Modulus On Orthodiagonal Maps

Pietro Poggi-Corradini with Nathan Albin and Joan Lind and Pekka Pankka at MSRI

> Department of Mathematics Kansas State University https://<node.math.ksu.edu>

Connecting Families of Paths

Modulus

 $\mathsf{Mod}_{2,\sigma}\Gamma = \mathrm{eff} \mathcal{C}_{\sigma}(a, b)$

Fulkerson Duality For Modulus

The <code>Fulkerson dual</code> family is $\hat{\mathsf{\Gamma}}:=\mathsf{ext}(\mathsf{Adm}(\mathsf{\Gamma}))\subset\mathbb{R}^E_>$ ≥0

Theorem (2017, with Albin et al.)

We have

$$
\mathsf{Mod}_{2,\sigma}(\Gamma)\cdot \mathsf{Mod}_{2,\sigma^{-1}}(\hat{\Gamma})=1
$$

and

$$
\hat{\Gamma}_{\rm path}(a,b)=\Gamma_{\rm cut}(a,b)
$$

Orthodiagonal maps

Simply connected domain tiled with quadrilaterals with orthogonal diagonals

Get a bipartite graph

Orthodiagonal maps

Primal graph

Dual graph

Orthodiagonal maps

Quadrangulation

Primal graph

Dual graph

Delaunay triangulations in numerical analysis

Delaunay triangulation and its dual Voronoi graph

Quadrilaterals with orthogonal diagonals

Canonical weights

 $\sigma(A, C) = \frac{|BD|}{|AC|}$ $|AC|$

 $\sigma(B,D) = \frac{|AC|}{|BD|}$ $|BD|$

Orthodiagonal Packings of the Square

Degeneration

Orthodiagonal Packings of the Square

Modulus is Always One

Theorem

Tile a square with an orthodiagonal map (appropriately weighted). Then, all four modulus problems, left-right or bottom-top, either on the primal or dual graph, are equal to one.

The Dirichlet Problem

Assume $Q = [0, 1] \times [0, 1] \subset \mathbb{C}$. Recall that $h(z) := \text{Re}(z)$ and $\tilde{h}(z) := \text{Im}(z)$ solve the Dirichlet problems

$$
\left\{\n\begin{array}{ll}\n(\Delta h)(z) = 0 & z \in \text{int}(Q) \\
h(z) = 0 & \text{Re}(z) = 0 \\
h(z) = 1 & \text{Im}(z) = 1\n\end{array}\n\right.\n\left\{\n\begin{array}{ll}\n(\Delta \tilde{h})(z) = 0 & z \in \text{int}(Q) \\
\tilde{h}(z) = 0 & \text{Im}(z) = 0 \\
\tilde{h}(z) = 1 & \text{Re}(z) = 1\n\end{array}\n\right.
$$

Do same on the primal and dual graphs using the weighted discrete Laplacian and get:

$$
h^\bullet,\,h^\circ,\,\tilde h^\bullet,\,\tilde h^\circ
$$

The Discrete Laplacian

The weighted discrete Laplacian is

$$
(L_{\sigma} u)(x) := \sum_{y \sim x} \sigma(x, y) (u(x) - u(y))
$$

Energy (or quadratic form):

$$
\mathcal{E}^{\bullet}(h^{\bullet}) := \sum_{\{x,y\} \in E} \sigma(x,y) \left(h^{\bullet}(x) - h^{\bullet}(y) \right)^2 = \text{Mod}_{2,\sigma} \Gamma^{\bullet}_{LR}
$$

And similar formulas hold for $\mathsf{Mod}_{2,\sigma}\,\mathsf{\Gamma}_{\mathrm{LR}}^\circ,\ \mathsf{Mod}_{2,\sigma}\,\mathsf{\Gamma}_{\mathrm{BT}}^\bullet,\ \mathsf{Mod}_{2,\sigma}\,\mathsf{\Gamma}_{\mathrm{BT}}^\circ.$

Examples

Harmonicity of Re z and Im z

Suppose $z \in V^\bullet \setminus \partial G$. Then, $z \in q^\circ$ face of the dual graph G° . Let w_0, w_1, \cdots, w_k be of q° with $w_0 = w_k$. Consider faces $q_j=(z,w_{j-1},z_j,w_j)$ with $j=1,\ldots,k.$ Then, $w_i - w_{i-1} = i(z_i - z) \sigma(z, z_i).$

So,

$$
0=\sum_{j=1}^k (w_j-w_{j-1})=i\sum_{j=1}^k \sigma(z,z_j)(z_j-z).
$$

Now take real and imaginary parts.

The Main Identity

Set $Z = z' - z$ and $W = w' - w$, so that $W = i\sigma(z, z')Z$, $0 = \sum \sigma(W) \left| W - i \sigma(Z) Z \right|^2$ q $\mathcal{E}^{\circ}(h^{\circ})+\mathcal{E}^{\circ}(\tilde{h}^{\circ})+\mathcal{E}^{\bullet}(h^{\bullet})+\mathcal{E}^{\bullet}(\tilde{h}^{\bullet})-2\sum \mathrm{Re}(iZ\overline{W})$ q

Note that

$$
\mathsf{Re}(iZ\overline{W}) = |Z||W| = 2 \mathsf{Area}\ q
$$
\n
$$
\implies \mathcal{E}^{\circ}(h^{\circ}) + \mathcal{E}^{\circ}(\tilde{h}^{\circ}) + \mathcal{E}^{\bullet}(h^{\bullet}) + \mathcal{E}^{\bullet}(\tilde{h}^{\bullet}) = 4
$$

Fulkerson duality

 $\mathcal{E}^\bullet(h^\bullet)\mathcal{E}^\circ(\tilde{h}^\circ)=1\qquad\text{and}\qquad \mathcal{E}^\circ(h^\circ)\mathcal{E}^\bullet(\tilde{h}^\bullet)=1.$ Therefore,

$$
\left(\mathcal{E}^{\bullet}(h^{\bullet}) + \frac{1}{\mathcal{E}^{\bullet}(h^{\bullet})}\right) + \left(\mathcal{E}^{\circ}(h^{\circ}) + \frac{1}{\mathcal{E}^{\circ}(h^{\circ})}\right) = 4.
$$

But this implies that

$$
\mathcal{E}^{\bullet}(h^{\bullet}) = \mathcal{E}^{\circ}(h^{\circ}) = 1,
$$

because $x + \frac{1}{x} \ge 2$ for all $x \ge 0$, with equality iff $x = 1$.

Conclusion

We have shown

$$
\mathcal{E}^{\bullet}(h^{\bullet})=\mathcal{E}^{\circ}(h^{\circ})=1,
$$

and by Fulkerson duality

$$
\mathcal{E}^{\bullet}(\tilde{h}^{\bullet}) = \mathcal{E}^{\circ}(\tilde{h}^{\circ}) = 1.
$$

The claim follows.

Modulus Convergence

Corollary

Let G_n be an orthodiagonal tiling of the square Q with mesh size $1/n$. Then Mod₂ $\Gamma_n \longrightarrow$ Mod₂ Γ as $n \to \infty$.

Theorem

Let G_n be an orthodiagonal tiling with mesh size $1/n$ of the domain $\hat G_n$ so that $(\hat G_n, \alpha_n, \beta_n)$ converges to (Ω, A, B) in Hausdorff distance. Then

$$
Mod_2 \Gamma_n \longrightarrow Mod_2 \Gamma \quad \text{as } n \to \infty.
$$

Probabilistic Interpretation

Edge prob $\eta^*(e) := \mathbb{P}_{\mu^*}\left(e \in \gamma\right)$ are unique

Problem

Do the optimal pmf's for modulus converge as the mesh goes to zero?

Non-crossing Minimal Subfamily Algorithm

Let G be a finite plane graph, and A and B be boundary arcs. Then $\Gamma_G(A, B)$ has a unique minimal subfamily $\tilde{\Gamma}$ consisting of non-crossing paths that supports an optimal pmf $\mu^*.$

$$
\tilde{\Gamma} \text{ is a minimal subfamily of } \Gamma \text{ if } \textsf{Mod} \, \tilde{\Gamma} = \textsf{Mod} \, \Gamma \text{ and } \\ \textsf{Mod} \, \tilde{\Gamma} \setminus \{ \gamma \} < \textsf{Mod} \, \Gamma, \qquad \forall \gamma \in \tilde{\Gamma}
$$

Main convergence result

Theorem Let (Ω, A, B) be a simply connected domain with bdy arcs. (G_n, A_n, B_n) be approximating orthodiagonal maps Then the optimal pmfs μ_n output by the algorithm converge to the "transverse" measure on the horizontal trajectories for Ω.

Non-crossing curves

Non-crossing curves vs. level lines of conformal map

Convergence of the measures

rectangle packing and its induced coordinates

Theorem (Gurel-Gurevich, Jerison, Nachmias)

 Ω is a bounded simply connected domain and $g\in\mathcal{C}^2(\mathbb{R}^2).$ Given $0 < \epsilon, \delta <$ Diam(Ω), let G be orthodiagonal map with max edge length ϵ and Hausdorff dist at most δ between $\partial\Omega$ and ∂G . Let $h_c \in C(\overline{\Omega})$ be the solution to the continuous Dirichlet problem with data g. Let $h_d \in \mathbb{R}^{\vee^{\bullet}}$ be the solution to the discrete Dirichlet problem with data $g \mid_{\partial V^{\bullet}}$. Then

$$
|h_d(x) - h_c(x)| \leq \frac{C \operatorname{Diam}(\Omega)(C_1 + C_2 \epsilon)}{\log^{1/2}(\operatorname{Diam}(\Omega)/(\delta \wedge \epsilon))}
$$

Two flows on the primal graph from left to right

Idea from Gurel-Gurevich, Jerison, Nachmias The Dirichlet problem for orthodiagonal maps. Let $q = [z, w, z', w']$

$$
f(z, z') := (\sigma dh)(z, z') = \sigma(z, z') (h(z') - h(z))
$$

$$
\tilde{f}(z, z') := \tilde{h}(w') - \tilde{h}(w)
$$

Then if $f^{\bullet} := \sigma dh^{\bullet}$ is current flow, we have

$$
f - f^{\bullet} \perp f^{\bullet} - \tilde{f}
$$

in the inner product $\langle f , g \rangle_{\mathsf{r}} = \sum_{e} r(e)f(e)g(e),$ $(r = \sigma^{-1})$

Orthogonality

Lemma

If $Div_{\mathscr{L}}(x) = 0$ for $x \in V \setminus (A \cup B)$, and $h = \sigma d\phi$ with ϕ constant on A and B , then

$$
\langle g,h\rangle_{r}=\mathsf{Val}(g)(\phi(B)-\phi(A))
$$

Let $h = f - f^{\bullet} = \sigma d(h - h^{\bullet}) = \sigma d\phi$. Then $\phi(A) = \phi(B) = 0.$ Need to check that if $g=f^{\bullet}-\tilde{f}$, is divergence-free for $x \in V \setminus (A \cup B)$. Enough To Show for \tilde{f} .

Pythagorean Theorem

$$
\mathcal{E}^{\bullet}(f-f^{\bullet})+\mathcal{E}^{\bullet}(f^{\bullet}-\tilde{f})=\mathcal{E}^{\bullet}(f-\tilde{f})
$$

For instance in the case of the square.

$$
f(z, z') - \tilde{f}(w, w') = \sigma(z, z') (h(z') - h(z)) - (\tilde{h}(w') - \tilde{h}(w))
$$

= Re[\sigma(z, z')(z' - z)] - Im(w' - w) = 0

Since
$$
w' - w = i\sigma(z', z)(z' - z)
$$
 and $\text{Im } iZ = \text{Re } Z$.

References

Ħ Albin, N., Lind, J., Poggi-Corradini, P. Convergence of the Probabilistic Interpretation of Modulus. https://arxiv.org/pdf/2106.11418.pdf.