Projection theorems for linear-fractional families of projections

Joint work with A. Lukyanenko (GMU Fairfax)

AGRS Research Seminar 2.2.22

Annina Iseli

Postdoc at MSRI Berkeley and University of Fribourg

Orthogonal projections

Let $L \subset \mathbb{R}^2$ be a line (i.e. one-dimensional linear subspace) and $P_L : \mathbb{R}^2 \to L$ the orthogonal projection onto *L*.

Given a Borel set $A \subset \mathbb{R}^2$ Borel with dim A = s \rightarrow dim $P_L(A) = ?$

Trivially:

- dim $P_L A \leq 1$
- dim $P_L A \leq s$

Are these good bounds?

 \rightarrow Yes!

Marstrand's theorem (in \mathbb{R}^2)

Theorem [Marstrand 1954]. Given a Borel set $A \subset \mathbb{R}^2$, then for \mathscr{H}^1 -almost every $\theta \in [0, \pi)$

 $\dim P_{\theta}A = \min\left\{1, \dim A\right\}$

equivalently ...

$$\mathscr{H}^{1}\left\{\underbrace{\theta \in [0,\pi) : \dim P_{\theta}A < \min\left\{1, \dim A\right\}}_{:=E}\right\} = 0$$

Note the *exceptional set E* depends on the choice of Borel set *A*.

This result generalizes to higher dimensions...

The Grassmannian of *m*-planes

Let G(n, m) be the family of *m*-planes in \mathbb{R}^n (called the *Grassmannian*)

- G(n,m) is a smooth manifold of dimension k := (n-m)m.
- The notion of ℋ^s-zero sets on G(n, m) is well-defined (for all s ≥ 0)
- Hence the notion of Hausdorff dimension is well-defined.
- \mathscr{H}^k -zero sets in G(n, m) are also zero sets of the measure $\sigma_{n,m}$ on G(n, m) that is induced by the Haar-measure of O(n), and vice-versa.)

Projection theorems for orthogonal projections

 $P_V: \mathbb{R}^n \to V$ orthogonal projection, $V \in G(n, m)$.

Let $A \subset \mathbb{R}^n$ a Borel set, dim A = s > 0.

• Marstrand 1954, Mattila 1975:

$$\begin{split} & \text{If } s \leq m, \ \mathscr{H}^k \{ V \in G(n,m) : \dim P_V A < s \} = 0 \\ & \text{If } s > m, \ \mathscr{H}^k \{ V \in G(n,m) : \mathscr{H}^m(P_V(A)) = 0 \} = 0 \end{split}$$

- Kaufman 1968, Mattila 1975:
 If s ≤ m, dim{V ∈ G(n, m) : dim P_VA < s} < s. (In fact, this works for 0 < α ≤ s by later results.)
- Falconer 1982:

If s > m, dim $\{V : \mathscr{H}^m(P_L(A)) = 0\} \le (n-m)m + m - s$

• Besicovich 1939, Federer 1945:

If $\mathscr{H}^m(A) < \infty$, then A is purely *m*-unrectifiable if and only if $\mathscr{H}^m(P_V(A)) = 0$ for \mathscr{H}^k -a.e. $V \in G(n,m)$

Projection theorems for various spaces

There are analogs of the results on the previous slides in various settings...

- horizontal resp. vertical projections in the Heisenberg group
- families of radial or point-source projections
- orthogonal projections in Hyperbolic space and on the (half-) sphere
- closest point projections induced by norms in \mathbb{R}^n
- projections theorems for different notions of dimension
- sharpness results for many of the above
- special families of projections ("what is the structure of E?")

• ...

Many(!) authors have worked on the above.

-> see e.g. the great survey articles by Mattila from 2004 and 2015.

A more general framework...

Let $k, m \in \mathbb{N}, k \geq m$.

Let Ω be a compact metric space and $\Lambda \subset \mathbb{R}^k$ a open.

Consider a continuous mapping $\Pi : \Lambda \times \Omega \to \mathbb{R}^m$.

We think of Π as a family of mappings (*projections*)

$$\Pi_{\lambda} := \Pi(\lambda, \cdot) : \Omega \to \mathbb{R}^m, \ \lambda \in \Lambda$$

with parameter space Λ .

Example: Orthogonal projections onto *m*-planes in \mathbb{R}^n .

(Choose Λ to be a coordinate chart of G(n, m) and identify *m*-planes *V* with \mathbb{R}^m by an isometric isomorphism smootly in G(n, m).)

Theorem [Peres and Schlag, 2000].

If the mapping Π is sufficiently *regular* and (locally) *transversal*, then the family of mappings Π_{λ} , $\lambda \in \Lambda$ satisfies all the projection theorems of the previous slide. (The Bes-Fed theorem is due to Hovila 2014.)

Regularity: We assume that Π is C^L -smooth for some $L \ge 2$. (This assumption is stronger than necessary but will simplify things.)

<u>Transversality</u>: For all $v \neq w \in \Omega$ and $\lambda \in \Lambda$, define:

$$\Phi(\lambda, v, w) := \frac{\Pi(\lambda, v) - \Pi(\lambda, w)}{|v - w|}$$

The family Π is transversal if there exists C > 0 so that for all λ, v, w :

$$|\Phi(\lambda, v, w)| \leq C \Rightarrow \left| \det[\mathsf{D}_{\lambda} \Phi(\lambda, v, w) (\mathsf{D}_{\lambda} \Phi(\lambda, v, w))^{\mathsf{T}}] \right| \geq C^{2}$$

Transversality: For all $v \neq w \in \Omega$ and $\lambda \in \Lambda$, define:

$$\Phi(\lambda, v, w) := \frac{\Pi(\lambda, v) - \Pi(\lambda, w)}{|v - w|}$$

The family Π is transversal if there exists C > 0 so that for all λ, v, w :

$$|\Phi(\lambda, v, w)| \leq C \Rightarrow \left|\det[\mathsf{D}_{\lambda}\Phi(\lambda, v, w)(\mathsf{D}_{\lambda}\Phi(\lambda, v, w))^{\mathsf{T}}]\right| \geq C^{2}$$

Special case k = m = 1

$$|\Phi(\lambda, v, w)| \le C \implies |\mathsf{d}_{\lambda} \Phi(\lambda, v, w)| \ge C$$

 \rightarrow <u>Intuition</u>: if *v* and *w* are (close to) collapsed into one point by Π_{λ} . Then as λ is varied, the images of *v* and *w* under Π_{λ} separate quickly.

For a family of projections $\Pi : \Lambda \times \Omega \to \mathbb{R}^m$:

<u>Lemma 1</u>: Local transversality is preserved quantitatively under C^2 -smooth change of coordinates:

(This can be considered a folklore Lemma. We prove a formal version in I.-Lukyanenko, Arxiv2021.)

A different perspective on Marstrand...

Let us restate Marstrand's theorem in \mathbb{R}^2 :

instead of projecting a set A onto a varying line L, rotate the set A and project onto a fixed line, that is, ...

Let $\pi : \mathbb{C} \to \mathbb{R}$ be defined by $\pi(x) = \operatorname{Re}(x)$ (the base projection) Let $R_{\lambda} : \mathbb{R}^2 \to \mathbb{R}^2$ be the counterclockwise (family of motions) rotation by angle $\lambda \in \Lambda = (0, \pi)$.

Define the projection family $\Pi_{\lambda} : \mathbb{C} \to \mathbb{R}$ by $\Pi_{\lambda}(x) = \pi(R_{\lambda}(x))$.

Then Marstrand's theorem states as follows: for every Borel set $A \subset \mathbb{R}^2$,

$$\mathscr{H}^{1}\{\lambda \in \Lambda : \dim \Pi_{\lambda}(A) < \min\{1, \dim A\}\}) = 0$$

Question: What if we move *A* around by a different group of motions that occur naturally in a geometric context?

Families induced by Möbius transformations

Consider the family of projections $\Pi : M\ddot{o}b \times \hat{\mathbb{C}} \to \mathbb{R}$ given by

 $\Pi(g,z) = \operatorname{Re}(g(z)).$

Its domain is $\operatorname{M\"ob} \times \hat{\mathbb{C}} \setminus \{(g, g^{-1}(\infty)) : g \in \operatorname{M\"ob}\}$

Theorem 1. (I.-Lukyanenko, Arxiv2021) Π : $M\ddot{o}b \times \hat{\mathbb{C}} \to \mathbb{R}$ is locally transversal and therefore satisfies projection theorems on its domain.

<u>Lemma 2</u>: transversality is preserved if enlarging the family (as a product) <u>Proof:</u> write $D_{\lambda}\Phi$ in the definition of transversality as block matrices.

Theorem 1 now follows from the fact that transversality holds for the family induced by O(2) since $O(2) \subset M\ddot{o}b$ a Lie subgroup.

Question: What about Lie subgroups $\Gamma \subset \text{M\"ob}$?

Families induced by Möbius transformations

Let $\Gamma \subset \text{M\"ob}$ be a Lie subgroup.

Consider the family of projections $\Pi: \Gamma \times \hat{\mathbb{C}} \to \mathbb{R}$ given by

 $\Pi(g,z) = \operatorname{Re}(g(z)).$

Its domain is $\Gamma \times \hat{\mathbb{C}} \setminus \{(g, g^{-1}(\infty)) : g \in \Gamma\}$

<u>Note</u>: transversality is in general not preserved when passing to smaller families -> We have to actually do some work here!

Assume Γ is <u>1-dimensional</u>.

Let us write Γ in terms of an element $A = (a_{ij})$ in the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$:

$$\Gamma = \{\gamma_t = \exp(At) : t \in \mathbb{R}\}\$$

Two examples

 $\Gamma \sim_{SL(2,\mathbb{C})} O(2)$

 Γ is a loxodromic motion (non-compact) $\Gamma \sim_{\text{M\"ob}} \{ z \mapsto e^{(a+ib)t} z : t \in \mathbb{R} \}$

For $\Gamma = \{\gamma_t = \exp(At) : t \in \mathbb{R}\}$ 1-dim Lie subgroup of Möb, and $\Pi : \Gamma \times \hat{\mathbb{C}} \to \mathbb{R}$ the projection family given by $(\gamma, z) \mapsto \operatorname{Re}(\gamma(z))$ wherever $\gamma(z) \neq \infty$,

Theorem 2. (I.-Lukyanenko, Arxiv2021)

 Π is locally transversal precisely away from the closure S of the set

$$\{(\gamma_t, z) : \operatorname{Im}(a_{11} - a_{21}\gamma_t(z)) = 0, \ t \in \mathbb{R}, \ z \in \widehat{\mathbb{C}}\},\$$

Proof:

- Lemma 3: the nice geometry of our setting implies: it suffices to check transversality for $\gamma_t = id$ (i.e. at t = 0).
- Linearize $t \mapsto \Pi(\gamma_t, x)$ using Taylor expansion of exp
- Establish transversality at t = 0 (hands-on estimates)

Question: What about projection theorems?

Combining Theorem 2 with Peres and Schlag's Theorem yields: projection theorems hold wherever we have $\text{Im}(a_{11} - a_{21}\gamma_t(z)) \neq 0$, where $A = (a_{ij})$ is the Lie algebra element generating Γ by $t \mapsto \exp(At)$.

If $a_{21} = 0$, then Γ preserves ∞ and:

- if Im(a₁₁) = 0, then (S = Γ × Ĉ and more importantly) Γ consists of translations and dilations. projection theorems fail completely.
- if $\text{Im}(a_{11}) \neq 0$, then $\Gamma = O(2)$ and projection theorems hold.

If $\underline{a_{21} \neq 0}$, consider the compactified line $L = \{z : \text{Im}(a_{11} - a_{21}z) = 0\}$ in $\widehat{\mathbb{C}}$, that is, the portion of the closure or *S* that comes from t = 0.

Note that $\gamma_t(\infty) \in L$ and *L* is tangent to the orbit $\Gamma(\infty) = \{\gamma_t(\infty) : t \in \mathbb{R}\}$ at $\gamma_0(\infty) = \infty$.

There are three cases:

- (bad case) *L* is a vertical line and *L* = Γ(∞): projection thms fail for subsets of *L* (*L* is projected to a single point) but hold elsewhere.
- (good case) L is non-vertical and equals the orbit Γ(∞): the restriction
 of the projection to L is a similarity mapping, so Hausdorff measure and
 dimension is preserved along L.
- (artifact case) L ≠ Γ(∞): any sufficiently small set inside L will be moved away from L by γ_t after some time. Thus projection thms hold.

This proves the following theorem...

Theorem 3. (I.-Lukyanenko, Arxiv2021)

Let $\Gamma \subset \text{M\"ob}$ be a one-dimensional Lie subgroup, and $\Pi : \Gamma \times \hat{\mathbb{C}} \to \mathbb{R}$ the family given by $\Pi(\gamma, z) = \text{Re}(\gamma(z))$. Then Π satisfies projection theorems, with the following natural exceptions:

- If Γ consists of Euclidean dilations and translations, then projection theorems fail globally.
- If the orbit $\Gamma(\infty)$ is a vertical line, then projection theorems fail along this line.

More results and final remarks

In our paper (I.-Lukyanenko, Arxiv2021), we also cover:

- Analogs of Theorems 1, 2, and 3 for real-linear fractional transformations: $\Pi : PSL(3, \mathbb{R}) \times \mathbb{RP}^2 \to \mathbb{RP}^1$
- Lemmas 2 and 3 hold in a more general framework: $\Pi : G \times M \to N$ (*M*, *N* manifolds, *G* a Lie group acting on *M*).
- Transversality and projection thms for closest point projections in hyperbolic *n*-space and *n*-sphere (improving results by Balogh-I.)

Further directions:

- 2-dim subgroups? Respectively, are 1-dim subgroups the only minimal transversal subgroups?
- Other groups acting on surfaces? E.g. focussing on properties of group actions.
- Higher dimensions?
- Similar considerations in Sub-Riemannian setting?

Thank you for listening!

My research interests

Geometric measure theory

Projection theorems

How well are sets generically preserved under families of projections?

IFS fractal curves

When are two IFS curves bi-Lipschitz or quasisymmetrically equivalent?

The dynamics of Thurston maps

- · Thurston's characterizations of rational
- · The curve attractor problem

· Visual spheres of Thurston maps

