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Orthogonal projections

Let L C R? be a line (i.e. one-dimensional linear subspace)
and P; : R? — L the orthogonal projection onto L.

Given a Borel set A C R? Borel
with dimA = s

— dim P (A) =?
Trivially:
e dimPA <1
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Are these good bounds?

— Yes!



Marstrand’s theorem (in R?)

Theorem [Marstrand 1954].
Given a Borel set A C R?, then for /7! -almost every 6 € [0, 7)

dim PpA = min {1, dim A}

equivalently...

A0 €[0,7) : dim PgA < min {1,dimA}} = 0

=E

Note the exceptional set E depends on the choice of Borel set A.

This result generalizes to higher dimensions...



The Grassmannian of m-planes

Let G(n, m) be the family of m-planes in R” (called the Grassmannian)

e G(n,m) is a smooth manifold of dimension k := (n — m)m.

o The notion of .7*-zero sets on G(n, m) is well-defined
(forall s > 0)

e Hence the notion of Hausdorff dimension is well-defined.

o J*-zero sets in G(n,m) are also zero sets of the measure 7, , on
G(n, m) that is induced by the Haar-measure of O(n), and vice-versa.)



Projection theorems for orthogonal projections

Py : R" — V orthogonal projection, V € G(n, m).
Let A C R" a Borel set, dimA = s > 0.

e Marstrand 1954, Mattila 1975:
Ifs <m, #*{VeEGmm):dimPyA <s} =0
If s > m, A%V € G(n,m): #"(Py(A)) =0} =0

e Kaufman 1968, Mattila 1975:
If s <m, dim{V € G(n,m) : dim PyA < s} <s.
(In fact, this works for 0 < o« < s by later results.)

o Falconer 1982:
If s >m, dim{V : Z"(PL(A)) =0} < (n—m)m+m—s

e Besicovich 1939, Federer 1945:

If 5™ (A) < oo, then A is purely m-unrectifiable if and only if
A" (Py(A)) = 0 for #*-ae. V € G(n,m)



Projection theorems for various spaces

There are analogs of the results on the previous slides in various settings...

horizontal resp. vertical projections in the Heisenberg group
families of radial or point-source projections

orthogonal projections in Hyperbolic space and on the (half-) sphere
closest point projections induced by norms in R”

projections theorems for different notions of dimension

sharpness results for many of the above

special families of projections (““what is the structure of E?")

Many(!) authors have worked on the above.

-> see e.g. the great survey articles by Mattila from 2004 and 2015.



Transversality and projections theorems

A more general framework...

Letk,m e N, k > m.

Let Q be a compact metric space and A C R¥ a open.

Consider a continuous mapping IT: A x Q — R™.

We think of II as a family of mappings (projections)
I :=TI(\,)) : Q> R", A€ A

with parameter space A.

Example: Orthogonal projections onto m-planes in R”".

(Choose A to be a coordinate chart of G(n,m) and identify m-planes V with
R™ by an isometric isomorphism smootly in G(n, m).)



Transversality and projections theorems

Theorem [Peres and Schlag, 2000].

If the mapping 11 is sufficiently regular and (locally) transversal, then the
family of mappings IIy, A € A satisfies all the projection theorems of the
previous slide. (The Bes-Fed theorem is due to Hovila 2014.)

Regularity: We assume that IT is C-smooth for some L > 2.

(This assumption is stronger than necessary but will simplify things.)

Transversality: For all v # w € Q and A € A, define:

(A, v) = II(A, w)
v—wl

DA\ v, w) =

The family II is transversal if there exists C > 0 so that for all A, v, w:

[P\, v,w)| < C = |det[D>\<I)()\,v,w)(D,\<I>(/\,v7 w))TH > C?



Transversality and projections theorems

Transversality: For all v # w € Q and A € A, define:

(A, v) — II(A, w)

(A v,w) = T

The family II is transversal if there exists C > 0 so that for all A, v, w:
[P\, v,w)| < C = |det[D)\‘I>()\,v,W)(D)\(I)()\,V7 w))TH > (?
Special case k = m = 1
[ (A, v,w)] < C = |drAD(A,v,w)| > C

— Intuition: if v and w are (close to) collapsed into one point by IIy. Then
as A is varied, the images of v and w under II separate quickly.



Transversality and projections theorems

For a family of projections IT : A x 2 — R™:

Lemma 1: Local transversality is preserved quantitatively under C-smooth

change of coordinates: 1
AxQ ——— U

fxg h

! !

AxO —8 @

(This can be considered a folklore Lemma. We prove a formal version in
L.-Lukyanenko, Arxiv2021.)



A different perspective on Marstrand...

Let us restate Marstrand’s theorem in R?:

instead of projecting a set A onto a varying line L, rotate the set A and project
onto a fixed line, that is, ...

Let 7 : C — R be defined by 7(x) = Re(x)  (the base projection)

Let Ry : R? — R? be the counterclockwise  (family of motions)
rotation by angle A € A = (0, 7).

Define the projection family IT : C — R by IT» (x) = m(Rx(x)).
Then Marstrand’s theorem states as follows: for every Borel set A C R?,
A\ € A dimIIy(A) < min{l,dimA}}) =0

Question: What if we move A around by a different group of motions that
occur naturally in a geometric context?



Families induced by Mobius transformations

Consider the family of projections II : M&b xC—R given by

I1(g, z) = Re(g(2))-

Its domain is M&b xC \ {(g,g~"(c0)) : g € Mob}

Theorem 1. (I.-Lukyanenko, Arxiv2021) IT : Mob xC — Ris locally
transversal and therefore satisfies projection theorems on its domain.

Lemma 2: transversality is preserved if enlarging the family (as a product)

Proof: write D»® in the definition of transversality as block matrices.

Theorem 1 now follows from the fact that transversality holds for the family
induced by O(2) since O(2) C Méb a Lie subgroup.

Question: What about Lie subgroups I' C M6b?



Families induced by Mobius transformations

Let I' C Mob be a Lie subgroup.

Consider the family of projections IT : " x C—R given by

I1(g,z) = Re(g(z))-

Its domain is T' x C\ {(g, g~ "(c0)) : g € I'}

Note: transversality is in general not preserved when passing to smaller
families -> We have to actually do some work here!

Assume I' is 1-dimensional.

Let us write I' in terms of an element A = (a;;) in the Lie algebra s((2, C):

I'={v, =exp(Ar) : 1 € R}



Projections induced by Mob

Two examples

é \
°
I'is a compact 1-dim subgroup T is a loxodromic motion
I' ~g0,0) O(2) (non-compact)

T ~nsp {2 e@®)iz 1 € R}



Projections induced by Mob

For I = {, = exp(At) : t € R} 1-dim Lie subgroup of Mob,

and IT : T' x C — R the projection family given by (7,z) — Re(y(z))
wherever v(z) # oo,

Theorem 2. (I.-Lukyanenko, Arxiv2021)

IIis locally transversal precisely away from the closure S of the set
{(v,2) : Im(a; —ann(z) =0, 1R, z € @},

Proof:

e Lemma 3: the nice geometry of our setting implies: it suffices to check
transversality for v, = id (i.e. at t = 0).

e Linearize ¢ — II(~,, x) using Taylor expansion of exp

e Establish transversality at t = 0 (hands-on estimates)



Projections induced by Mob

Question: What about projection theorems?

Combining Theorem 2 with Peres and Schlag’s Theorem yields: projection
theorems hold wherever we have Im(a1; — a217,(z)) # 0, where A = (ay) is
the Lie algebra element generating I" by # — exp(Af).

If ay; = 0, then I preserves oo and:

e ifIm(aj;) =0, then (S=T x C and more importantly) I" consists of
translations and dilations. projection theorems fail completely.

e if Im(ay;) # 0, then I = O(2) and projection theorems hold.
If ay; # 0, consider the compactified line L = {z : Im(a;; — az21z) = 0} in
@, that is, the portion of the closure or S that comes from ¢ = 0.

Note that v,(c0) € L and L is tangent to the orbit I'(c0) = {~,(c0) : r € R}
at yp(00) = oo.



Projections induced by Mob

There are three cases:

e (bad case) L is a vertical line and L = T'(00): projection thms fail for
subsets of L (L is projected to a single point) but hold elsewhere.

e (good case) L is non-vertical and equals the orbit I'(co): the restriction
of the projection to L is a similarity mapping, so Hausdorff measure and
dimension is preserved along L.

e (artifact case) L # T'(oc0): any sufficiently small set inside L will be
moved away from L by ~; after some time. Thus projection thms hold.



Projections induced by Mob

This proves the following theorem...

Theorem 3. (I.-Lukyanenko, Arxiv2021)

Let I' C MGb be a one-dimensional Lie subgroup, and IT : T x C — Rthe
family given by II(~, z) = Re(~(z)). Then II satisfies projection theorems,
with the following natural exceptions:

e If I consists of Euclidean dilations and translations, then projection
theorems fail globally.

e If the orbit I'(c0) is a vertical line, then projection theorems fail along
this line.



More results and final remarks

In our paper (I.-Lukyanenko, Arxiv2021), we also cover:
e Analogs of Theorems 1, 2, and 3 for real-linear fractional
transformations: IT : PSL(3,R) x RP? — RP'

e Lemmas 2 and 3 hold in a more general framework: II : G x M — N
(M, N manifolds, G a Lie group acting on M).

e Transversality and projection thms for closest point projections in
hyperbolic n-space and n-sphere (improving results by Balogh-I.)

Further directions:
e 2-dim subgroups? Respectively, are 1-dim subgroups the only minimal
transversal subgroups?

e Other groups acting on surfaces? E.g. focussing on properties of group
actions.

e Higher dimensions?

o Similar considerations in Sub-Riemannian setting?



Thank you for listening!
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How well are sets generically preserved
under families of projections?

e

IFS fractal curves

‘When are two IFS curves bi-Lipschitz or
quasisymmetrically equivalent?

The dynamics of Thurston maps

- Thurston’s characterizations of rational

- The curve attractor problem
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