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Context
I Question: What is the ‘best’ way to parameterize a space X?

Examples

I Riemann mapping theorem(or uniformization theorem): X is a
simply connected region (or simply connected Riemann
surface), f is a conformal map, Y = D,C or S2.

I Ricci flow: X is a manifold, f is a diffeomorphism, Y manifold
with constant Ricci curvature.

I Goal: Describe such a parametrization for a metric space with
a symmetric diffusion process.
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Outline

I Quasisymmetry, Ahlfors regular conformal dimension.

I Diffusions on fractals: walk dimension.

I Dirichlet forms: energy measure, intrinsic metric and
harmonic functions.

I Conformal walk dimension.

I Connections between conformal dimensions.
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Quasisymmetry and Conformal gauge
I Quasisymmetry (QS): A notion of ‘conformal maps’ on metric

spaces (Ahlfors-Beurling ‘56, Tukia-Väisälä ‘80).
f : (X1, d1)→ (X2, d2) is a homeomorphism.
η : [0,∞)→ [0,∞) is a self-homeomorphism on [0,∞).
Def. f is η-QS

d2(f (x), f (y))

d2(f (x), f (z))
≤ η

(
d1(x , y)

d1(x , z)

)
for all x , y , z ∈ X1, x 6= z .

f is a QS (quasisymmetry) it is a quasisymmetry for some η.
Def. Conformal gauge of a metric space (X , d)
J (X , d) = {θ is a metric on X Id : (X , d)→ (X , θ) is a QS} .
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Quasisymmetry: example 1
Snowball is quasisymmetric to S2 (Meyer ‘02).
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Quasisymmetry: example 2

Standard Sierpiński carpet is quasisymmetric to a round Sierpiński
carpet (Bonk ‘11).

Figure: The Sierpiński carpet and a round Sierpiński carpet (image:
Kajino)
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Ahlfors regular conformal dimension (Pansu ‘89)

I The Ahlfors regular conformal dimension of a metric space
(X , d) is

dARC = inf

{
Q

∣∣∣∣∣
there exists a measure µ and a metric
θ ∈ J (X , d) such that µ(Bθ(x , r)) � rQ

for all r < diam(X , θ).

}
.

I Ahlfors regular conformal dimension of Julia sets and
boundary of hyperbolic groups is used to understand
underlying dynamical and group structures respectively.

I Possible values of dARC = {0} ∪ [1,∞] (Laakso‘00,
Kovalev‘06).

I Questions: Given a space, what is the value of dARC? Is the
infimum attained? Both these questions are open for
Sierpiński carpet.
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Diffusion on fractals
I Diffusions on fractals are often defined as scaling limit of

random walks on graph approximations or limit of diffusions
on smooth approximations.

I The space-time scaling exponent (walk dimension) is usually
strictly larger than two in contrast with smooth settings.
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Space time scaling exponent

For the random walk (Sn) on a ‘graph’ Sierpiński gasket

Ed(S0,Sn) � n1/β, Ex [τB(x ,r)] � rβ.

where β = log2 5 (Barlow, Perkins ‘88).
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Set up: metric space with a Dirichlet form
Setup: (X , d ,m) complete, locally compact, metric measure
space, where d is a doubling metric and m is a Radon measure
with full support.
(E ,Fm) regular, strongly local Dirichlet form on L2(m).
This defines a m-symmetric diffusion process (Yt)t≥0 on X .

Px = law of Yt given the starting point Y0 = x .

Def.: Let Γ(f , f ) denote the energy measure (so that
E(f , f ) =

∫
X dΓ(f , f )) and energy measure and the intrinsic

distance

dint(x , y) = sup{f (x)− f (y) : f ∈ C (X ) ∩ Fm : Γ(f , f ) ≤ m}

Example.: For the Brownian motion on Rn, m is Lebesgue
measure, d is Euclidean metric, E(f , f ) = ‖∇f ‖22 and F is W 1,2

Sobolev space, Γ(f , f ) = |∇f |2 (x) dx and

dint(x , y) = sup{f (x)−f (y) : |∇f | ≤ 1, f ∈ C (X )∩W 1,2} = d(x , y).
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Revuz correspondence

I Time changes of symmetric Markov process are in one-to-one
correspondence with a family of ‘smooth’ measures (Revuz
‘70).

I The diffusion tends to run faster where the new symmetric
measure is small and slower if the measure is large.

I Time change is done using a class A of admissible measures
which are defined as Radon measures with full quasi-support
such that they do not charge sets of zero capacity.
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Sub-Gaussian heat kernel estimate

A metric measure space (X , d ,m) with a Dirichlet form (E ,F) (or
equivalently, an m-symmetric diffusion process (Yt)), satisfies the
sub-Gaussian heat kernel bounds HKE(β) if there exists constants
C1−4 > 0 such that the heat kernel (or transition probability
density) satisfies

pt(x , y) ≤ C3

m(B(x , t1/β))
exp

(
−C4

(
d(x , y)β

t

)1/(β−1))

and
C11{d(x ,y)β≤C2t}

m(B(x , t1/β))
≤ pt(x , y)

for all t > 0, x , y ∈ X .

Possible values of β=[2,∞) (Barlow ‘04, Hino‘02).
β > 2 is typically seen on fractals while β = 2 is seem in smooth
settings.
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Conformal walk dimension

Definition: Conformal walk dimension dcw

dcw = inf

{
β

∣∣∣∣∣
there exists an admissible measure µ
(=time change) and metric θ ∈ J (X , d)
such that (X , θ, µ, E ,Fµ) satisfies
HKE(β)

}
,

where admissible measures are Radon measures that do no charge
sets of capacity zero and have full quasi support.
We reparametrize time by choosing a symmetric measure, and we
reparametrize space by choosing a metric in the conformal gauge.

By replacing the metric d with dα ∈ J (X , d) where α ∈ (0, 1), we
can obtain HKE(β/α) from HKE(β). (reason for taking infimum)

Questions: What is the value of dcw? Is the infimum attained?
Motivation 1: To understand elliptic Harnack inequality.
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Elliptic Harnack inequality
Def. Elliptic Harnack inequality (EHI): there exists C ,A > 1 such
that for all h ≥ 0 harmonic in B(x ,Ar)

sup
B(x ,r)

h ≤ C inf
B(x ,r)

h.

A function h ∈ F is harmonic in an open set U if

E(h, u) = 0 for all f ∈ Cc(U) ∩ Fm.
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Motivation 1: elliptic Harnack inequality

I dcw <∞ is equivalent to the elliptic Harnack inequality
(Barlow, M. ‘18, Barlow, Chen, M. ‘20)

I (Stability of EHI) If M is a Riemannian manifold that satisfies
EHI for the Laplace-Beltrami operator. Then M satisfies EHI
for any uniformly elliptic divergence form operator (Barlow,
M. ‘18).

I This generalizes Moser’s EHI (‘61) for the case M = Rn and
follows from stability of HKE(β) shown by Grigor’yan ‘91,
Saloff-Coste ‘92, Sturm ‘95, Barlow, Bass, Kumagai ‘06,
Grigor’yan, Hu, Lau ‘15.
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Motivation 2: Sierpiński gasket attains dcw = 2.

The 2-dimensional Sierpiński Gasket attains the infimum and
dcw = 2. (Kigami ’08)
µ is the Kusuoka measure and θ is the intrinsic metric
corresponding to µ.

Even fractals can have walk dimension 2! Snowball is another
example.
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Universal value of dcw

Questions: What is the value of dcw? Is the infimum attained?
Theorem. (Kajino, M. ‘22+)

dcw <∞ ⇐⇒ dcw = 2.

That is, we can upgrade from HKE(β) to HKE(2+ε) for all ε > 0.
The following examples do not attain the infimum.

The 2D Sierpiński carpet is ongoing work and the higher
dimensional versions of Sierpiński carpet is open (difficult!).
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Structure of optimal metric and measure

Theorem (Kajino, M. ‘20) If dcw = 2 is attained for some metric θ
and a measure µ, then θ is bi-Lipschitz equivalent to the intrinsic
metric dint(µ). (that is, metric is determined by the measure)

Theorem (Kajino, M. ‘20) If dcw = 2 is attained for some metric θ
and a measure µ, then µ is a minimal energy dominant measure,
that is µ satisfies the following

(a) (Energy dominance) Γ(f , f )� µ for every f ∈ F , where
Γ(f , f ) is the energy measure of f .

(b) (Minimality) If µ̃ satisfies (a), then µ� µ̃.

(Remark: any two minimal energy dominant measures are mutually
absolutely continuous)
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A structure theorem for self similar sets

Theorem (Kajino, M. ‘22+) Let X be a self-similar set and X ∂ be
its ‘natural boundary’. If the conformal walk dimension is attained,
then the conformal walk dimension is also attained by the energy
measure of a harmonic function; that is µ = Γ(h, h) where h is a
harmonic function on X \ X ∂ .

In other words, to find ‘optimal’ metrics and measures it is enough
to search for ‘optimal’ harmonic functions.
Conjecture: An analogue of this result should be true for Ahlfors
regular conformal dimension.
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A structure theorem for self similar sets

Theorem (Kajino, M. ‘22+) Let X be a self-similar set and X ∂ be
its ‘natural boundary’. If the conformal walk dimension is attained,
then the conformal walk dimension is also attained by the energy
measure of a harmonic function; that is µ = Γ(h, h) where h is a
harmonic function on X \ X ∂ .

In other words, to find ‘optimal’ metrics and measures it is enough
to search for ‘optimal’ harmonic functions.
Application: All our examples on non-attainment of dcw relies on
this structure theorem.
Conjecture: An analogue of this result should be true for Ahlfors
regular conformal dimension where harmonic is replaced by
dARC-harmonic.
Recent preprints of Kigami ‘21 and Shimizu ‘21 construct
non-linear analogues of Dirichlet forms and energy measures on
some fractals.
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Non-attainment on higher dimensional Sierpiński gasket
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Challenge

The Sierpinski carpet case is much more involved since there is an
infinite dimensional space of harmonic functions. The proof
involves more advanced techniques: Boundary Harnack principle,
Doob h-transform, Jordan curve theorem.
We would like to know if the energy measure of a non-constant
harmonic function has full support. By a Poincaré inequality, this is
equivalent to unique continuation principle.
Unique continuation principle is not known for harmonic functions
on the Sierpiński carpet.
Challenge: Find a probabilistic proof of the unique continuation
principle for harmonic function on Rn.
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Another description of dcw

dcw = inf

{
β

∣∣∣∣∣
there exists an admissible measure µ
(=time change) and metric θ ∈ J (X , d)
such that (X , θ, µ, E ,Fµ) satisfies
HKE(β)

}

Using known characterizations of heat kernel bounds, we can
rewrite the definition as

dcw = inf

{
β

∣∣∣∣∣
there exists an admissible mea-
sure µ (=time change) and met-
ric θ ∈ J (X , d) such that
(X , θ, µ, E ,Fµ) satisfies EHI and
µ(Bθ(x , r)) � rβCapBθ(x ,Ar)(Bθ(x , r))

}
,

Here CapD(A) = inf{E(f , f ) : f ∈ Cc(D) ∩ F , f |A ≥ 1}.
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Ingredients of the proof of dcw <∞ =⇒ dcw = 2.
I Heuristic idea: The construction of the metric is such that the

‘new’ diameter of a ball is proportional to the gradient of
equilibrium potential at all locations and scales.

I A given metric space can be viewed as the boundary of a
Gromov hyperbolic space (Elek ‘97, Bourdon-Pajot ‘03). This
Gromov hyperbolic space is a graph and called the hyperbolic
filling of a metric space.

I (Bonk, Schramm ’01) A bi-Lipschitz change of the metric of
the hyperbolic filling results in a quasisymmetric change of the
metric on its boundary.

I (Bonk, Schramm ’01) All metrics on the conformal gauge can
be obtained as a bi-Lipschitz change of metric on its
hyperbolic filling.

I (Carrasco ’13) A combinatorial description of the conformal
gauge J (X , d) by providing conditions on edge weights that
can be used to perturb the distances on the hyperbolic filling.
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