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We consider the “Mandelbrot set” M of all polynomials

fλ(z) = λz + z2

with connected filled Julia set.



For λ ∈M, the Böttcher coordinate ψλ : C \ K (fλ)→ C \ D
conjugates fλ to z2.

For z /∈ K (fλ) we can define the potential Gλ(z) := log |ψλ(z)|
and external angle argψλ(z)/2π.



The Böttcher coordinate exists for λ /∈M. In this case the
potential and external angle of λ is defined as the potential and
external angle of the critical value of fλ.



The p/q-limb Lp/q ⊂M is attached to ∂D at e2πip/q.
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For every λ ∈ Lp/q, exactly q external rays of fλ land at 0 and are
“p/q-rotated” by fλ.

Question: If fλ is combinatorially a p/q-rotation at 0, is f ′λ(0) = λ
close to e2πip/q?



Theorem (The Yoccoz inequality, PLY-inequality)

For every p/q ∈ Q, if λ ∈ Lp/q then∣∣∣∣log λ− 2πip

q

∣∣∣∣ < 2 log 2

q
.

The Yoccoz inequality relates the combinatorial data of external
rays to the analytic data of λ.
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Conjecture

There exists C > 0 such that for every p/q ∈ Q and λ ∈ Lp/q,∣∣∣∣log λ− 2πip

q

∣∣∣∣ < C

q2
.

Theorem (K.)

There exists C > 0 such that for every q ≥ 1 and λ ∈ L1/q,∣∣∣∣log λ− 2πi

q

∣∣∣∣ < C

q2
.

Idea: Maps fλ ∈ L1/q converge to f1(z) = z + z2 when q →∞, so
we will study parabolic implosion.



Conjecture

There exists C > 0 such that for every p/q ∈ Q and λ ∈ Lp/q,∣∣∣∣log λ− 2πip

q

∣∣∣∣ < C

q2
.

Theorem (K.)

There exists C > 0 such that for every q ≥ 1 and λ ∈ L1/q,∣∣∣∣log λ− 2πi

q

∣∣∣∣ < C

q2
.

Idea: Maps fλ ∈ L1/q converge to f1(z) = z + z2 when q →∞, so
we will study parabolic implosion.



Conjecture

There exists C > 0 such that for every p/q ∈ Q and λ ∈ Lp/q,∣∣∣∣log λ− 2πip

q

∣∣∣∣ < C

q2
.

Theorem (K.)

There exists C > 0 such that for every q ≥ 1 and λ ∈ L1/q,∣∣∣∣log λ− 2πi

q

∣∣∣∣ < C

q2
.

Idea: Maps fλ ∈ L1/q converge to f1(z) = z + z2 when q →∞, so
we will study parabolic implosion.



Recall that a Lavaurs map Lσ for f1, parameterized by σ ∈ C, is an
isomorphism from an attracting fundamental domain to a repelling
fundamental domain, extended analytically by conjugating with f1.

Lσ
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For a Lavaurs map Lσ, we define the m-escaping set

Em := L−mσ (C \ K (f1)).

We will assume that the Lavaurs map Lσ is d-nonescaping, i.e.

−1/4 /∈
d⋃

m=0

Em.

This assumption simplifies many of the following statements, but
the general case isn’t too difficult.
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If Lσ is d-nonescaping, then every connected component U of Ed

is a croissant and there exists a unique isomorphism ΨU : U → H
which respects the dynamics of f1 and Lσ.



We can define enriched rays of depth d − 1 for Lσ indexed by
sequences of angles (θ0, θ1, . . . , θd−1).



We now consider the set ML of all σ ⊂ C with −1/4 /∈
⋃

m≥0 Em.

We can similarly define escaping sets and enriched parameter rays
for ML.
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Theorem (Douady, Lavaurs, Shishikura)

For sequences λn → 1 and kn → +∞, if kn − 2πi
log λn

→ σ ∈ C then

f knλn converges to Lσ locally uniformly on Int K (f1).



Lemma (Angle lemma)

Assume Lσ is d-nonescaping, f knλn → Lσ, and z ∈ Ed . If zn is a

sequence converging to z and Gλn(zn) > 2−mkn for some m ≥ 0,
then there exist real numbers θ0, . . . , θd such that the external
angle of zn under fλn is by

θ0 +
θ1
2kn

+ · · ·+ θd−1
2(d−1)kn

+
θd + O(1)

2dkn
.

I.e., external rays of fλn converge* to enriched rays of Lσ.

zn z



Proof sketch: First we study limits of the fixed ray:

Lσ f knλn
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Proof sketch: First we study limits of the fixed ray:

Lσ f knλn

We then pull back by f1 and Lσ.



zn z

When f knλn → Lσ, Lavaurs’ theorem and the angle lemma put
analytic and combinatorial constraints respectively on λn and σ.

This relationship between analytic and combinatorial data is the
heart of the improved Yoccoz inequality.



It follows from the angle lemma that parameter rays in the − 2πi
log λ

plane converge* to enriched parameter rays.

2πi
logL1/q

ML



If we could extend to infinite depth enriched rays, then we could
build a cage around L1/q out of external rays and an equipotential.

2πi
logL1/q

ML

The size of the cage is asymptotically constant, so
∣∣∣q − 2πi

log λ

∣∣∣ < C

for all λ ∈ L1/q.
Thus∣∣∣∣log λ− 2πi

q

∣∣∣∣ =

∣∣∣∣q − 2πi

log λ

∣∣∣∣ | log λ|
q

≤
∣∣∣∣q − 2πi

log λ

∣∣∣∣ · Cq2 ≤ C

q2
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Douady and Hubbard used parabolic implosion to bound the rays
landing at e2πip/q.

A priori, these bounds are unrelated.



The Lavaurs map L0 at the root of ML has a parabolic fixed
point. We can use Douady and Hubbard’s argument to bound the
enriched parameter rays landing at L0.

As f q
e2πi/q

→ L0, we can view the parabolic implosion near fe2πi/q as
a perturbation of the parabolic implosion near L0.

It follows that the bounds on the parameter rays landing at fe2πi/q
converge to the bound on the enriched parameter rays landing at
L0.



As we have control of the whole cage around L1/q, we have a
C/q2 bound in the Yoccoz inequality.

Why stop at L1/q?

For a rational number p/q, denote p/q = [0 : a1, . . . , an] ∈ Qn if

p/q =
1

a1 +
1

a2 +
1

. . . +
1

an

,

where each aj is a positive integer.
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The families of “baby elephants” pn/qn = [0 : n, 2]

and “seahorses” pn/qn = [0 : 2, n]

undergo similar parabolic implosions.



Using the same argument, we can control cages for these families
and bound the size of the limbs by C2/q

2 for some C2 > 0.



For p/q → [0 : 2,∞], [0 :∞, 2] we have C2/q
2 bound.

For p/q → [0 : 3,∞], [0 :∞, 3] we have C3/q
2 bound.

For p/q → [0 : 4,∞], [0 :∞, 4] we have C4/q
2 bound.

...

[0 : n, 2][0 : n, 3][0 : n, 4][0 : n, 5]



By doing a secondary parabolic implosion, corresponding to
p/q → [0 :∞,∞], we can uniformly control Cj .

Hence there is a uniform constant for all p/q ∈ Q2.

Theorem (K, in progress)

For all n ≥ 1 there exists Cn > 0 such that if p/q ∈
⋃n

j=1Qj and
λ ∈ Lp/q, then ∣∣∣∣log λ− 2πip
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It remains to understand what happens when the length of the
continued fraction expansion of p/q tends to infinity.

For example, when p/q converges to

1. [0 : 1, 1, 1, . . . ]

2. [0 :∞, 1, 1, . . . ]

3. [0 :∞,∞,∞, . . . ]

4. [0 :∞, 2,∞, 2, . . . ]

5. [0 :∞, 1,∞, 1, 1,∞, 1, 1, 1,∞, . . . ]
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Conjecture

If p/q = [0 : a1, . . . , an] and p′/q′ = [0 : a′1, . . . , a
′
n] with aj ≤ a′j

for all 1 ≤ j ≤ n, then

sup
λ∈Lp/q

q2
∣∣∣∣log λ− 2πip

q

∣∣∣∣ ≤ sup
λ∈Lp′/q′

q′2
∣∣∣∣log λ− 2πip′

q′

∣∣∣∣
It would follow from this conjecture that we only have to consider
the case p/q → [0 :∞,∞, . . . ].


