Multiplicative chaos of the Brownian loop soup

Antoine Jego

March 2022

Based on joint work with E. Aïdékon, N. Berestycki and T. Lupu

4 0 3

化重变

Brownian loop soup

Countable infinite collection of Brownian-like loops in a domain $D \subset \mathbb{R}^2$

イロト イ押ト イヨト イ

Introduced by Lawler and Werner Related to many random conformal invariant objects

Definition

Poisson point process $\mathcal{L}^{\theta}_D \sim \mathsf{PPP}(\theta \mu^{\mathsf{loop}}_D)$

- \bullet θ > 0: intensity parameter
- \bullet μ_D^{loop} D^{loop} : loop measure

$$
\mu_D^{\text{loop}}(d\varphi) = \int_D \int_0^{+\infty} \mathbb{P}_{D,t}^{z,z}(d\varphi) p_D(t,z,z) \frac{\mathrm{d}t}{t} \mathrm{d}z.
$$

Brownian bridge heat kernel

Fact

- Infinitely many small loops
- Conformally invariant
- Restriction property

4 D F

Loop-erased random walk:

```
(erase chronologically each loop)
```


Clusters

 $Cluster = chain of intersecting loops$

Phase transition: (Sheffield–Werner) • $\theta > 1/2$: one big cluster

• $\theta \leq 1/2$: infinitely many clusters Outer boundaries of outermost clusters $=$ CLE_{*κ*} where $\kappa = \kappa(\theta) \in (8/3, 4]$ Conformal Loop Ensemble

The Ubiquitous Gaussian free field $\theta = 1/2$

 $(L_x)_{x \in D}$ = occupation field of Brownian loop soup " L_x = amount of time spent at x"

Le Jan's isomorphism: $\stackrel{\text{(d)}}{=} \frac{1}{2}$ $\frac{1}{2}$ GFF²

The Ubiquitous Gaussian free field $\theta = 1/2$

 $(L_x)_{x\in D}$ = occupation field of Brownian loop soup " L_x = amount of time spent at x"

Le Jan's isomorphism: $\stackrel{\text{(d)}}{=} \frac{1}{2}$ $\frac{1}{2}$ GFF²

Green function

 $h = GFF$ Formally, $h = (h_x)_{x \in D} \sim \mathcal{N}(0, G_D)$ Rigorously, random generalised function

Scaling limit of

- Height function in dimers
- Characteristic polynomial of large random matrices

Liouville measure

Informally: random measure $\gamma \in (-2, 2)$

 h : GFF

$$
\mu_{\gamma} = e^{\gamma h(x)} \mathrm{d} x
$$

Instance of **Gaussian multiplicative chaos** measure

Rigorously,

$$
\mu_\gamma = \lim_{\varepsilon \to 0} \varepsilon^{\gamma^2/2} e^{\gamma h_\varepsilon(x)} dx
$$

[Sim](#page-6-0)[ul](#page-8-0)[at](#page-6-0)[io](#page-7-0)[n](#page-8-0) [by](#page-0-0) [R](#page-22-0)[ho](#page-0-0)[des](#page-22-0)[–V](#page-0-0)[arg](#page-22-0)as

Thick points

$$
\mu_{\gamma} = e^{\gamma h} \mathrm{d} x
$$

$$
x \text{ fixed deterministic point} \rightsquigarrow h_{\varepsilon}(x) = O(\sqrt{|\log \varepsilon|})
$$

$$
x \text{ is } \mu^{\gamma} - \text{typical point} \rightsquigarrow \lim_{\varepsilon \to 0} \frac{h_{\varepsilon}(x)}{|\log \varepsilon|} = \gamma
$$

In fact,

Theorem (Folklore?)
\n
$$
\mathcal{T}_{\varepsilon}(\gamma) := \{x \in D : h_{\varepsilon}(x) \ge \gamma |\log \varepsilon| \} \text{ (γ-thick points)}
$$
\n
$$
\sqrt{|\log \varepsilon|} \varepsilon^{-\gamma^2/2} \mathbf{1}_{\{x \in \mathcal{T}_{\varepsilon}(\gamma)\}} dx \xrightarrow[\varepsilon \to 0]{} \mu_{\gamma}
$$

" μ_{γ} = uniform measure on γ -thick points"

化重新润滑

K ロ ▶ K 何 ▶

Liouville measure and Brownian loop soup

```
Loop soup: \mathcal{L}_D^{\theta} \sim \mathsf{PPP}(\theta \mu_D^{\mathrm{loop}})GFF: h
```
Complete
$$
(\mathcal{L}_D^{\theta}, h)
$$
 such that $(L_x)_{x \in D} = \frac{1}{2}h^2$

\nSample $z \sim e^{\gamma h}$.

\n $\theta = 1/2$

Questions:

- What does the loop soup look like near z?
- How does the loop soup create a thick local time?
	- \hookrightarrow A few very thick loops?
	- \hookrightarrow Many loops w/ typical local time?
- What about $\theta \neq 1/2$? What is the associated chaos?

Multiplicative chaos construction

 $D_N=\frac{1}{N}$ $\frac{1}{N} \mathbb{Z}^2 \cap D$ discrete approximation of D

 $\mathcal{L}_{D_N}^{\theta}$ random walk loop soup

$$
\ell_{x} = \text{local time at } x
$$

$$
= \sum_{\wp \in \mathcal{L}_{D_{N}}^{\theta}} \int_{0}^{\tau_{\wp}} \mathbf{1}_{\{\wp_{t} = x\}} \mathrm{d}t
$$

typical point: *θ* $\frac{\theta}{2\pi}$ log θ

 QQQ

Multiplicative chaos construction

θ > 0 intensity $\mathcal{L}_{D_N}^{\theta}$ random walk loop soup a = *γ* 2 $\frac{\gamma}{2}$ thickness parameter

typical point:
$$
\mathbb{E}[\ell_x] \sim \frac{\theta}{2\pi} \log N
$$

\na-thick points: $\mathcal{T}_N(a) := \left\{ x \in D_N : \ell_x \ge \frac{1}{2\pi} a(\log N)^2 \right\}$
\nUniform measure on $\mathcal{T}_N(a)$: $\mathcal{M}_a^N := \frac{(\log N)^{1-\theta}}{N^{2-a}} \sum_{x \in \mathcal{T}_N(a)} \delta_x$

不自下

Multiplicative chaos construction

θ > 0 intensity $\mathcal{L}_{D_N}^{\theta}$ random walk loop soup a = *γ* 2 $\frac{\gamma}{2}$ thickness parameter

typical point:

\n
$$
\mathbb{E}[\ell_x] \sim \frac{\theta}{2\pi} \log N
$$
\na-thick points:

\n
$$
\mathcal{T}_N(a) := \left\{ x \in D_N : \ell_x \ge \frac{1}{2\pi} a(\log N)^2 \right\}
$$
\nUniform measure on $\mathcal{T}_N(a)$:

\n
$$
\mathcal{M}_a^N := \frac{(\log N)^{1-\theta}}{N^{2-a}} \sum_{x \in \mathcal{T}_N(a)} \delta_x
$$

Theorem (E. Aïdékon, N. Berestycki, A. J., T. Lupu 21) $(\mathcal{M}^N_a, \mathcal{L}_{D_N}^\theta) \to (\mathcal{M}_a, \mathcal{L}_D^\theta)$ as $N \to \infty$.

 \rightsquigarrow $\mathcal{M}_{\textit{a}} =$ multiplicative chaos associated to $\mathcal{L}_{D}^{\theta}.$

- $\theta = 1/2$: discrete GFF, Biskup-Louidor
- $\theta \rightarrow 0$: random walk thick points, Jego

 $\theta > 0$ intensity $a = \frac{\gamma^2}{2}$ $\frac{\gamma}{2}$ thickness

- \bullet $\theta = 1/2 \leadsto \mathcal{M}_a \overset{\text{(d)}}{=} e^{\gamma \mathsf{GFF}} + e^{-\gamma \mathsf{GFF}}$
- \bullet $\theta \neq 1/2 \rightsquigarrow$ \mathcal{M}_a = multiplicative chaos associated to a permanental field (new object! not Gaussian!)

 $\theta > 0$ intensity $a = \frac{\gamma^2}{2}$ $\frac{\gamma}{2}$ thickness

- \bullet $\theta = 1/2 \leadsto \mathcal{M}_a \overset{\text{(d)}}{=} e^{\gamma \mathsf{GFF}} + e^{-\gamma \mathsf{GFF}}$
- \bullet $\theta \neq 1/2 \rightsquigarrow$ \mathcal{M}_a = multiplicative chaos associated to a permanental field (new object! not Gaussian!)

Sample $z \sim M_a(\cdot)/M_a(D)$: typical a-thick point.

How many loops go through z? What are the thicknesses associated to each individual loop?

 $\theta > 0$ intensity $a = \frac{\gamma^2}{2}$ $\frac{\gamma}{2}$ thickness

- \bullet $\theta = 1/2 \leadsto \mathcal{M}_a \overset{\text{(d)}}{=} e^{\gamma \mathsf{GFF}} + e^{-\gamma \mathsf{GFF}}$
- $\theta \neq 1/2 \rightsquigarrow \mathcal{M}_a$ = multiplicative chaos associated to a permanental field (new object! not Gaussian!)

Sample $z \sim M_a(\cdot)/M_a(D)$: typical a-thick point. How many loops go through z? What are the thicknesses associated to each individual loop?

Theorem (E.A., N.B., A.J., T.L. 21)

1) Infinitely many loops.

 QQ

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ

 $\theta > 0$ intensity $a = \frac{\gamma^2}{2}$ $\frac{\gamma}{2}$ thickness

- \bullet $\theta = 1/2 \leadsto \mathcal{M}_a \overset{\text{(d)}}{=} e^{\gamma \mathsf{GFF}} + e^{-\gamma \mathsf{GFF}}$
- $\theta \neq 1/2 \rightsquigarrow \mathcal{M}_a$ = multiplicative chaos associated to a permanental field (new object! not Gaussian!)

Sample $z \sim M_a(\cdot)/M_a(D)$: typical a-thick point. How many loops go through z? What are the thicknesses associated to each individual loop?

Theorem (E.A., N.B., A.J., T.L. 21)

1) Infinitely many loops. 2) Denote a_1, a_2, \ldots thicknesses of loops going through z. ${a_1, a_2, \ldots} \sim Poisson-Dirichlet(\theta)$ on the interval [0, a].

 QQ

 $(1 + 4\sqrt{3}) \times (1 + 4\sqrt{3})$

 $\theta > 0$ intensity $a = \frac{\gamma^2}{2}$ $\frac{\gamma}{2}$ thickness

- \bullet $\theta = 1/2 \leadsto \mathcal{M}_a \overset{\text{(d)}}{=} e^{\gamma \mathsf{GFF}} + e^{-\gamma \mathsf{GFF}}$
- $\theta \neq 1/2 \rightsquigarrow \mathcal{M}_a$ = multiplicative chaos associated to a permanental field (new object! not Gaussian!)

Sample $z \sim M_a(\cdot)/M_a(D)$: typical a-thick point. How many loops go through z? What are the thicknesses associated to each individual loop?

Theorem (E.A., N.B., A.J., T.L. 21)

1) Infinitely many loops. 2) Denote a_1, a_2, \ldots thicknesses of loops going through z. ${a_1, a_2, \ldots} \sim Poisson-Dirichlet(\theta)$ on the interval [0, a]. 3) Cond. on $\{a_1, a_2, \ldots\}$, the loops that go through z are indep. and distributed like the concatenation of the excursions in $PPP(a_i\mu_D^z).$

 QQ

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

Poisson-Dirichlet

Random partition of [0*,* a] Stick breaking construction:

• random permutation: σ random permutation of $\{1,\ldots,n\}$. Decompose σ into disjoint cycles C_1, \ldots, C_k :

$$
\left\{\frac{|C_1|}{n},\ldots,\frac{|C_k|}{n}\right\}\to PD(1)
$$

prime factorisation: sample $n = p_1 \dots p_k$ uniformly in [1, N], then

$$
\left\{\frac{\log p_1}{\log n},\ldots,\frac{\log p_k}{\log n}\right\} \to \text{PD}(1)
$$

Construction from the continuum

Brownian multiplicative chaos: multiplicative chaos associated to **finitely** many trajectories

e^{γ√2Lx}dx

Bass–Burdzy–Koshnevisan 94 Aïdékon–Hu–Shi 20 Jego 19, 20

4 D F

Construction from the continuum

Brownian multiplicative chaos: multiplicative chaos associated to **finitely** many trajectories e^{γ√2Lx}dx

Bass–Burdzy–Koshnevisan 94 Aïdékon–Hu–Shi 20 Jego 19, 20

- Kill each loop independently of each other at rate $K > 0$ $\mathbb{P}\left(\wp \text{ killed} \right) = 1 - e^{-K \mathcal{T}(\wp)}$
- $\bullet\;\;{\mathcal M}_{\mathsf{a}}^{\mathsf{K}}:=\mathsf{multiplicative}$ chaos associated to **killed** loops

Theorem (E.A., N.B., A.J., T.L. 21)
\n
$$
(\log K)^{-\theta} \mathcal{M}_a^K \xrightarrow[K \to \infty]{} \mathcal{M}_a
$$

Two key ingredients

- Other cutoff? Diameter $>\varepsilon$? Duration $>\varepsilon$ ²? Our cutoff: Exact solvability!
- At $\theta = 1/2$,

$$
L_x(\mathcal{L}_K^{\theta}) + L_x(\mathcal{L}^{\theta} \setminus \mathcal{L}_K^{\theta}) = \frac{1}{2} \text{GFF}^2
$$

$$
\updownarrow
$$

$$
\frac{1}{2} \text{(massive GFF)}^2
$$

massive Green function associated to $-\Delta + K$. \rightsquigarrow Measure-valued martingale (as a function of K)

Thank you for your attention!

Ξ

 2990

イロト イ御 トイミトイ