d \ge 1$. For every $\lambda \vdash n$ with $\ell(\lambda) \le d$ we have:

$$\begin{split} &\sum_{T \in \mathsf{SIT}(\lambda)} \prod_{k=1}^{m(T)} \left(\left[\prod_{i=1}^d \frac{1+\beta y_{[T_{\leq k}]_i+d-i+1}}{1+\beta y_{\lambda_i+d-i+1}} \right] - 1 \right)^{-1} \\ &= \frac{1}{\beta^n} \prod_{i=1}^d \left(1+\beta y_{\lambda_i+d-i+1} \right)^{\lambda_i} \prod_{(i,j) \in \lambda} \frac{1}{y_{d+j-\lambda'_j} - y_{\lambda_i+d-i+1}} \,. \end{split}$$

Corollary:

$$\sum_{T \in \mathsf{SIT}(\lambda)} q^{\sum T(i,j)} \prod_{k=1}^{m(T)} \frac{1}{1-q^{|[T_{\geq k}]|}} = q^{\sum_{(i,j) \in \lambda} i+j-1} \prod_{(i,j) \in \lambda} \frac{1}{1-q^{h(i,j)}} \cdot$$

・ロト・日本・モート ヨー うらぐ

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	00000	0000	00000

Theorem (**Multivariate K-HLF**, Morales-Pak-Panova'21+) Fix $d \ge 1$. For every $\lambda \vdash n$ with $\ell(\lambda) \le d$ we have:

$$\sum_{T \in \mathsf{SIT}(\lambda)} \prod_{k=1}^{m(T)} \left(\left[\prod_{i=1}^{d} \frac{1 + \beta \, y_{[T_{\leq k}]_i + d - i + 1}}{1 + \beta \, y_{\lambda_i + d - i + 1}} \right] - 1 \right)^{-1} \\ = \frac{1}{\beta^n} \prod_{i=1}^{d} \left(1 + \beta \, y_{\lambda_i + d - i + 1} \right)^{\lambda_i} \prod_{(i,j) \in \lambda} \frac{1}{y_{d+j - \lambda'_j} - y_{\lambda_i + d - i + 1}} \,.$$

Corollary:

$$\sum_{T \in \mathsf{SIT}(\lambda)} q^{\sum T(i,j)} \prod_{k=1}^{m(T)} \frac{1}{1-q^{|[T_{\geq k}]|}} = q^{\sum_{(i,j) \in \lambda} i+j-1} \prod_{(i,j) \in \lambda} \frac{1}{1-q^{h(i,j)}}.$$

$$q^{5} \frac{1}{(1-q^{3})(1-q^{2})} + q^{6} \frac{1}{(1-q^{3})(1-q^{2})(1-q)} + q^{6} \frac{1}{(1-q^{3})(1-q^{2})(1-q)}$$
$$\frac{1}{2}$$
$$= q^{5} \frac{1}{(1-q^{3})(1-q)^{2}}$$

Greta Panova

э

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	00000	0000	000000

Generalized Excited Diagrams $\mathcal{D}(\lambda/\mu)$

Non-intersecting Delannoy paths[MPP] with forbidden configuration:

Algebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
000	000000	00000	0000	000000

Theorem (Morales-Pak-Panova'21+) Fix $d \ge 1$, $\beta \in \mathbb{R}$. For every $\mu \subset \lambda$ with $\ell(\lambda) \le d$, we have:

$$\sum_{T \in \mathsf{SIT}(\lambda/\mu)} \prod_{k=1}^{m(T)} \left(\left[\prod_{i=1}^{d} \frac{1 + \beta([T_{\leq k}]_i + d - i + 1)}{1 + \beta(\lambda_i + d - i + 1)} \right] - 1 \right)^{-1}$$

$$= \sum_{D \in \mathcal{D}(\lambda/\mu)} (-\beta)^{|D| - |\lambda|} \prod_{(i,j) \in \lambda \setminus D} \frac{\beta(\lambda_i + d - i + 1) + 1}{h(i,j)}.$$
(K-NHLF)

Theorem (Morales-Pak-Panova'21+) For every $\mu \subset \lambda$, we have:

$$\sum_{T\in\mathsf{SIT}(\lambda/\mu)} q^{|T|} \prod_{k=1}^{m(T)} \frac{1}{1-q^{|[T\geq k]|}} = \sum_{D\in\mathcal{D}(\lambda/\mu)} \prod_{(i,j)\in\lambda\setminus D} \frac{q^{h(i,j)}}{1-q^{h(i,j)}} \; .$$

Lozenge Tilings I 0000000 Multivariate weights

NHLF 0000 K-HLF

Factorial Grothendieck polynomials

(double Grothendieck polynomials for Grassmannian permutations)

Lozenge Tilings I 0000000 Multivariate weights

NHLF

K-HLF

Factorial Grothendieck polynomials

(double Grothendieck polynomials for Grassmannian permutations)

$$\begin{aligned} x \oplus y &:= x + y + \beta xy, \qquad x \ominus y \,:=\, \frac{(x - y)}{(1 + \beta y)}, \qquad \ominus x \,:=\, \frac{-x}{1 + \beta x}, \\ \text{and} \qquad [x \mid \mathbf{y}]^k \,:=\, (x \oplus y_1)(x \oplus y_2) \,\cdots\, (x \oplus y_k), \end{aligned}$$

Lozenge Tilings I 0000000 Multivariate weights

NHLF

K-HLF

Factorial Grothendieck polynomials

(double Grothendieck polynomials for Grassmannian permutations)

$$\begin{aligned} x \oplus y &:= x + y + \beta xy, \qquad x \ominus y \,:=\, \frac{(x - y)}{(1 + \beta y)}, \qquad \ominus x \,:=\, \frac{-x}{1 + \beta x}, \\ \text{and} \qquad [x \mid \mathbf{y}]^k \,:=\, (x \oplus y_1)(x \oplus y_2) \,\cdots\, (x \oplus y_k), \end{aligned}$$

[McNamara]: The Factorial Grothendieck polynomials are given by:

$$G_{\mu}(x_{1},...,x_{d} | \mathbf{y}) = \det \left([x_{i} | \mathbf{y}]^{\mu_{j}+d-j} (1+\beta x_{i})^{j-1} \right)_{i,j=1}^{d} \prod_{1 \leq i < j \leq d} \frac{1}{(x_{i}-x_{j})}$$

Lozenge Tilings I 0000000 NHLF

K-HLF

Factorial Grothendieck polynomials

(double Grothendieck polynomials for Grassmannian permutations)

$$\begin{aligned} x \oplus y &:= x + y + \beta xy, \qquad x \ominus y &:= \frac{(x - y)}{(1 + \beta y)}, \qquad \ominus x &:= \frac{-x}{1 + \beta x}, \\ \text{and} \qquad [x \mid \mathbf{y}]^k &:= (x \oplus y_1)(x \oplus y_2) \cdots (x \oplus y_k), \end{aligned}$$

[McNamara]: The Factorial Grothendieck polynomials are given by:

$$G_{\mu}(x_{1},...,x_{d} \mid \mathbf{y}) = \det \left([x_{i} \mid \mathbf{y}]^{\mu_{j}+d-j} (1+\beta x_{i})^{j-1} \right)_{i,j=1}^{d} \prod_{1 \leq i < j \leq d} \frac{1}{(x_{i}-x_{j})}$$

Vanishing property:

 $\text{evaluation at } \mathbf{y}_{\lambda} := (\ominus y_{\lambda_1+d}, \ominus y_{\lambda_2+d-1}, \ldots, \ominus y_{\lambda_d+1}) \text{ for } \ell(\lambda) \leq d,$

$$G_{\mu}(\mathbf{y}_{\lambda} | \mathbf{y}) = \begin{cases} 0 & \text{if } \mu \not\subseteq \lambda, \\ \prod_{(i,j) \in \lambda} (y_{d+j-\lambda'_{j}} \ominus y_{\lambda_{i}+d-i+1}) & \text{if } \mu = \lambda. \end{cases}$$

Greta Panova

4日ト 4日ト 4日ト 4日ト 4日ト 日 のへで
25
25

Lozenge Tilings I 0000000 NHLF

K-HLF

Factorial Grothendieck polynomials

(double Grothendieck polynomials for Grassmannian permutations)

$$\begin{aligned} x \oplus y &:= x + y + \beta xy, \qquad x \ominus y &:= \frac{(x - y)}{(1 + \beta y)}, \qquad \ominus x &:= \frac{-x}{1 + \beta x}, \\ \text{and} \qquad [x \mid \mathbf{y}]^k &:= (x \oplus y_1)(x \oplus y_2) \cdots (x \oplus y_k), \end{aligned}$$

[McNamara]: The Factorial Grothendieck polynomials are given by:

$$G_{\mu}(x_{1},...,x_{d} \mid \mathbf{y}) = \det \left([x_{i} \mid \mathbf{y}]^{\mu_{j}+d-j} (1+\beta x_{i})^{j-1} \right)_{i,j=1}^{d} \prod_{1 \leq i < j \leq d} \frac{1}{(x_{i}-x_{j})}$$

Vanishing property:

 $\text{evaluation at } \mathbf{y}_{\lambda} := (\ominus y_{\lambda_1+d}, \ominus y_{\lambda_2+d-1}, \dots, \ominus y_{\lambda_d+1}) \text{ for } \ell(\lambda) \leq d,$

$$G_{\mu}(\mathbf{y}_{\lambda} | \mathbf{y}) = \begin{cases} 0 & \text{if } \mu \not\subseteq \lambda, \\ \prod_{(i,j) \in \lambda} (y_{d+j-\lambda'_{j}} \ominus y_{\lambda_{i}+d-i+1}) & \text{if } \mu = \lambda. \end{cases}$$

Pieri rule:

$$G_{\mu}(\mathbf{x} \mid \mathbf{y}) \big(1 + \beta G_{1}(\mathbf{x} \mid \mathbf{y}) \big) = \big(1 + \beta G_{1}(\mathbf{y}_{\mu} \mid \mathbf{y}) \big) \sum_{\nu \mapsto \mu} \beta^{|\nu/\mu|} G_{\nu}(\mathbf{x} \mid \mathbf{y}) \,.$$

Greta Panova

Lozenge Tilings 0000000 Multivariate weight

NHLF 0000 K-HLF 00000

Skew K-HLF

Evaluations of factorial Grothendieck polynomials $G_{\mu}(\mathbf{y}_{\lambda}|\mathbf{y})$ for $\mu \subset \lambda$ (K-theory of the Grassmannian)

gebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
00	000000	00000	0000	00000

Evaluations of factorial Grothendieck polynomials $G_{\mu}(\mathbf{y}_{\lambda}|\mathbf{y})$ for $\mu \subset \lambda$ (K-theory of the Grassmannian)

[Graham-Kreiman]: Structure constants

$$\mathcal{K}_{\mu\lambda}^{\lambda} \;=\; \sum_{D\in\mathcal{D}(\lambda/\mu)} (-1)^{|D|-|\mu|} \prod_{(i,j)\in D} \frac{\mathsf{y}_{d+j-\lambda_{j}'} \;-\; \mathsf{y}_{\lambda_{i}+d+1-i}}{1 \;-\; \mathsf{y}_{\lambda_{i}+d+1-i}}$$

Igebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
00	000000	00000	0000	00000

Evaluations of factorial Grothendieck polynomials $G_{\mu}(\mathbf{y}_{\lambda}|\mathbf{y})$ for $\mu \subset \lambda$ (K-theory of the Grassmannian)

[Graham-Kreiman]: Structure constants

$$\mathcal{K}^{\lambda}_{\mu\lambda} \;=\; \sum_{D\in\mathcal{D}(\lambda/\mu)} (-1)^{|D|-|\mu|} \prod_{(i,j)\in D} rac{y_{d+j-\lambda_j'} - y_{\lambda_i+d+1-i}}{1 - y_{\lambda_i+d+1-i}}$$

[Lenart-Postnikov] Equivariant K-theory Chevalley formula:

$$\mathcal{K}^{\lambda}_{\mu\lambda}\left(rac{\mathcal{K}^{\lambda}_{1\lambda}-1+\mathit{wt}'(\mu)}{\mathit{wt}'(\mu)}
ight) \;=\; \sum_{
u\mapsto\mu} (-1)^{|
u/\mu|-1}\,\mathcal{K}^{\lambda}_{
u\lambda}\,,$$

where $wt'(\mu) := \prod_{(i,j)\in \mu} rac{1-y_{i+j-1}}{1-y_{i+j}}$.

Igebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
00	000000	00000	0000	00000

Evaluations of factorial Grothendieck polynomials $G_{\mu}(\mathbf{y}_{\lambda}|\mathbf{y})$ for $\mu \subset \lambda$ (K-theory of the Grassmannian)

[Graham-Kreiman]: Structure constants

$$\mathcal{K}^{\lambda}_{\mu\lambda} \;=\; \sum_{D\in\mathcal{D}(\lambda/\mu)} (-1)^{|D|-|\mu|} \prod_{(i,j)\in D} rac{y_{d+j-\lambda_j'} - y_{\lambda_i+d+1-i}}{1 - y_{\lambda_i+d+1-i}}$$

[Lenart-Postnikov] Equivariant K-theory Chevalley formula:

$$\mathcal{K}^{\lambda}_{\mu\lambda}\left(rac{\mathcal{K}^{\lambda}_{1\lambda}-1+wt'(\mu)}{wt'(\mu)}
ight) \;=\; \sum_{
u\mapsto\mu} \, (-1)^{|
u/\mu|-1} \, \mathcal{K}^{\lambda}_{
u\lambda} \,,$$

where $wt'(\mu) := \prod_{(i,j) \in \mu} rac{1-y_{i+j-1}}{1-y_{i+j}} \, .$

Compare with Chevalley formula for factorial Grothendiecks at $\beta = -1$:

$$\mathcal{G}_{\mu}(\mathbf{y}_{\lambda} \mid \mathbf{y}) \left(rac{G_{1}(\mathbf{y}_{\lambda} \mid \mathbf{y}) - G_{1}(\mathbf{y}_{\mu} \mid \mathbf{y})}{1 + eta G_{1}(\mathbf{y}_{\mu} \mid \mathbf{y})}
ight) \; = \; \sum_{
u \supseteq \mu} eta^{|
u/\mu| - 1} \; \mathcal{G}_{
u}(\mathbf{y}_{\lambda} \mid \mathbf{y}) \, .$$

イロト イヨト イヨト イヨト 三日

Igebraic Combinatorics	Lozenge Tilings I	Multivariate weights	NHLF	K-HLF
00	000000	00000	0000	00000

Evaluations of factorial Grothendieck polynomials $G_{\mu}(\mathbf{y}_{\lambda}|\mathbf{y})$ for $\mu \subset \lambda$ (K-theory of the Grassmannian)

[Graham-Kreiman]: Structure constants

$$\mathcal{K}^{\lambda}_{\mu\lambda} \;=\; \sum_{D\in\mathcal{D}(\lambda/\mu)} (-1)^{|D|-|\mu|} \prod_{(i,j)\in D} rac{y_{d+j-\lambda_j'} - y_{\lambda_i+d+1-i}}{1 - y_{\lambda_i+d+1-i}}$$

[Lenart-Postnikov] Equivariant K-theory Chevalley formula:

$$\mathcal{K}^\lambda_{\mu\lambda}\left(rac{\mathcal{K}^\lambda_{1\lambda}-1+wt'(\mu)}{wt'(\mu)}
ight) \ = \ \sum_{
u
ightarrow \mu} (-1)^{|
u/\mu|-1} \, \mathcal{K}^\lambda_{
u\lambda} \, ,$$

where $wt'(\mu) := \prod_{(i,j) \in \mu} rac{1-y_{i+j-1}}{1-y_{i+j}}$.

Compare with Chevalley formula for factorial Grothendiecks at $\beta = -1$:

$$egin{array}{ll} {G_\mu ({f y}_\lambda \, | \, {f y}) } \left({{G_1 ({f y}_\lambda | {f y}) - G_1 ({f y}_\mu \, | \, {f y})} \over {1 + eta G_1 ({f y}_\mu \, | \, {f y})} }
ight) \; = \; \sum_{
u \supseteq \mu} eta^{|
u/\mu| - 1} \; {G_
u ({f y}_\lambda \, | \, {f y}) } \, . \end{split}$$

General β : substitute $y_i \leftarrow -\beta y_i$

Theorem (Skew K-HLF, Morales-Pak-Panova'21+) Fix $d \ge 1$, $\beta \in \mathbb{R}$. For every $\mu \subset \lambda$ with $\ell(\lambda) \le d$, we have:

$$\sum_{T \in \mathsf{SIT}(\lambda/\mu)} \prod_{k=1}^{m(T)} \left(\left[\prod_{i=1}^{d} \frac{1+\beta y_{\nu_i(T_{\leq k})+d-i+1}}{1+\beta y_{\lambda_i+d-i+1}} \right] - 1 \right)^{-1} = \sum_{D \in \mathcal{D}(\lambda/\mu)} \beta^{|D|-|\lambda|} \prod_{(i,j) \in \lambda \setminus D} \frac{\beta y_{\lambda_i+d-i+1}+1}{y_{d+i-\lambda_j'} - y_{\lambda_i+d+1-i}} \cdot \frac{\beta y_{\lambda_i+d-i+1}}{y_{d+i+1} - i} = \sum_{D \in \mathcal{D}(\lambda/\mu)} \beta^{|D|-|\lambda|} \prod_{(i,j) \in \lambda \setminus D} \frac{\beta y_{\lambda_i+d-i+1}+1}{y_{d+i+\lambda_j'} - y_{\lambda_i+d-i+1}} \cdot \frac{\beta y_{\lambda_i+d-i+1}}{y_{d+i+1} - i} = \sum_{D \in \mathcal{D}(\lambda/\mu)} \beta^{|D|-|\lambda|} \prod_{(i,j) \in \lambda \setminus D} \frac{\beta y_{\lambda_i+d-i+1}+1}{y_{d+i+\lambda_j'} - y_{\lambda_i+d-i+1}} \cdot \frac{\beta y_{\lambda_i+d-i+1}}{y_{d+i+\lambda_j'} - y_{\lambda_i+d-i+1}} \cdot \frac{\beta y_{\lambda_i+d-i+1}}{y$$

Greta Panova

Lozenge Tilings I 0000000 Multivariate weight:

NHLF 0000 K-HLF

Asymptotic Algebraic Combinatorics

• Asymptotics of $f^{\lambda/\mu}$ when $\lambda, \mu \rightarrow$ limit shape?

Lozenge Tilings I 0000000 Multivariate weight

NHLF 0000 K-HLF

Asymptotic Algebraic Combinatorics

- Asymptotics of $f^{\lambda/\mu}$ when $\lambda, \mu \rightarrow$ limit shape?
- Asymptotics of structure constants:

Littlewood-Richardson $c_{\mu\nu}^{\lambda}$

$$s_{\mu}(x)s_{
u}(x) = \sum_{\lambda} c^{\lambda}_{\mu
u}s_{\lambda}(x)$$

Kronecker coefficients $g(\lambda, \mu, \nu)$:

$$\sum_{\lambda,\mu,\nu} g(\lambda,\mu,\nu) s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z) = \prod_{i,j,k} \frac{1}{1 - x_i y_j z_k}$$

Lozenge Tilings I 0000000 Multivariate weight

NHLF 0000 K-HLF

Asymptotic Algebraic Combinatorics

- Asymptotics of $f^{\lambda/\mu}$ when $\lambda, \mu \rightarrow$ limit shape?
- Asymptotics of structure constants:

Littlewood-Richardson $c_{\mu\nu}^{\lambda}$

$$s_{\mu}(x)s_{
u}(x) = \sum_{\lambda} c^{\lambda}_{\mu
u}s_{\lambda}(x)$$

Kronecker coefficients $g(\lambda, \mu, \nu)$:

$$\sum_{\lambda,\mu,\nu} g(\lambda,\mu,\nu) s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z) = \prod_{i,j,k} \frac{1}{1 - x_i y_j z_k}$$

Asymptotics of Schubert polynomial evaluations, pipe dreams:

Algebraic	Combinatorics
000	

ozenge Tilings I

Multivariate weights

NHLF 0000 K-HLF

$$\left|\mathcal{D}(\delta_{n+2k}/\delta_n)
ight|$$
 = 2^{-(^)}₂ det $[s_{n-2+i+j}]_{i,j=1}^k$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 めんぐ

Greta Panova