Alan Sola (Stockholm University) Spring 2022: Research Member Analysis and Geometry of Random Spaces

- Complex analysis and probability: $ALE(\alpha, \eta)$, $HL(\alpha)$.
- Harmonic analysis: Littlewood-Paley theory, Orlicz spaces.
- Operator theory: shifts on Bergman/Dirichlet spaces.
- Several complex variables: stable polynomials, boundary behavior of rational functions.

 $\Omega \subsetneq \mathbb{C}^d$ open and connected, $p \in \mathbb{C}[z_1, \ldots, z_d]$ no zeros in Ω .

(ロ)、

 $\Omega \subsetneq \mathbb{C}^d$ open and connected, $p \in \mathbb{C}[z_1, \ldots, z_d]$ no zeros in Ω . For which polynomials $q \in \mathbb{C}[z_1, \ldots, z_d]$ is $\phi = \frac{q}{p}$ bounded holomorphic function in Ω ?

 $\Omega \subsetneq \mathbb{C}^d$ open and connected, $p \in \mathbb{C}[z_1, \ldots, z_d]$ no zeros in Ω . For which polynomials $q \in \mathbb{C}[z_1, \ldots, z_d]$ is $\phi = \frac{q}{p}$ bounded holomorphic function in Ω ? **Specific question:** Take $\Omega = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| < 1, |z_2| < 1\}$ and $p = 2 - z_1 - z_2$.

 $\Omega \subsetneq \mathbb{C}^d$ open and connected, $p \in \mathbb{C}[z_1, \ldots, z_d]$ no zeros in Ω . For which polynomials $q \in \mathbb{C}[z_1, \ldots, z_d]$ is $\phi = \frac{q}{p}$ bounded holomorphic function in Ω ? **Specific question:** Take $\Omega = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| < 1, |z_2| < 1\}$ and $p = 2 - z_1 - z_2$. Which of the following bounded in Ω ?

Which of the following bounded in Ω ?

$$(a) \frac{2-z_1-z_2}{2-z_1-z_2} \quad (b) \frac{1-z_1}{2-z_1-z_2}$$
$$(c) \frac{2z_1z_2-z_1-z_2}{2-z_1-z_2} \quad (d) \frac{(1-z_1)(1-z_2)}{2-z_1-z_2}$$

 $\Omega \subsetneq \mathbb{C}^d$ open and connected, $p \in \mathbb{C}[z_1, \ldots, z_d]$ no zeros in Ω . For which polynomials $q \in \mathbb{C}[z_1, \ldots, z_d]$ is $\phi = \frac{q}{p}$ bounded holomorphic function in Ω ? **Specific question:** Take $\Omega = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| < 1, |z_2| < 1\}$ and $p = 2 - z_1 - z_2$.

Which of the following bounded in Ω ?

(a)
$$\frac{2-z_1-z_2}{2-z_1-z_2}$$
 (b) $\frac{1-z_1}{2-z_1-z_2}$
(c) $\frac{2z_1z_2-z_1-z_2}{2-z_1-z_2}$ (d) $\frac{(1-z_1)(1-z_2)}{2-z_1-z_2}$

Answer: $2 - z_1 - z_2$ and its *reflection* $2z_1z_2 - z_1 - z_2$ generate the ideal of admissible numerators. (Num in (d) is $\frac{1}{2}(p + \tilde{p})$.)

 $\Omega \subsetneq \mathbb{C}^d$ open and connected, $p \in \mathbb{C}[z_1, \ldots, z_d]$ no zeros in Ω . For which polynomials $q \in \mathbb{C}[z_1, \ldots, z_d]$ is $\phi = \frac{q}{p}$ bounded holomorphic function in Ω ? **Specific question:** Take $\Omega = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| < 1, |z_2| < 1\}$ and $p = 2 - z_1 - z_2$.

Which of the following bounded in Ω ?

$$(a) \frac{2-z_1-z_2}{2-z_1-z_2} \quad (b) \frac{1-z_1}{2-z_1-z_2}$$
$$(c) \frac{2z_1z_2-z_1-z_2}{2-z_1-z_2} \quad (d) \frac{(1-z_1)(1-z_2)}{2-z_1-z_2}$$

Answer: $2 - z_1 - z_2$ and its *reflection* $2z_1z_2 - z_1 - z_2$ generate the ideal of admissible numerators. (Num in (d) is $\frac{1}{2}(p + \tilde{p})$.) **General case for** d = 2: Corresponding statement not true but Kelly Bickel-Greg Knese-James Pascoe-AS. (2021) make *conjecture* (and prove true in many situations). **General case for** $d \ge 3$: Probably hard.