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Overview

Finite Approximations of Fractals
▶ better understand how fractal structures arise and evolve

in nature

▶ extend methods from mathematical physics classically
formulated on smooth manifolds to fractal spaces

Tools from Noncommutative Geometry
▶ spectral triples

-generalize differentiable structure
▶ Gromov-Hausdorff propinquity

-extends Hausdorff distance to function spaces
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Motivating Example: The Sierpinski Gasket
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Motivating Example: The Sierpinski Gasket

Let pi denote the vertices of a regular 3-simplex, and for
i = 1, 2, 3, let

Fix =
1
2
(x − pi ) + pi .

The Sierpinski gasket SG is the unique nonempty compact
subset of R2 such that SG = ∪3

i=1Fi (SG ).
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Piecewise C 1-fractal Curve (Lapidus, Sarhad)

A piecewise C 1-fractal curve is a compact length space
X ⊆ Rn that satisfies the axioms below. Let L(γ) denote the
length of the continuous curve γ parametrized by its
arclength.

▶ Axiom 1. X = R where R =
⋃

j≥1 Rj and Rj , j ∈ N, is a
rectifiable C 1 curve with L(Rj) → 0 as j → ∞.

▶ Axiom 2. There exists a dense subset B ⊂ X such that
for each p ∈ B and q ∈ X , one of the minimizing
geodesics from p to q can be given as a countable (or
finite) concatenation of the Rj ’s.
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Approximating Piecewise C 1-fractal Curves

→

→
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Approximating Piecewise C 1-fractal Curves

Hausd(SG ,SG1) = inf {ϵ > 0 : SG ⊆ Bϵ(SG1),

SG1 ⊆ Bϵ(SG )} =
1
8

Hausd(SG ,A) = inf {ϵ > 0 : SG ⊆ Bϵ(A),

A ⊆ Bϵ(SG )} =
1
2
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Approximation Sequence for a Piecewise
C 1-fractal Curve Compatible with a Given
Parameterization (L., Lapidus, Latrémolière)

Let X be a piecewise C 1-fractal curve with parameterization
(Rj)j∈N. An approximation sequence of X compatible with
(Rj)j∈N is a strictly increasing function B : N → N such that,
for every ϵ > 0, there exists n ∈ N such that if n ≥ N, and
letting
▶ Xn =

⋃B(n)
j=1 Rj ,

▶ Vn denote the set of the endpoints of the curves
R1, · · · ,RB(n),

▶ dn be the geodesic distance on Xn,

the following properties hold:
(1) Hausdn(Vn,Xn) < ϵ,
(2) the restriction of d∞ to Vn × Vn is dn.
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Approximation Sequence for the Sierpinski Gasket

Let Rj , denote, for each j ≥ 1, a continuous, injective
functions to edges in SGn such that

Rj : [0, 1] → the edges in SG0 for j = 1, 2, 3,
Rj : [0, 2−1] → the edges in SG1 for j = 4, 5, · · · , 12
Rj : [0, 2−2] → the edges in SG2 for j = 13, 14, · · · , 39

...
Rj : [0, 2−n] → the edges in SGn for j = 1 +

∑n
i=1 3i ,

2 +
∑n

i=1 3i , · · · , 3n+1 +
∑n

i=1 3i

Let B : N → N be given by B(n) = Σn+1
i=1 3i . Then B(n)

defines an approximation sequence of SG compatible with
the parameterization (Rj)j∈N.
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Intrinsic Metrics on SG and SGn

(SG , d∞) (SGn, dn)
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Extending Hausdorff Distance to Function Spaces

→

SGn
Hausd−−−→ SG

(SGn, dn)
GH−−→ (SG , d∞)

(C (SGn), Ldn)
?−→ (C (SG ), Ld∞)
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Spectral Triple (Connes)

Let A be a unital C ∗-algebra. An unbounded Fredholm
module (H,D) over A consists of a Hilbert space H together
with a unital representation π of A into B(H) and an
unbounded, self-adjoint operator D on H such that

▶ the set

{a ∈ A for which [D, π(a)] is densely defined

and extends to a bounded operator on H}

is dense in A
▶ the operator (I + D2)−1 is compact.

If the underlying representation π is faithful, then (A,H,D)
is called a spectral triple, and D a Dirac operator.
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Noncommutative Riemannian Geometry: Recovery
of Geodesic Distance (Connes)

dgeo(p, q) = inf{ L(γ) : γ is a path from p to q } where

L(γ) =

∫ q

p
(gµνdx

µdxν)
1
2

is dual to

dspec(p, q)

= sup{|f (p)− f (q)| : f ∈ C (X ), ||[D, π(f )]||B(H) ≤ 1}
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Building Lapidus-Sarhad Spectral Triples

A Lapidus-Sarhad spectral triple for a piecewise C 1-fractal
curve is a direct sum of spectral triples for each curve in a
given paramaterization. Each of these spectral triples is built
from spectral triples for circles.

To define a spectral triple for a circle in the complex plane
centered at 0 and with radius r > 0, let

• ACr denote the algebra of complex continuous
2πr -periodic functions on the real line,
• Hr := L2([−πr , πr ], (2πr)−1m), where (2r)−1m is the
normalized Lebesgue measure on [−πr , πr ],
• DCr = −i d

dx |span(ϕr
k )k∈Z with ϕrk = exp( ikxr ), k ∈ Z,

• πCr the representation that sends elements of ACr to
multiplication operators on Hr
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Theorem (Lapidus, Sarhad 2014)

Let X be a piecewise C 1-fractal curve. Then X =
⋃

j≥1 Rj ,
where Rj is a rectifiable C 1 curve of length lj for each j ∈ N.
Set

• H∞ :=
⊕

j∈NHlj ,
• D∞ :=

⊕
j∈NDlj , where Dlj = DClj/π

+ 1
2lj
I ,

• π∞ :=
⊕

j∈N πlj , where πlj (f )h(x) := f (Rj(|t|))h(x).

Then ST (X ) := (C (X ),H∞,D∞) with representation π∞ is
a spectral triple for X . Furthermore,

d∞(x , y) = sup{|f (x)− f (y)| : f ∈ C (SG ),

||[D∞, π∞(f )]||B(H∞) ≤ 1}.
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Theorem (Antonescu, Christensen, Lapidus 2008)

Let Rj , denote, for each j ≥ 1, a continuous, injective
functions to edges in SGn such that

Rj : [0, 1] → the edges in SG0 for j = 1, 2, 3,
Rj : [0, 2−1] → the edges in SG1 for j = 4, 5, · · · , 12
Rj : [0, 2−2] → the edges in SG2 for j = 13, 14, · · · , 39

...
Rj : [0, 2−n] → the edges in SGn for j = 1 +

∑n
i=1 3i ,

2 +
∑n

i=1 3i , · · · , 3n+1 +
∑n

i=1 3i

Then ST (SG ) with representation π∞ is a spectral triple for
SG that recovers the Hausdorff dimension, the geodesic
metric, and the Hausdorff measure.
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Extending Hausdorff Distance to Spectral Triples

→

SGn
Hausd−−−→ SG

(SGn, dn)
GH−−→ (SG , d∞)

(C (SGn), Ldn)
?−→ (C (SG ), Ld∞)

(C (SGn),Dn,Hn)
?−−−−−−−−→ (C (SG ),D∞,H∞)
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Approximating Lapidus-Sarhad Spectral Triples

Building on the earlier work of Marc Rieffel, Frédéric
Latremoliere introduced a generalization of the
Gromov-Hausdorff distance that was recently extended to
spectral triples in a form called the spectral propinquity.

Main Result (Informally): If X is a piecewise C 1-fractal curve
X with parameterization (Rj)j∈N and B(n) is an
approximation sequence of X compatible with {Rj}j∈N,then
the Lapidus-Sarhad spectral triple on Xn converges, in the
sense of the spectral propinquity, to the Lapidus-Sarhad
spectral triple on X .
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Definition (Rieffel)

Let A be a unital C ∗-algebra. The state space S(A) of A is
the set of positive linear functionals on A of norm 1. If L is a
seminorm defined on a dense subspace of the self-adjoint
elements of A satisfying some form of Leibniz inequality and
such that

{a ∈ sa(A) : L(a) = 0} = R1A

and the associated Monge-Kantorovich distance, that is, the
metric defined for all φ, ψ ∈ S(A) by

mkL(φ,ψ) = sup{|φ(a)− ψ(a)| : a ∈ dom(L), L(a) ≤ 1},

metrizes the weak* topology of S(A), then (A, L) is a
quantum compact metric space (A, L).
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Noncommutative Metric Geometry

compact metric space (X , dX )

f ∈ C (X ), Ldx (f ) := sup
{

|f (p)−f (q)|
dX (p,q)

: p, q ∈ X , p ̸= q
}

(classical) quantum compact metric space (C (X ), LdX )

x̂ : x ∈ (X , dX ) 7→ δx ∈ (S(C (X )),mkLdX ) is an isometry
onto its image!
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Metric Spectral Triples (Latrémolière )

Let (A,H,D) be a spectral triple. Given a ∈ A, set
LD(a) = ||[D, π(a)]||B(H). If (A, LD) is a quantum compact
metric space, then (A,H,D) is a metric spectral triple.

The spectral propinquity is a metric on the class of metric
spectral triples.



D
ra

ft

Towards Analysis
on Fractals:
Piecewise
C1-Fractal

Curves,
Lapidus-Sarhad
Spectral Triples,
and the Gromov-

Hausdorff
Propinquity

T. Landry

Piecewise
C1-fractal
Curves and
Approximation
Sequences

Spectral Triples

Metric
Approximations
of Spectral
Triples on
Piecewise
C1-fractal Curves
via the Spectral
Propinquity

Metric Spectral Triples (Latrémolière )

Let (A,H,D) be a spectral triple. Given a ∈ A, set
LD(a) = ||[D, π(a)]||B(H). If (A, LD) is a quantum compact
metric space, then (A,H,D) is a metric spectral triple.

The spectral propinquity is a metric on the class of metric
spectral triples.



D
ra

ft

Towards Analysis
on Fractals:
Piecewise
C1-Fractal

Curves,
Lapidus-Sarhad
Spectral Triples,
and the Gromov-

Hausdorff
Propinquity

T. Landry

Piecewise
C1-fractal
Curves and
Approximation
Sequences

Spectral Triples

Metric
Approximations
of Spectral
Triples on
Piecewise
C1-fractal Curves
via the Spectral
Propinquity

Theorem (Latrémolière 2018)

If (A,H,D) and (A′,H′,D ′) are metric spectral triples with
spectral propinquity Λspec((A,H,D), (A′,H′,D ′)) = 0, then
there exists a unitary U : H → H′ and a *-isomorphism
θ : A → A′ such that

UDU∗ = D ′,

and for every a ∈ A and ω ∈ H′,

θ(a)ω = (UaU∗)ω.

Note that θ is also a full quantum isometry- that is,
LD′ ◦ θ = LD .
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Spectral Propinquity Metric Convergence of
Spectral Triples on SG (L., Lapidus, Latrémolière)

Let {Rj}j∈N be a parameterization of SG as a piecewise
C 1-fractal curve and B(n) an approximation sequence of SG
compatible with {Rj}j∈N.

Denote the Lapidus-Sarhad
spectral triple on SG , (C (SG ),

⊕
j≥1 Hlj ,

⊕
j≥1 Dlj ), by

(C (SG ),H∞,D∞) and (C (SGB(n)),
⊕B(n)

j=1 Hlj ,
⊕B(n)

j=1 Dlj ),
by (C (SGB(n)),HB(n),DB(n)).

When equipped with LD∞(a) := ||[D∞, π∞(a)]||B(H∞),
(C (SG ), LD∞) is a quantum compact metric space. Similarly,
(C (SGB(n)), LDB(n)

) is also a quantum compact metric space.

Moreover,

lim
n→0

Λspec((C (SGB(n)),HB(n),DB(n)), (C (SG ),H∞,D∞)) = 0.
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Spectral Propinquity Metric Convergence of
Spectral Triples on a Piecewise C 1-fractal Curve
(L., Lapidus, Latrémolière)

Let {Rj}j∈N be a parameterization of X as a piecewise
C 1-fractal curve and B(n) an approximation sequence of X
compatible with {Rj}j∈N. Denote the Lapidus and Sarhad
spectral triple on X , (C (X ),

⊕
j≥1 Hlj ,

⊕
j≥1 Dlj ), by

(C (SG ),H∞,D∞) and (C (XB(n)),
⊕B(n)

j=1 Hlj ,
⊕B(n)

j=1 Dlj ), by
(C (XB(n)),HB(n),DB(n)).

When equipped with LD∞(a) := ||[D∞, π∞(a)]||B(H∞),
(C (X ), LD∞) is a quantum compact metric space. Similarly,
(C (XB(n)), LDB(n)

) is also a quantum compact metric space.

Moreover,

lim
n→0

Λspec((C (XB(n)),HB(n),DB(n)), (C (X ),H∞,D∞)) = 0.
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Work in Progress: The Stretched Sierpinski
Gasket of Parameter α, 0 < α < 1

3

α↓0−−−−−−→

SGα
Hausd−−−→ SG

(C (SGα),HSGα ,DSGα)
Spectral Propinquity−−−−−−−−−−−−→ (C (SG ),HSG ,DSG )
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Definition and Study of a "Fractal Manifold"

Classification of C ∗-algebras on Fractals

Approximation of Laplacians on Fractals

Noncommutative Fractality
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Spectral Propinquity Metric Convergence

Λspec((C (SG ),HSG ,DSG ), (C (SGB(n)),HSGB(n)
,DSGB(n)

))

= max{Λ∗met(mvb(C (SG ),HSG ,DSG ),

mvb(C(SGB(n)),HSGB(n)
,DSGB(n)

)),

Λ∗mod,cov(uqvb(C (SG ),HSG ,DSG ),

uqvb(C(SGB(n)),HSGB(n)
,DSGB(n)

))}
= max

{
Λ∗met((HSG ,DNSG ,C, 0,C (SG ), LDSG

),

(HSGB(n)
,DNSGB(n)

,C, 0,C (SGB(n)), LDSGB(n)
)),

Λ∗mod,cov(uqvb(C (SG ),HSG ,DSG ),

uqvb(C(SGB(n)),HSGB(n)
,DSGB(n)

))}
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