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Question: How can we construct examples of non-polynomial entire
functions that have Fatou components and Julia set as illustrated?

Joint Work with Kirill Lazebnik



Part 1: Multiply Connected Wandering Domains in Transcendental
Dynamics



We outline an argument due to Baker to construct a transcendental entire
function (t.e.f) with a wandering domain that is multiply connected.

Choose some large value C > 1 and R0 > 1. Define

f0(z) = Cz2.

Define
R1 = max

|z|=R0

|f0(z)|

and

f1(z) = Cz2
(
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z

R1

)



Define R1 = max|z|=R0
|f0(z)| and

f1(z) = Cz2
(

1 +
z

R1

)

Define R2 = max|z|=R1
|f1(z)| and

f2(z) = Cz2
(

1 +
z

R1

)(
1 +

z

R2

)

Define Rk+1 = max|z|=Rk |fk(z)| and

fk+1(z) = fk(z)

(
1 +

z

Rk+1

)
= Cz2

k+1∏
j=1

(
1 +

z

Rj

)
.



One can calculate directly that Rn ≥ R2
n−1, and

f (z) = Cz2
∞∏
k=1

(
1 +

z

Rk

)
.

defines an entire function.

Note: 0 is a superattracting fixed point for f , and therefore there is basin
of attraction containing 0 in the Fatou set of f .



On Bk = {4Rk ≤ |z| ≤ 1
4Rk+1} we have

f (z) = Ckz
2
∞∏
k=1

(
1 +

z

Rk

)
∼ Ckz

k+2(1 + o(1)).

Bk

Note that
1

16

Rk+1

Rk
→∞.



Lemma: f (Bk) ⊂ Bk+1.

Bk

Bk+1

f(Bk)

Thus each Bk belongs to some Fatou component Uk.



Each Bk surrounds a preimage of basin of attraction containing zero.

Bk

Bk+1

f(Bk)

Thus the Fatou component Uk containing Bk is multiply connected

Iterates on Bk tend locally uniformly to ∞.



What’s stopping Uk+1 = Uk? Maybe this is an unbounded invariant Fatou
component!

Lemma: Uk 6= Uk+1 - each Bk is in a distinct Fatou component.

|z| = Rk |z| = Rk+1 |z| = Rk+2

Bk
Bk+1

x y

Proof: Suppose Uk = Uk+1 - then Uk = Uj for all j ≥ k. Take x ∈ Bk
and y ∈ Bk+1. We require dhyp(fn(x), fn(y)) to be non-increasing.

However, because the modulus of Bk is increasing rapidly, we can directly
estimate dhyp(fn(x), fn(y))→∞.



Corollary: Each Bk is in a distinct Fatou component Uk, and Uk is a
wandering domain.

What can we say about multiply connected wandering domains in general?

It turns out many of the properties highlighted above are general for
functions with a multiply connected Fatou component.



Part 2: General Properties of Multiply Connected Fatou Components.



Let U0 be a multiply connected Fatou component and let Un = fn(U0).

U0

Fact 1 (Baker): For all n, Un is a bounded wandering domain - Un 6=
Um for any n 6= m.



Let U0 be a multiply connected Fatou component and let Un = fn(U0).

Un

f

Un+1

Fact 2 (Baker): For all sufficiently large n, Un surrounds the origin,
and Un+1 surrounds Un.



Let U0 be a multiply connected Fatou component and let Un = fn(U0).

Un

An

Fact 3 (Zheng): For all sufficiently large n, Un contains an annulus
An = A(rn, Rn) with

lim
n→∞

Rn
rn

=∞.

We call An the Fat Annulus of Un.



Let U0 be a multiply connected Fatou component and let Un = fn(U0).

Un

An

Fact 4 (Bergweiler/Rippon/Stallard): For all sufficiently large n,
on the fat annulus An we have f (An) ⊂ An+1 and

f (z) = Cnφ(z)mn

where φ : An→ C is conformal and close to the identity.



Let U0 be a multiply connected Fatou component and let Un = fn(U0).

Un

An

Un+j

An+j

f j

Fact 5 (Bergweiler/Rippon/Stallard): In fact, An is an absorb-
ing annulus - if K ⊂ Un, then for all j large enough we have f j(K) ⊂
Aj+n ⊂ Uj+n.

In blue, we have illustrated a compact K ⊂ Un on the left and its image
under f j to the right.



Let U0 be a multiply connected Fatou component and let Un = fn(U0).

Fact 6 (Kisaka-Shishikura): The number of complimentary compo-
nents of Un is non-increasing and is either ∞ or converges to 2.

Fact 7 (Bergweiler/Rippon/Stallard):

1. The connectivity of Un is 2 iff ∪m≥nUm contains no critical points of
f .

2. The connectivity of Un is∞ iff ∪m≥nUm contains infinitely many crit-
ical points of f .

3. The connectivity of Un is finite iff ∪m≥nUm contains finitely many
critical points of f .



Part 3: Interpolating Between Monomials



Starting with monomials on ‘fat’ annuli, can we work backwards and find
an entire function close to those monomials on these annuli?

In other words, can we reverse engineer multiply connected wandering
domains?



Toy Problem: Find a ‘nice’ function that is z4 on B(0, 1) and z8 on
C \B(0, exp(π/4)).

z4

z8|z| = 1

|z| = exp(π/4)



Filled in dots map to positive real axis, and hollow ones to the negative
real axis.

z4

z8|z| = 1

|z| = exp(π/4)



We add antenna to the hollow vertices as illustrated.

z4

z8



First we map the slit annulus to a slit vertical strip

z 7→ 4
π log(z)

Re(z) = 0 Re(z) = 1



Triangulate the vertical strip as follows - extend by reflection.



There exists a piecewise linear mapping Ψ compatible with the triangula-
tion to the left with the following triangulation of the vertical strip.

z 7→ Ψ(z)

Ψ maps the slit strip to the vertical strip in a piecewise linear way - the
“folding map”.



There exists a piecewise linear mapping Ψ compatible with the triangula-
tion to the left with the following triangulation of the vertical strip.

z 7→ Ψ(z)

The map Ψ is quasiconformal and is to the identity on Re(z) = 1.



Find an entire function that is z4 on B(0, 1) and z8 on C\B(0, exp(π/4)).

z 7→ Ψ(z)

Caution! Ψ is not continuous over the slit - an issue we fix later.



Rescale and take the exponential to map back to the annulusA(1, exp(π/4)).

z 7→ exp(π4 z)

Both pictures now in alignment!



Apply z 7→ z8

z 7→ z8

A(1, exp(π/4)) gets mapped to A(1, exp(2π)).



The composition we have so far defined is continuous everywhere except
the antenna where we unfolded.

z 7→ β(z)

To gain continuity, we want a quasiconformal mapping β that interpolates
between z 7→ 1

2(z + z−1) on the circle and the identity on the boundary
of this crescent region.



Such a mapping can be constructed as a composition of Mobius mappings
µ and a quasiconformal mapping ν.



What have we accomplished? We have a quasiregular ‘model’ mapping

h(z) =


z4 z ∈ B(0, 1)

Φ(z)8 z ∈ C \B(0, 1) and z far from antenna

β ◦ Φ(z)8 z ∈ C \B(0, 1) and z near the antenna

z4

z8

z 7→ Φ(z)8 z 7→ β(z)

Φ maps the slit annulus to the round annulus. Note that Φ is the identity
on the complement of B(0, exp(π/4)). This guarantees continuity on the
outer circle.



What have we accomplished? We have a quasiregular ‘model’ mapping

h(z) =


z4 z ∈ B(0, 1)

Φ(z)8 z ∈ C \B(0, 1) and z far from antenna

β ◦ Φ(z)8 z ∈ C \B(0, 1) and z near the antenna

z4

z8

z 7→ Φ(z)8 z 7→ β(z)

By the Measurable Riemann Mapping Theorem, there is a qua-
siconformal φ : C→ C and an entire function f such that f ◦ φ = h.



What have we accomplished? We have a quasiregular ‘model’ mapping

h(z) =


z4 z ∈ B(0, 1)

Φ(z)8 z ∈ C \B(0, 1) and z far from antenna

β ◦ Φ(z)8 z ∈ C \B(0, 1) and z near the antenna

z4

z8

z 7→ Φ(z)8 z 7→ β(z)

(Imprecise Statement:) Dilatation of the qc correction map φ is supported
on a ‘small’ set, so φ is close to the identity.



Interpolation at different radii if coefficients are chosen correctly

z 7→ r−1z

z 7→ cr4

cz4

c′z8

c′ = cr−4
z 7→ h(z)



We can interpolate between larger degrees too.

z 7→ z4

z 7→ z16



The only thing that changes is the triangulation and unfolding map.

As the ratio of the degrees increases, so does the quasiconformal constant
of this piecewise linear map.



No need for powers to be scalar multiples either!

z4

z7



Theorem: (B.-Lazebnik): Let {rj}∞j=1 be a sufficiently quickly in-

creasing sequence and let {Mj}∞j=1 be a sequence with supMk+1/Mk <
∞. Then there exists an entire function f and a quasiconformal mapping
φ such that

f ◦ φ = ckz
Mk for z ∈ A(rk−1 exp(π/Mk−1), rk).

If
∑
M−1
j <∞ we can arrange for φ to be close to the identity near ∞:∣∣∣∣φ(z)

z
− 1

∣∣∣∣→ 0 as |z| → ∞.

The only singular values of f are the critical values (±cjr
Mj
j ).



Part 4: Some Applications to Dynamics



Application 1: A multiply connected wandering domain

Set Mj = 2j, r1 = 100, c1 = 1 and rj+1 = cjr
Mj
j , and apply the theorem.

|z| = rj−1 |z| = rj |z| = rj+1 |z| = rj+2

We have f ◦ φ = h, where h is the model map, φ is quasiconformal, and
f is entire.

The parameters are defined so that rj+1 = max|z|=rj |h(z)|.



Application 1: A multiply connected wandering domain:

Bj−1 Bj Bj+1

|z| = rj−1 |z| = rj |z| = rj+1 |z| = rj+2

Similar to Baker’s example, define

Bj = {4rj ≤ |z| ≤
1

4
rj+1}



Application 1: A multiply connected wandering domain:

Bj−1 Bj Bj+1

h h

|z| = rj−1 |z| = rj |z| = rj+1 |z| = rj+2

Using the definition of rj’s, we can verify that the map h satisfies

h(Bj) ⊂ B′j+1 = {8rj ≤ |z| ≤
1

8
rj+1}



Application 1: A multiply connected wandering domain:

|z| = rj−1 |z| = rj |z| = rj+1 |z| = rj+2

Bj−1 Bj+1 Bj+2

B′j−1

φ−1

h

f

We have h ◦ φ−1 = f . φ−1 is close to the identity for large enough j, so
for some subannulus we have φ−1(B′j) ⊂ Bj

We can show

f (B′j) = h(φ−1(B′j)) ⊂ h(Bj) ⊂ B′j+1



Application 2: Singleton Complementary Components.

(A) (B)

(A) side corresponds to Mj = 2j and rj+1 = cj+1(2rj)
Mj+1. Yields

examples similar to Bishop’s entire functions with dimH(J (f )) = 1.

Complementary components converge on the outermost boundary - infi-
nite outer connectivity.



Application 2: Singleton Complementary Components.

(A) (B)

(B) side corresponds to Mj = 2j and rj+1 = cj(
1
2rj)

Mj .

Complementary components converge on the inner boundary - infinite
inner connectivity.



Application 2: Singleton Complementary Components.

(A) (B)

Theorem: (B-Lazebnik) The boundary of the wandering domains in
the (B) example have uncountably many singleton components. The Julia
set still has Hausdorff dimension 1.



Application 2: Singleton Complementary Components.

(A) (B)

Proof ingredients include

• Extending techniques to interpolate between zM + δz and zN .

•Conformal mapping estimates near the antenna

•Various dimension estimates of given dynamically defined sets.



Part 5: Some Further Research Directions



Hard Question: Is there a t.e.f with J (f ) being the subset of a finite
(spherical) length curve?

Maybe a function with doubly connected wandering Fatou components
will have this property. Have been constructed by Kisaka and Shishikura
via quasiconformal surgery.

Question: Is it possible to use this approach to construct annular Fatou
components?

Question: If so, what does the Julia set look like? Are the Boundary
Curves Jordan curves? Dimension 1? Something else?



Question: Are the connected components of the boundaries in our ex-
amples better than C1?

Question: Can we make the connected components of the boundaries
worse than C1?



Question: Are there applications to function theory?

Some promising joint work inspired by MSRI interaction going on with
Leticia Pardo-Simon and Adi Glucksam currently going on regarding the
maximum modulus set of an entire function.

M(f ) = {z : |f (z)| = max
|z|=r

|f |}

Question: Do these techniques extend to the setting of quasiregular
mappings f : Rn→ Rn?



Thank You!



Theorem (Teichmueller-Wittich-Belinksii) Let φ : C → C be
K-quasiconformal with φ(0) = 0 and

I(r) =
1

2π

∫
|z|<r

D(z)− 1

|z|2
dA(z) <∞ for r <∞.

Then ∣∣∣∣φ(z)

z
− φz(0)

∣∣∣∣ < |φz(0)|ε(|z|) where ε(|z|)→ 0 as |z| → 0.

The error ε depends only on I(r) and K and not otherwise on φ.



In the interpolation theorem, we change coordinates mapping∞ to 0, and
we estimate for our quasiconformal correction map φ that

I(r) .
∑

M−1
j <∞.

In some sense, the annuli supporting the dilatation are ‘thin’ near ∞, so
φ approximates the identity.



What’s stopping Uk+1 = Uk? Maybe this is an unbounded invariant Fatou
component!

Lemma: Uk 6= Uk+1 - each Bk is in a distinct Fatou component.

|z| = Rk |z| = Rk+1 |z| = Rk+2

Bk
Bk+1

x y

Proof: Suppose Uk = Uk+1 - then Uk = Uj for all j ≥ k. Take x ∈ Bk
and y ∈ Bk+1. We require dhyp(fn(x), fn(y)) to be non-increasing.

However, because the modulus of Bk is increasing rapidly, we can directly
estimate dhyp(fn(x), fn(y))→∞.


