Jump Diffusions on Metric Measure Spaces

Zhen-Qing Chen University of Washington

AGRS Research Seminar

MSRI, February 23, 2022

- Takashi Kumagai, Kyoto University, Japan
- Jian Wang, Fuzhou Normal University, China

In this talk, a jump diffusion means a purely discontinuous (symmetric) Markov process with long range jumps.

Example. Isotropic or rotationally symmetric α -stable process X on \mathbb{R}^d with $0 < \alpha < 2$:

$$\mathbb{E}e^{i\xi\cdot(X_t-X_0)}=e^{-t|\xi|^{lpha}},\qquad \xi\in\mathbb{R}^d.$$

 $\alpha = 2$: Brownian motion

Why do we care?

• Jumps model sudden big changes when viewed in a long time scale.

- Anomalous super-diffusions
- Infinitesimal generator of X is $\Delta^{\alpha/2} := -(-\Delta)^{\alpha/2}$:

$$\Delta^{\alpha/2}u(x) = \text{p.v.} \int_{\mathbb{R}^d} (u(y) - u(x)) \frac{c_{d,\alpha}}{|y - x|^{d+\alpha}} dy,$$

where $c_{d,\alpha} \simeq \alpha (2 - \alpha)$. Riesz potential

- Singular obstacle problem; Dirichlet-to-Nuemann map
- Trace of diffusions on subsets.
- Time change of diffusion processes

- Non-local operators: not very amenable for calculation
- Typically infinitely many small jumps in any given time intervals.
- Long range jumps

Features:

- Exist in a very general setting
- Very large class and rich behaviors: polynomial, exponential, short range, ...

- Non-local operators: not very amenable for calculation
- Typically infinitely many small jumps in any given time intervals.
- Long range jumps

Features:

- Exist in a very general setting
- Very large class and rich behaviors: polynomial, exponential, short range, ...

A useful tool in the study of symmetric Markov processes is Dirichlet form theory.

$$X \longleftrightarrow \{P_t\}_{t \ge 0} \longleftrightarrow \mathcal{L} \longleftrightarrow (\mathcal{E}, \mathcal{F}),$$

where $\mathcal{F} = \operatorname{Dom}(\sqrt{-\mathcal{L}})$ and
 $\mathcal{E}(f,g) = (\sqrt{-\mathcal{L}}f, \sqrt{-\mathcal{L}}g)_{L^2(\mathcal{X};m)} = (-\mathcal{L}f, g)_{L^2(\mathcal{X};m)}.$

Fukushima ('71, '75), Silverstein ('74): regular DF
Albeverio-Ma ('91), Ma-Röckner ('92): quasi-regular DF
C.-Ma-Röcknet ('94): quasi-homeomorphism: QR ↔ R

A useful tool in the study of symmetric Markov processes is Dirichlet form theory.

$$X \longleftrightarrow \{P_t\}_{t \ge 0} \longleftrightarrow \mathcal{L} \longleftrightarrow (\mathcal{E}, \mathcal{F}),$$

where $\mathcal{F} = \mathrm{Dom}(\sqrt{-\mathcal{L}})$ and
 $\mathcal{E}(f, g) = (\sqrt{-\mathcal{L}}f, \sqrt{-\mathcal{L}}g)_{L^2(\mathcal{X};m)} = (-\mathcal{L}f, g)_{L^2(\mathcal{X};m)}.$

- Fukushima ('71, '75), Silverstein ('74): regular DF
- Albeverio-Ma ('91), Ma-Röckner ('92): quasi-regular DF
- C.-Ma-Röcknet ('94): quasi-homeomorphism: $QR \leftrightarrow R$

For a regular Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(\mathcal{X}; m)$,

$$\begin{split} \mathcal{E}(u,u) &= \mathcal{E}^{(c)}(u,u) + \frac{1}{2} \int_{\mathcal{X}\times\mathcal{X}} (u(x) - u(y))^2 J(dx,dy) \\ &+ \int_{\mathcal{X}} u(x)^2 \kappa(dx), \end{split}$$

where $\mathcal{E}^{(c)}$ is strongly local: $\mathcal{E}^{(c)}(u, v) = 0$ for uv = 0J(dx, dy): jumping kernel $\kappa(dx)$: killing measure.

Stability

In this talk, we are concerned with pure jump processes associated with regular DF $(\mathcal{E}, \mathcal{F})$:

$$\mathcal{E}(u,u) = \frac{1}{2} \int_{\mathcal{X}\times\mathcal{X}} (u(x) - u(y))^2 J(dx,dy)$$

on metric measure space (\mathcal{X}, d, m) .

We are interested in the following stability question: Suppose we have another DF $(\mathcal{E}', \mathcal{F})$ with $J' \simeq J$. What properties are transferable from one to the other? HKE, PHI, EHI

Stability

In this talk, we are concerned with pure jump processes associated with regular DF $(\mathcal{E}, \mathcal{F})$:

$$\mathcal{E}(u,u) = \frac{1}{2} \int_{\mathcal{X}\times\mathcal{X}} (u(x) - u(y))^2 J(dx,dy)$$

on metric measure space (\mathcal{X}, d, m) .

We are interested in the following stability question: Suppose we have another DF $(\mathcal{E}', \mathcal{F})$ with $J' \simeq J$. What properties are transferable from one to the other? HKE, PHI, EHI

Stability

In this talk, we are concerned with pure jump processes associated with regular DF $(\mathcal{E}, \mathcal{F})$:

$$\mathcal{E}(u,u) = \frac{1}{2} \int_{\mathcal{X}\times\mathcal{X}} (u(x) - u(y))^2 J(dx,dy)$$

on metric measure space (\mathcal{X}, d, m) .

We are interested in the following stability question: Suppose we have another DF $(\mathcal{E}', \mathcal{F})$ with $J' \simeq J$. What properties are transferable from one to the other? HKE, PHI, EHI **Example.** Isotropic α -stable process X has transition density function

$$p^{(\alpha)}(t,x,y) \asymp t^{-d/\alpha} \wedge \frac{t}{|x-y|^{d+\alpha}}.$$

Its Dirichlet form $(\mathcal{E},\mathcal{F})$ is

$$\mathcal{E}(u,u) = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} (u(x) - u(y))^2 \frac{c_{d,\alpha}}{|x - y|^{d + \alpha}} dx dy.$$

Q. What is the heat kernel for

$$\mathcal{E}'(u,u) = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} (u(x) - u(y))^2 \frac{c(x,y)}{|x-y|^{d+\alpha}} dx dy$$

with $c(x,y) \approx 1$?

On *d*-sets

• C.-Kumagai '03: When (\mathcal{X}, ρ, m) is an Alfors *d*-set, and

$$\mathcal{E}(u,u) = \int_{\mathcal{X}\times\mathcal{X}} (u(x) - u(y))^2 \frac{c(x,y)}{\rho(x,y)^{d+\alpha}} m(dx) m(dy),$$

then
$$p(t,x,y) symp t^{-d/lpha} \wedge rac{t}{
ho(x,y)^{d+lpha}}.$$

Aronson type result for stable-like processes

• C.-Kumagai '08: mixed-stable-like processes on more general metric measure spaces

On *d*-sets

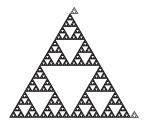
• C.-Kumagai '03: When (\mathcal{X}, ρ, m) is an Alfors *d*-set, and

$$\mathcal{E}(u,u) = \int_{\mathcal{X}\times\mathcal{X}} (u(x) - u(y))^2 \frac{c(x,y)}{\rho(x,y)^{d+\alpha}} m(dx) m(dy),$$

then
$$p(t,x,y) symp t^{-d/lpha} \wedge rac{t}{
ho(x,y)^{d+lpha}}.$$

Aronson type result for stable-like processes

• C.-Kumagai '08: mixed-stable-like processes on more general metric measure spaces



Example: Sierpinski gasket has Hausdorff dimension $d = \log 3 / \log 2$ and walk dimension $d_w = \log 5 / \log 2$. For any 0 < s < 1, the *s*-subordination of BM on \mathcal{X} has

$$p(t,x,y) \asymp t^{-d/lpha} \wedge rac{t}{
ho(x,y)^{d+lpha}},$$

where $\alpha = sd_w \in (0, d_w)$.

The *s*-subordination of BM on Siepinkski gasket is a symmetric pure jump process with jumping kernel

$$J_0(x,y) \asymp rac{1}{
ho(x,y)^{d+lpha}}, \quad ext{where } lpha = \mathit{sd}_w.$$

Open Question: What can we say about a generic symmetric jump process whose jumping kernel $J(x, y) \simeq \frac{1}{\rho(x, y)^{d+\alpha}}$? Does it have the same HKE?

Framework and results

 (\mathcal{X}, ρ, m) : Metric measure space (assume $m(\mathcal{X}) = \infty$ for simplicity) $(\mathcal{E}, \mathcal{F})$: regular pure-jump Dirichlet form on $L^2(\mathcal{X}, m)$

$$\mathcal{E}(f,f) = \int \int_{\mathcal{X}\times\mathcal{X}\setminus d} (f(x) - f(y)^2 J(x,y) m(dx) m(dy).$$

 $\{X_t\}_{t\geq 0}$: corresponding Hunt process on \mathcal{X} .

We will consider condition

$$J(x,y) \asymp \frac{1}{V(x,\rho(x,y))\phi(\rho(x,y))}.$$
 (J_{ϕ})
 $J_{\phi,\leq})$ (resp. $(J_{\phi,\geq})$): if the upper (resp. lower) bound
blds. Here $V(x,r) = m(B(x,r)).$

Framework and results

 (\mathcal{X}, ρ, m) : Metric measure space (assume $m(\mathcal{X}) = \infty$ for simplicity) $(\mathcal{E}, \mathcal{F})$: regular pure-jump Dirichlet form on $L^2(\mathcal{X}, m)$

$$\mathcal{E}(f,f) = \int \int_{\mathcal{X}\times\mathcal{X}\setminus d} (f(x) - f(y)^2 J(x,y) m(dx) m(dy).$$

 $\{X_t\}_{t\geq 0}$: corresponding Hunt process on \mathcal{X} .

We will consider condition

$$J(x,y) \asymp \frac{1}{V(x,\rho(x,y))\phi(\rho(x,y))}.$$
 (J_{ϕ})
 $(J_{\phi,\leq})$ (resp. $(J_{\phi,\geq})$): if the upper (resp. lower) bound
holds. Here $V(x,r) = m(B(x,r)).$

(VD) and (RVD): There are constants $c_1, c_2 > 1$ s.t.

$$c_1 V(x,r) \leq V(x,2r) \leq c_2 V B(x,r)$$

for all $x \in \mathcal{X}$ and r > 0.

Doubling and reverse doubling condition (Polyn) for ϕ : There are constants c_3 , $c_4 > 0$, $\beta_2 \ge \beta_1 > 0$ s.t. for every $0 < r < R < \infty$,

$$c_3\left(rac{R}{r}
ight)^{eta_1} \leq rac{\phi(R)}{\phi(r)} \leq c_4\left(rac{R}{r}
ight)^{eta_2}$$

٠

Examples:

(1) $V(x,r) \simeq r^d$: $J(x,y) \simeq 1/\rho(x,y)^{d+\alpha}$: α -stable-like process (C.-Kumagai '03) (2) $[\alpha_1, \alpha_2] \subset (0, \infty)$, ν : probability measure on $[\alpha_1, \alpha_2]$

$$\phi(t) := \left(\int_{lpha_1}^{lpha_2} t^{-lpha} \,
u(dlpha)
ight)^{-1}$$

Especially, $m(B(x,r)) \asymp r^d$, $0 < \alpha_1 < \cdots < \alpha_n < 2$,

$$J(x,y) = \sum_{k=1}^{n} \frac{c_i(x,y)}{\rho(x,y)^{d+\alpha_i}},$$

where $c^{-1} < c_i(x, y) = c_i(y, x) < c$: mixed-type process (C.-Kumagai '08).

$\operatorname{HK}(\phi)$:

$$p(t,x,y) \asymp rac{1}{V(x,\phi^{-1}(t))} \wedge rac{t}{V(x,
ho(x,y))\phi(
ho(x,y))}.$$

- UHK(ϕ): if \leq holds.
- $\exists c_1 > 1$ s.t. $\forall r > 0$ and a.e. $x \in M$,

$$c_1^{-1}\phi(r) \le \mathbb{E}^{\times}[\tau_{B(x,r)}] \le c_1\phi(r). \tag{E_{\phi}}$$

$HK(\phi)$:

$$p(t,x,y) \asymp rac{1}{V(x,\phi^{-1}(t))} \wedge rac{t}{V(x,
ho(x,y))\phi(
ho(x,y))}.$$

- UHK(ϕ): if \leq holds.
- $\exists c_1 > 1$ s.t. $\forall r > 0$ and a.e. $x \in M$,

$$c_1^{-1}\phi(r) \le \mathbb{E}^{\times}[\tau_{B(x,r)}] \le c_1\phi(r). \tag{E_{\phi}}$$

 $\operatorname{HK}(\phi)$:

$$p(t,x,y) \asymp rac{1}{V(x,\phi^{-1}(t))} \wedge rac{t}{V(x,
ho(x,y))\phi(
ho(x,y))}$$

UHK(ϕ): if \leq holds.

• $\exists c_1 > 1 \text{ s.t. } \forall r > 0 \text{ and a.e. } x \in M$,

$$c_1^{-1}\phi(r) \leq \mathbb{E}^{\mathsf{x}}[au_{B(\mathsf{x},r)}] \leq c_1\phi(r).$$
 (E_{\phi})

Theorem (C.-Kumagai-Wang 2021))

Assume that (VD), (RV) and (Polyn) hold. Then the following are equivalent: (1) $HK(\phi)$.

(2) J_{ϕ} and (E_{ϕ}) . (3) J_{ϕ} and $CSJ(\phi)$.

Any of the above statements implies the process is conservative.

Theorem (C.-Kumagai-Wang 2021))

Assume that (VD), (RV) and (Polyn) hold. Then the following are equivalent: (1) $HK(\phi)$. (2) J_{ϕ} and (E_{ϕ}) .

(3) J_{ϕ} and $CSJ(\phi)$.

Any of the above statements implies the process is conservative.

$CSJ(\phi)$ condition

• $\operatorname{CSJ}(\phi)$: $\exists C_0 \in (0,1], C_1, C_2 > 0 \text{ s.t. } \forall R \ge r > 0,$ $\forall f \in \mathcal{F}, \exists \text{ cutoff function } \varphi \text{ for } B(x,R) \subset B(x,R+r)$ (i.e. $\varphi|_{B(x,R)} = 1, \varphi|_{B(x,R+r)^c} = 0$) s.t.

$$\int_{B(x,R+(1+C_0)r)} f^2 d\Gamma(\varphi,\varphi)$$

$$\leq C_1 \int_{U \times U^*} (f(x) - f(y))^2 J(dx, dy)$$

$$+ \frac{C_2}{\phi(r)} \int_{B(x,R+(1+C_0)r)} f^2 dm,$$

where $U = B(x, R + r) \setminus B(x, R)$, $U^* = B(x, R + (1 + C_0)r) \setminus B(x, R - C_0r)$.

- (i) For diffusions, similar inequality was given in Barlow-Andres, Barlow-Bass, Barlow-Bass-Kumagai and Grigor'yan-Hu-Lau.
- (ii) $\operatorname{CSJ}(\phi)$ implies $\operatorname{Cap}(B(x, R), B(x, R + r)) \leq c_0 \frac{V(x, R + r)}{\phi(r)}.$ $(\operatorname{PI}(\phi) \text{ gives } \geq .)$
- (iii) Under $J_{\phi,\leq}$, $\mathrm{CSJ}(\phi)$ always holds if $\beta_2 < 2$.

Stability of $HK(r^{\alpha})$ for *d*-set also proved independently and around the same time by

• Murugan and Saloff-Coste ('19): stable-like discrete time Markov chains on *d*-set graphs, by generalizing Davies' method.

• Grigor'yan, E. Hu and J. Hu ('18): stable-like process on *d*-sets.

Theorem (C.-Kumagai-Wang 2021))

Assume that (VD), (RV) and (Polyn) hold. Then the following are equivalent: (1) UHK(ϕ) and { X_t }_{t≥0} is conservative. (2) UHKD(ϕ), $J_{\phi,\leq}$ and (E_{ϕ}). (3) FK(ϕ), $J_{\phi,\leq}$ and CSJ(ϕ).

• Faber-Krahn inequality $FK(\phi)$: $\exists C, \nu > 0 \text{ s.t. } \forall B(x, r), \forall D \subset B(x, r),$

$$\lambda_1(D) \ge \frac{C}{\phi(r)} \Big(\frac{V(x,r)}{V(D)} \Big)^{\nu}$$

• Faber-Krahn inequality $FK(\phi)$: $\exists C, \nu > 0 \text{ s.t. } \forall B(x, r), \forall D \subset B(x, r),$

$$\lambda_1(D) \geq \frac{C}{\phi(r)} \Big(\frac{V(x,r)}{V(D)} \Big)^{\nu}.$$

 J_{ϕ} does not imply $\operatorname{HK}(\phi)$ in general. Let $\mathcal{X} = \mathbb{R}^{d}$,

 $\phi(\mathbf{r}) = \mathbf{r}^{\alpha} + \mathbf{r}^{\beta}, \qquad \mathbf{0} < \alpha < \mathbf{2} < \beta.$

Then for a process satisfying J_{ϕ} ,

$$\mathbb{E}^{x}[\tau_{B(x,r)}] \asymp r^{\alpha} \wedge r^{2},$$

so (E_{ϕ}) and hence $HK(\phi)$ does not hold.

Sharp HKE for this case and their stability has recently been obtained in C.-Kumagai-Wang ('19/'22+), and in Bae-Kang-Kim-Lee ('19).

 J_{ϕ} does not imply $\mathrm{HK}(\phi)$ in general. Let $\mathcal{X}=\mathbb{R}^{d}$,

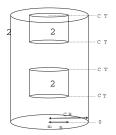
 $\phi(\mathbf{r}) = \mathbf{r}^{\alpha} + \mathbf{r}^{\beta}, \qquad \mathbf{0} < \alpha < \mathbf{2} < \beta.$

Then for a process satisfying J_{ϕ} ,

$$\mathbb{E}^{x}[\tau_{B(x,r)}] \asymp r^{\alpha} \wedge r^{2},$$

so (E_{ϕ}) and hence $HK(\phi)$ does not hold.

Sharp HKE for this case and their stability has recently been obtained in C.-Kumagai-Wang ('19/'22+), and in Bae-Kang-Kim-Lee ('19).



 $u(t,x): \mathcal{X} \to \mathbb{R}_+$ is caloric or parabolic on Q if $\frac{\partial u}{\partial t}(t,x) = \mathcal{L}u(t,x)$ in Q.

• PHI(ϕ) (parabolic Harnack inequality): For every $u(t, x) \ge 0$ on $[0, \infty) \times \mathcal{X}$ caloric in Q, $T = \phi(R)$,

$$\sup_{Q_-} u \leq C_6 \inf_{Q_+} u.$$

Theorem (C.-Kumagai-Wang '20)

Assume that (VD), (RVD) and (Polyn) hold. Then the following are equivalent: (1) PHI(ϕ). (2) NDL(ϕ) and UJS. (3) PI(ϕ), $J_{\phi,\leq}$, CSJ(ϕ) and UJS. (4) PHR, (E_{ϕ}) and UJS. (5) EHR, (E_{ϕ}) and UJS.

Corollary (C.-Kumagai-Wang '20) HK(ϕ) \iff PHI(ϕ) + $J_{\phi,\geq}$.

Theorem (C.-Kumagai-Wang '20)

Assume that (VD), (RVD) and (Polyn) hold. Then the following are equivalent: (1) PHI(ϕ). (2) NDL(ϕ) and UJS. (3) PI(ϕ), $J_{\phi,\leq}$, CSJ(ϕ) and UJS. (4) PHR, (E_{ϕ}) and UJS. (5) EHR, (E_{ϕ}) and UJS.

Corollary (C.-Kumagai-Wang '20) HK(ϕ) \iff PHI(ϕ) + $J_{\phi,\geq}$.

Conditions

• UJS: For $x, y \in \mathcal{X}$ with $\rho(x, y) > 0$, $J(x, y) \leq \frac{c}{m(B(x, r))} \int_{B(x, r)} J(z, y) m(dz)$

for any $r \leq \rho(x, y)/2$.

- $\operatorname{NDL}(\phi)$: $\exists \varepsilon \in (0, 1), c > 0 \text{ s.t. } \forall x_0 \in \mathcal{X}, r > 0, t \le \phi(\varepsilon r) \text{ and } B = B(x_0, r),$
- $p_t^B(x',y') \geq rac{c}{m(B(x_0,\phi^{-1}(t)))}, \quad x',y' \in B(x_0,\varepsilon\phi^{-1}(t)).$

• $\operatorname{PI}(\phi)$ (Poincaré inequality): $\forall B = B(x, r)$ and $f \in \mathcal{F}$,

$$\int_{B} (f - \overline{f}_{B})^{2} dm \leq C\phi(r) \iint_{B \times B} (f(y) - f(x))^{2} J(x, dy) m(dx)$$

Conditions

• UJS: For $x, y \in \mathcal{X}$ with $\rho(x, y) > 0$, $J(x,y) \leq \frac{c}{m(B(x,r))} \int_{B(x,r)} J(z,y)m(dz)$ for any $r \leq \rho(x, y)/2$. • NDL(ϕ): $\exists \varepsilon \in (0, 1), c > 0$ s.t. $\forall x_0 \in \mathcal{X}, r > 0$, $t < \phi(\varepsilon r)$ and $B = B(x_0, r)$, $p_t^B(x',y') \ge \frac{c}{m(B(x_0,\phi^{-1}(t)))},$ $x',y'\in B(x_0,arepsilon\phi^{-1}(t)).$ • $\operatorname{PI}(\phi)$ (Poincaré inequality): $\forall B = B(x, r)$ and $f \in \mathcal{F}$,

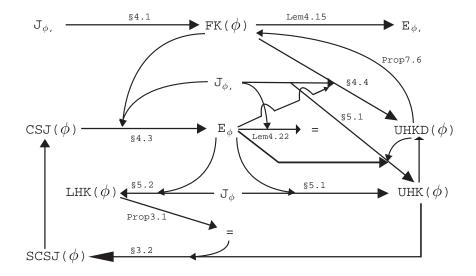
 $\int_{B} (f - \overline{f}_B)^2 dm \le C\phi(r) \iint_{B \times B} (f(y) - f(x))^2 J(x, dy) m(dx)$

Conditions

• UJS: For $x, y \in \mathcal{X}$ with $\rho(x, y) > 0$, $J(x,y) \leq \frac{c}{m(B(x,r))} \int_{B(x,r)} J(z,y)m(dz)$ for any $r \leq \rho(x, y)/2$. • NDL(ϕ): $\exists \varepsilon \in (0,1), c > 0$ s.t. $\forall x_0 \in \mathcal{X}, r > 0$, $t \leq \phi(\varepsilon r)$ and $B = B(x_0, r)$, $p_t^B(x',y') \ge rac{c}{m(B(x_0,\phi^{-1}(t)))}, \quad x',y' \in B(x_0,\varepsilon\phi^{-1}(t)).$

• $\operatorname{PI}(\phi)$ (Poincaré inequality): $\forall B = B(x, r)$ and $f \in \mathcal{F}$, $\int_{B} (f - \overline{f}_B)^2 dm \leq C\phi(r) \iint_{B \times B} (f(y) - f(x))^2 J(x, dy) m(dx)$

Idea of the proof for HKE (very sketchy)



For their equivalence to $J_{\phi} + CSJ(\phi)$, a key part of our approach uses the Cacciopoli inequality.

We show $CSJ(\phi) + J_{\phi,\leq} \Rightarrow$ Cacciopoli inequality.

We then show this with $FK(\phi)$ and through a comparison of L^2 -norm over balls yields the L^2 - as well as L^1 -mean value inequalities for \mathcal{E} -subharmonic functions for truncation Dirichlet forms.

The latter can be used to derive $E_{\phi,\geq}$.

On the other hand, it is quite easy to deduce that

Cacciopoli inequality

It is relatively easier to show that $HK(\phi) \Leftrightarrow J_{\phi} + E_{\phi}$.

For their equivalence to $J_{\phi} + CSJ(\phi)$, a key part of our approach uses the Cacciopoli inequality.

We show $CSJ(\phi) + J_{\phi,\leq} \Rightarrow$ Cacciopoli inequality.

We then show this with $FK(\phi)$ and through a comparison of L^2 -norm over balls yields the L^2 - as well as L^1 -mean value inequalities for \mathcal{E} -subharmonic functions for truncation Dirichlet forms.

The latter can be used to derive $E_{\phi,\geq}$.

On the other hand, it is quite easy to deduce that

$$J_{\phi,\geq} \Rightarrow \operatorname{FK}(\phi) \Rightarrow E_{\phi,\leq}.$$

For their equivalence to $J_{\phi} + CSJ(\phi)$, a key part of our approach uses the Cacciopoli inequality.

We show $CSJ(\phi) + J_{\phi,\leq} \Rightarrow$ Cacciopoli inequality.

We then show this with $FK(\phi)$ and through a comparison of L^2 -norm over balls yields the L^2 - as well as L^1 -mean value inequalities for \mathcal{E} -subharmonic functions for truncation Dirichlet forms.

The latter can be used to derive $E_{\phi,\geq}$. On the other hand, it is quite easy to deduce that

For their equivalence to $J_{\phi} + CSJ(\phi)$, a key part of our approach uses the Cacciopoli inequality.

We show $CSJ(\phi) + J_{\phi,\leq} \Rightarrow$ Cacciopoli inequality.

We then show this with $FK(\phi)$ and through a comparison of L^2 -norm over balls yields the L^2 - as well as L^1 -mean value inequalities for \mathcal{E} -subharmonic functions for truncation Dirichlet forms.

The latter can be used to derive $E_{\phi,\geq}$.

On the other hand, it is quite easy to deduce that

 $J_{\phi,\geq} \Rightarrow \operatorname{FK}(\phi) \Rightarrow E_{\phi,\leq}.$

For their equivalence to $J_{\phi} + CSJ(\phi)$, a key part of our approach uses the Cacciopoli inequality.

We show $CSJ(\phi) + J_{\phi,\leq} \Rightarrow$ Cacciopoli inequality.

We then show this with $FK(\phi)$ and through a comparison of L^2 -norm over balls yields the L^2 - as well as L^1 -mean value inequalities for \mathcal{E} -subharmonic functions for truncation Dirichlet forms.

The latter can be used to derive $E_{\phi,\geq}$.

On the other hand, it is quite easy to deduce that

$$J_{\phi,\geq} \Rightarrow \operatorname{FK}(\phi) \Rightarrow E_{\phi,\leq}.$$

Cacciopoli inequality: $x_0 \in \mathcal{X}$, s > 0, $B_s = B(x_0, s)$. Assume VD, $\operatorname{CSJ}(\phi)$, $J_{\phi,\leq}$. For $0 < r \leq r'$, let u: sub-harmonic on $B_{r'+r}$, and $v = (u - \theta)_+$ for $\theta \geq 0$. φ : cutoff function for $B_{r'-r} \subset B_{r'}$ in $\operatorname{CSJ}(\phi)$. Then

$$\begin{split} & \int_{B_{r'+r}} d\Gamma(v\varphi, v\varphi) \\ & \leq \quad \frac{c}{\phi(r)} \bigg[1 + \frac{1}{\theta} \left(1 + \frac{r'}{r} \right)^{d_2 + \beta_2 - \beta_1} \operatorname{Tail}\left(u; x_0, r' + r\right) \bigg] \int_{B_{r'+r}} u^2 \, dm. \\ & \text{where} \quad \operatorname{Tail}\left(u; x_0, r\right) := \phi(r) \int_{B(x_0, r)^c} \frac{|u(x)| m(dx)}{V(x_0, \rho(x_0, x)) \phi(\rho(x_0, x))}. \end{split}$$

Elliptic Harnack inequality

For non-local Dirichlet forms, we have some stability results under some strong "bounded goemetry" assumption. For strongly local Dirichlet forms,

Theorem (Barlow-C.-Murugan '22+)

Let (\mathcal{X}, d) be a complete, locally compact, separable metric doubling space, and m a Radon measure on \mathcal{X} with full support. Let $(\mathcal{E}, \mathcal{F})$ and $(\mathcal{E}', \mathcal{F})$ be strongly local symmetric regular Dirichlet forms on $L^2(\mathcal{X}; m)$ satisfying

 $C^{-1}\mathcal{E}(f,f) \leq \mathcal{E}'(f,f) \leq C\mathcal{E}(f,f)$ for all $f \in \mathcal{F}$.

If $(\mathcal{E}, \mathcal{F})$ satisfies EHI, then so does $(\mathcal{E}', \mathcal{F})$.

For non-local Dirichlet forms, we have some stability results under some strong "bounded goemetry" assumption. For strongly local Dirichlet forms,

Theorem (Barlow-C.-Murugan '22+)

Let (\mathcal{X}, d) be a complete, locally compact, separable metric doubling space, and m a Radon measure on \mathcal{X} with full support. Let $(\mathcal{E}, \mathcal{F})$ and $(\mathcal{E}', \mathcal{F})$ be strongly local symmetric regular Dirichlet forms on $L^2(\mathcal{X}; m)$ satisfying

$$\mathcal{C}^{-1}\mathcal{E}(f,f) \leq \mathcal{E}'(f,f) \leq \mathcal{C}\mathcal{E}(f,f) \quad \textit{ for all } f \in \mathcal{F}.$$

If $(\mathcal{E}, \mathcal{F})$ satisfies EHI, then so does $(\mathcal{E}', \mathcal{F})$.

C.-Kumagai-Wang:

- Stability of heat kernel estimates for symmetric non-local Dirichlet forms. *Mem. Amer. Math. Soc.* 2021.
- Stability of parabolic Harnack inequalities for symmetric non-local Dirichlet forms. *J. Euro. Math. Soc.* 2020.
- Elliptic Harnack inequalities for symmetric non-local Dirichlet forms. *J. Math. Pures et Appliquées*, 2019.

• Barlow-C.-Murugan, Stability of EHI and regularity of MMD spaces. Preprint 2022.

Thank you!