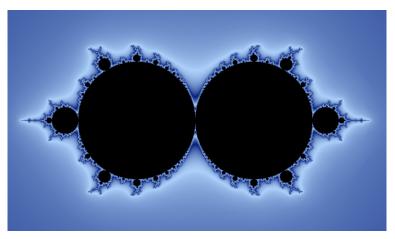
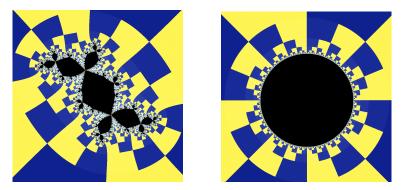
Yoccoz's Inequality and the Parabolic Zoo

Alex Kapiamba

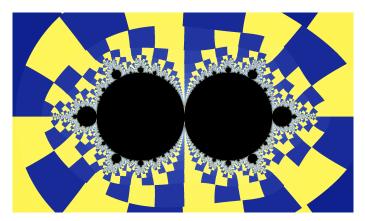

Program Associate from the University of Michigan COMD Research Seminar

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

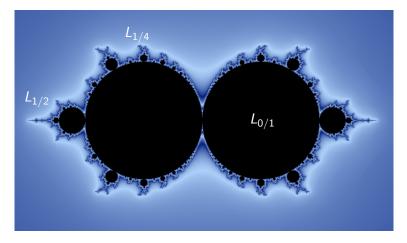
We consider the "Mandelbrot set" $\mathcal M$ of all polynomials


$$f_{\lambda}(z) = \lambda z + z^2$$

with connected filled Julia set.

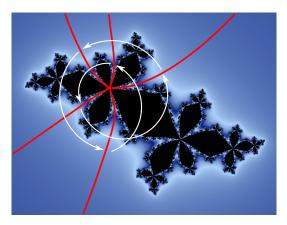

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへで

For $\lambda \in \mathcal{M}$, the Böttcher coordinate $\psi_{\lambda} : \mathbb{C} \setminus \mathcal{K}(f_{\lambda}) \to \mathbb{C} \setminus \overline{\mathbb{D}}$ conjugates f_{λ} to z^2 .



For $z \notin K(f_{\lambda})$ we can define the *potential* $G_{\lambda}(z) := \log |\psi_{\lambda}(z)|$ and external angle arg $\psi_{\lambda}(z)/2\pi$.

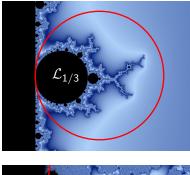
The Böttcher coordinate exists for $\lambda \notin \mathcal{M}$. In this case the potential and external angle of λ is defined as the potential and external angle of the critical value of f_{λ} .

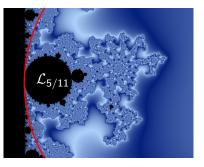


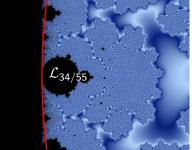
The p/q-limb $\mathcal{L}_{p/q} \subset \mathcal{M}$ is attached to $\partial \mathbb{D}$ at $e^{2\pi i p/q}$.

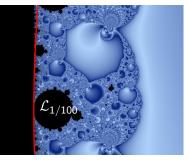
(ロ)、(型)、(E)、(E)、 E) の(()

For every $\lambda \in \mathcal{L}_{p/q}$, exactly q external rays of f_{λ} land at 0 and are "p/q-rotated" by f_{λ} .


Question: If f_{λ} is combinatorially a p/q-rotation at 0, is $f'_{\lambda}(0) = \lambda$ close to $e^{2\pi i p/q}$?


Theorem (The Yoccoz inequality, PLY-inequality) For every $p/q \in \mathbb{Q}$, if $\lambda \in \mathcal{L}_{p/q}$ then


$$\left|\log\lambda - \frac{2\pi i p}{q}\right| < \frac{2\log 2}{q}$$


The Yoccoz inequality relates the combinatorial data of external rays to the analytic data of λ .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

There exists C > 0 such that for every $p/q \in \mathbb{Q}$ and $\lambda \in \mathcal{L}_{p/q}$,

$$\left|\log\lambda-\frac{2\pi ip}{q}\right|<\frac{C}{q^2}$$

There exists C > 0 such that for every $p/q \in \mathbb{Q}$ and $\lambda \in \mathcal{L}_{p/q}$,

$$\left|\log\lambda-\frac{2\pi ip}{q}\right|<\frac{C}{q^2}.$$

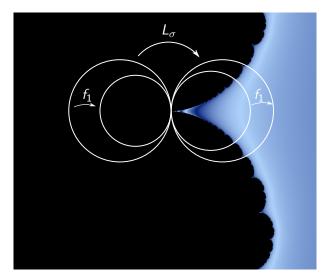
Theorem (K.) There exists C > 0 such that for every $q \ge 1$ and $\lambda \in \mathcal{L}_{1/q}$,

$$\left|\log\lambda-\frac{2\pi i}{q}\right|<\frac{C}{q^2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

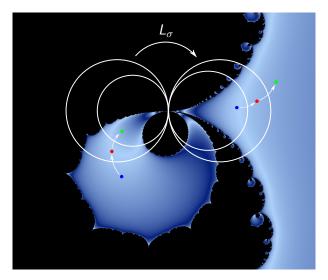
There exists C > 0 such that for every $p/q \in \mathbb{Q}$ and $\lambda \in \mathcal{L}_{p/q}$,

$$\left|\log\lambda-\frac{2\pi ip}{q}\right|<\frac{C}{q^2}.$$


Theorem (K.)

There exists C > 0 such that for every $q \ge 1$ and $\lambda \in \mathcal{L}_{1/q}$,

$$\left|\log\lambda-\frac{2\pi i}{q}\right|<\frac{C}{q^2}.$$


Idea: Maps $f_{\lambda} \in \mathcal{L}_{1/q}$ converge to $f_1(z) = z + z^2$ when $q \to \infty$, so we will study parabolic implosion.

Recall that a *Lavaurs map* L_{σ} for f_1 , parameterized by $\sigma \in \mathbb{C}$, is an isomorphism from an attracting fundamental domain to a repelling fundamental domain, extended analytically by conjugating with f_1 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Recall that a *Lavaurs map* L_{σ} for f_1 , parameterized by $\sigma \in \mathbb{C}$, is an isomorphism from an attracting fundamental domain to a repelling fundamental domain, extended analytically by conjugating with f_1 .

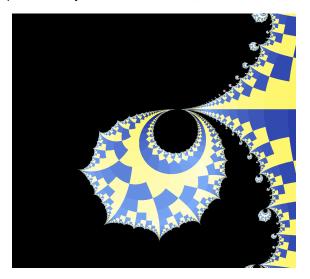
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

For a Lavaurs map L_{σ} , we define the *m*-escaping set

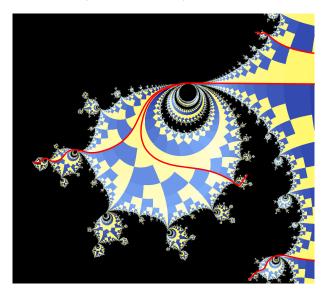
$$E_m := L^{-m}_{\sigma}(\mathbb{C} \setminus K(f_1)).$$

For a Lavaurs map L_{σ} , we define the *m*-escaping set

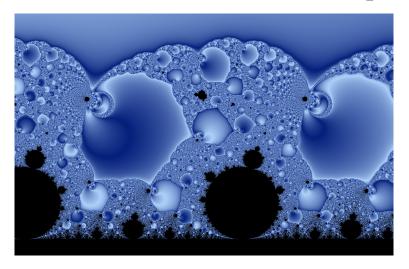
$$E_m := L_{\sigma}^{-m}(\mathbb{C} \setminus K(f_1)).$$

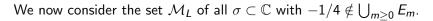

We will assume that the Lavaurs map L_{σ} is *d*-nonescaping, i.e.

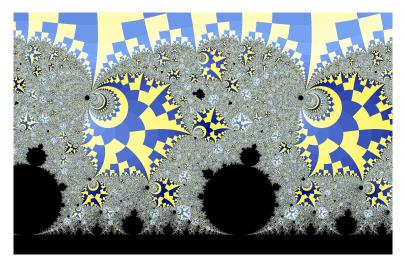
$$-1/4 \notin \bigcup_{m=0}^{d} \overline{E_m}.$$


This assumption simplifies many of the following statements, but the general case isn't too difficult.

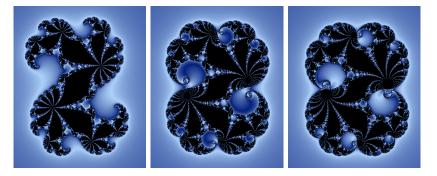
・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ


If L_{σ} is *d*-nonescaping, then every connected component U of E_d is a croissant and there exists a unique isomorphism $\Psi_U : U \to \mathbb{H}$ which respects the dynamics of f_1 and L_{σ} .


We can define *enriched rays of depth* d-1 for L_{σ} indexed by sequences of angles $(\theta_0, \theta_1, \ldots, \theta_{d-1})$.

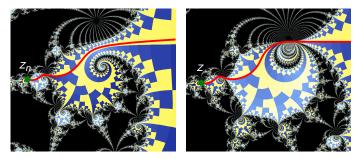


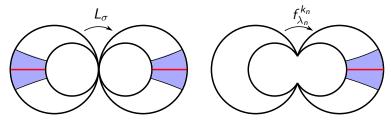
We now consider the set \mathcal{M}_L of all $\sigma \subset \mathbb{C}$ with $-1/4 \notin \bigcup_{m>0} E_m$.

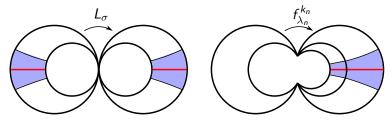

We can similarly define escaping sets and enriched parameter rays for $\mathcal{M}_L.$

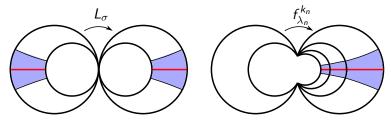
We can similarly define escaping sets and enriched parameter rays for $\mathcal{M}_L.$

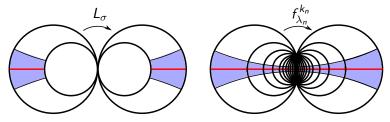
Theorem (Douady, Lavaurs, Shishikura) For sequences $\lambda_n \to 1$ and $k_n \to +\infty$, if $k_n - \frac{2\pi i}{\log \lambda_n} \to \sigma \in \mathbb{C}$ then $f_{\lambda_n}^{k_n}$ converges to L_{σ} locally uniformly on Int $K(f_1)$.

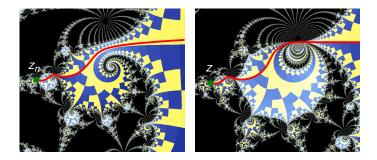



Lemma (Angle lemma)


Assume L_{σ} is d-nonescaping, $f_{\lambda_n}^{k_n} \to L_{\sigma}$, and $z \in E_d$. If z_n is a sequence converging to z and $G_{\lambda_n}(z_n) > 2^{-mk_n}$ for some $m \ge 0$, then there exist real numbers $\theta_0, \ldots, \theta_d$ such that the external angle of z_n under f_{λ_n} is by

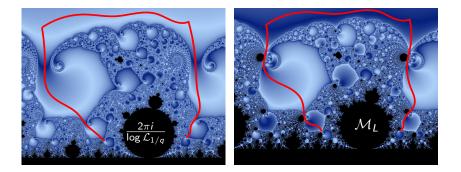

$$heta_0+rac{ heta_1}{2^{k_n}}+\cdots+rac{ heta_{d-1}}{2^{(d-1)k_n}}+rac{ heta_d+O(1)}{2^{dk_n}}.$$


I.e., external rays of f_{λ_n} converge* to enriched rays of L_{σ} .



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

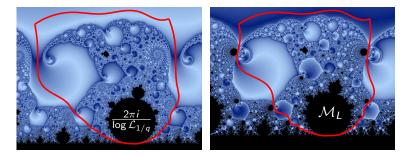
We then pull back by f_1 and L_{σ} .

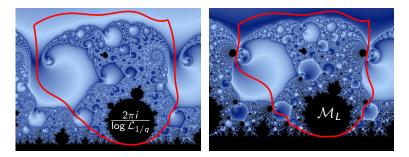


When $f_{\lambda_n}^{k_n} \to L_{\sigma}$, Lavaurs' theorem and the angle lemma put analytic and combinatorial constraints respectively on λ_n and σ .

This relationship between analytic and combinatorial data is the heart of the improved Yoccoz inequality.

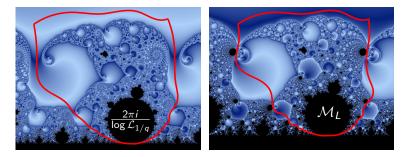
・ロト ・ 四ト ・ ヨト ・ ヨト


It follows from the angle lemma that parameter rays in the $-\frac{2\pi i}{\log \lambda}$ plane converge* to enriched parameter rays.


- 34

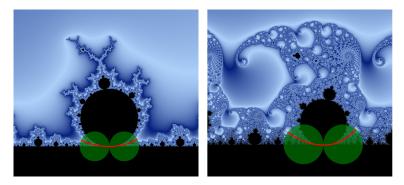
A D > A P > A D > A D >

If we could extend to infinite depth enriched rays, then we could build a cage around $\mathcal{L}_{1/q}$ out of external rays and an equipotential.


If we could extend to infinite depth enriched rays, then we could build a cage around $\mathcal{L}_{1/q}$ out of external rays and an equipotential.

The size of the cage is asymptotically constant, so $\left|q - \frac{2\pi i}{\log \lambda}\right| < C$ for all $\lambda \in \mathcal{L}_{1/q}$.

・ロト・西ト・ヨト・ヨト・ 日・ うらの


If we could extend to infinite depth enriched rays, then we could build a cage around $\mathcal{L}_{1/q}$ out of external rays and an equipotential.

The size of the cage is asymptotically constant, so $\left|q - \frac{2\pi i}{\log \lambda}\right| < C$ for all $\lambda \in \mathcal{L}_{1/q}$. Thus

$$\left|\log \lambda - \frac{2\pi i}{q}\right| = \left|q - \frac{2\pi i}{\log \lambda}\right| \frac{\left|\log \lambda\right|}{q} \le \left|q - \frac{2\pi i}{\log \lambda}\right| \cdot \frac{C}{q^2} \le \frac{C}{q^2}.$$

Douady and Hubbard used parabolic implosion to bound the rays landing at $e^{2\pi i p/q}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

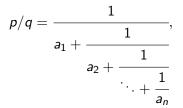
A priori, these bounds are unrelated.

The Lavaurs map L_0 at the root of \mathcal{M}_L has a parabolic fixed point. We can use Douady and Hubbard's argument to bound the enriched parameter rays landing at L_0 .

As $f_{e^{2\pi i/q}}^q \rightarrow L_0$, we can view the parabolic implosion near $f_{e^{2\pi i/q}}$ as a perturbation of the parabolic implosion near L_0 .

It follows that the bounds on the parameter rays landing at $f_{e^{2\pi i/q}}$ converge to the bound on the enriched parameter rays landing at L_0 .

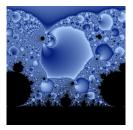
As we have control of the whole cage around $\mathcal{L}_{1/q}$, we have a C/q^2 bound in the Yoccoz inequality.

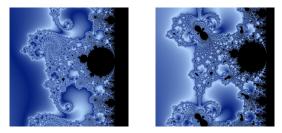

As we have control of the whole cage around $\mathcal{L}_{1/q}$, we have a C/q^2 bound in the Yoccoz inequality.

Why stop at $\mathcal{L}_{1/q}$?

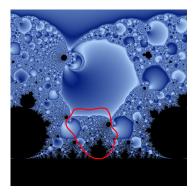
As we have control of the whole cage around $\mathcal{L}_{1/q}$, we have a C/q^2 bound in the Yoccoz inequality.

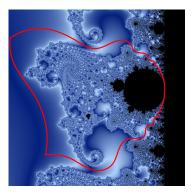
Why stop at $\mathcal{L}_{1/q}$?


For a rational number p/q, denote $p/q = [0: a_1, \ldots, a_n] \in \mathcal{Q}_n$ if

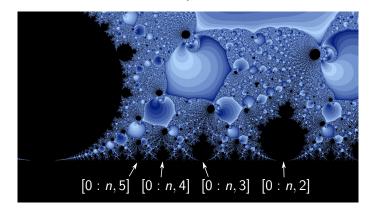

where each a_i is a positive integer.

The families of "baby elephants" $p_n/q_n = [0:n,2]$




and "seahorses"
$$p_n/q_n = [0:2, n]$$

undergo similar parabolic implosions.


Using the same argument, we can control cages for these families and bound the size of the limbs by C_2/q^2 for some $C_2 > 0$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

For $p/q \rightarrow [0:2,\infty]$, $[0:\infty,2]$ we have C_2/q^2 bound. For $p/q \rightarrow [0:3,\infty]$, $[0:\infty,3]$ we have C_3/q^2 bound. For $p/q \rightarrow [0:4,\infty]$, $[0:\infty,4]$ we have C_4/q^2 bound.

By doing a secondary parabolic implosion, corresponding to $p/q \rightarrow [0:\infty,\infty]$, we can uniformly control C_i .

Hence there is a uniform constant for all $p/q \in Q_2$.

By doing a secondary parabolic implosion, corresponding to $p/q \rightarrow [0:\infty,\infty]$, we can uniformly control C_j .

Hence there is a uniform constant for all $p/q \in Q_2$.

Theorem (K, in progress)

For all $n \ge 1$ there exists $C_n > 0$ such that if $p/q \in \bigcup_{j=1}^n Q_j$ and $\lambda \in \mathcal{L}_{p/q}$, then

$$\left|\log\lambda - \frac{2\pi i p}{q}\right| < \frac{\mathcal{C}_n}{q^2}$$

It remains to understand what happens when the length of the continued fraction expansion of p/q tends to infinity.

It remains to understand what happens when the length of the continued fraction expansion of p/q tends to infinity.

For example, when p/q converges to

- 1. $[0:1,1,1,\dots]$
- 2. $[0:\infty,1,1,\dots]$
- 3. $[0:\infty,\infty,\infty,\ldots]$

4. $[0:\infty,2,\infty,2,\dots]$

5. $\left[0:\infty,1,\infty,1,1,\infty,1,1,1,\infty,\dots\right]$

If $p/q = [0: a_1, \ldots, a_n]$ and $p'/q' = [0: a'_1, \ldots, a'_n]$ with $a_j \le a'_j$ for all $1 \le j \le n$, then

$$\sup_{\lambda \in \mathcal{L}_{p/q}} q^2 \left| \log \lambda - \frac{2\pi i p}{q} \right| \leq \sup_{\lambda \in \mathcal{L}_{p'/q'}} q'^2 \left| \log \lambda - \frac{2\pi i p'}{q'} \right|$$

It would follow from this conjecture that we only have to consider the case $p/q \rightarrow [0:\infty,\infty,\dots]$.