Yoccoz's Inequality and the Parabolic Zoo

Alex Kapiamba

Program Associate from the University of Michigan COMD Research Seminar

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

We consider the "Mandelbrot set" M of all polynomials

$$
f_{\lambda}(z)=\lambda z+z^2
$$

with connected filled Julia set.

For $\lambda \in \mathcal{M}$, the Böttcher coordinate $\psi_{\lambda} : \mathbb{C} \setminus K(f_{\lambda}) \to \mathbb{C} \setminus \overline{\mathbb{D}}$ conjugates f_{λ} to z^2 .

For $z \notin K(f_\lambda)$ we can define the *potential* $G_\lambda(z) := \log |\psi_\lambda(z)|$ and external angle arg $\psi_{\lambda}(z)/2\pi$.

KORKARYKERKER POLO

The Böttcher coordinate exists for $\lambda \notin \mathcal{M}$. In this case the potential and external angle of λ is defined as the potential and external angle of the critical value of f_{λ} .

The p/q -limb $\mathcal{L}_{p/q}\subset \mathcal{M}$ is attached to $\partial \mathbb{D}$ at $e^{2\pi i p/q}.$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

For every $\lambda\in\mathcal{L}_{\bm{\rho}/\bm{q}},$ exactly \bm{q} external rays of f_λ land at 0 and are " p/q -rotated" by f_{λ} .

Question: If f_{λ} is combinatorially a p/q -rotation at 0, is $f'_{\lambda}(0) = \lambda$ close to $e^{2\pi i p/q}$?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Theorem (The Yoccoz inequality, PLY-inequality) For every $p/q \in \mathbb{Q}$, if $\lambda \in \mathcal{L}_{p/q}$ then

$$
\left|\log\lambda-\frac{2\pi ip}{q}\right|<\frac{2\log 2}{q}.
$$

The Yoccoz inequality relates the combinatorial data of external rays to the analytic data of λ .

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

There exists $C > 0$ such that for every $p/q \in \mathbb{Q}$ and $\lambda \in \mathcal{L}_{p/q}$,

$$
\left|\log\lambda-\frac{2\pi ip}{q}\right|<\frac{C}{q^2}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

There exists $C > 0$ such that for every $p/q \in \mathbb{Q}$ and $\lambda \in \mathcal{L}_{p/q}$,

$$
\left|\log\lambda-\frac{2\pi ip}{q}\right|<\frac{C}{q^2}.
$$

Theorem (K.) There exists $C > 0$ such that for every $q \ge 1$ and $\lambda \in \mathcal{L}_{1/q}$,

$$
\left|\log\lambda-\frac{2\pi i}{q}\right|<\frac{C}{q^2}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

There exists $C > 0$ such that for every $p/q \in \mathbb{Q}$ and $\lambda \in \mathcal{L}_{p/q}$,

$$
\left|\log\lambda-\frac{2\pi ip}{q}\right|<\frac{C}{q^2}.
$$

Theorem (K.) There exists $C > 0$ such that for every $q \ge 1$ and $\lambda \in \mathcal{L}_{1/q}$,

$$
\left|\log\lambda-\frac{2\pi i}{q}\right|<\frac{C}{q^2}.
$$

Idea: Maps $f_{\lambda} \in \mathcal{L}_{1/q}$ converge to $f_1(z) = z + z^2$ when $q \to \infty$, so we will study parabolic implosion.

KORKARYKERKER POLO

Recall that a Lavaurs map L_{σ} for f_1 , parameterized by $\sigma \in \mathbb{C}$, is an isomorphism from an attracting fundamental domain to a repelling fundamental domain, extended analytically by conjugating with f_1 .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Recall that a Lavaurs map L_{σ} for f_1 , parameterized by $\sigma \in \mathbb{C}$, is an isomorphism from an attracting fundamental domain to a repelling fundamental domain, extended analytically by conjugating with f_1 .

For a Lavaurs map L_{σ} , we define the *m-escaping set*

$$
E_m:=L^{-m}_{\sigma}(\mathbb{C}\setminus K(f_1)).
$$

KE K K Ø K K E K K E K V R K K K K K K K K

For a Lavaurs map L_{σ} , we define the *m-escaping set*

$$
E_m:=L^{-m}_{\sigma}(\mathbb{C}\setminus K(f_1)).
$$

We will assume that the Lavaurs map L_{σ} is *d-nonescaping*, i.e.

$$
-1/4 \notin \bigcup_{m=0}^d \overline{E_m}.
$$

This assumption simplifies many of the following statements, but the general case isn't too difficult.

KO K K Ø K K E K K E K V K K K K K K K K K

If L_{σ} is d-nonescaping, then every connected component U of E_d is a croissant and there exists a unique isomorphism $\Psi_{U}: U \rightarrow \mathbb{H}$ which respects the dynamics of f_1 and L_{σ} .

We can define enriched rays of depth $d - 1$ for L_{σ} indexed by sequences of angles $(\theta_0, \theta_1, \dots, \theta_{d-1})$.

We now consider the set \mathcal{M}_L of all $\sigma\subset\mathbb{C}$ with $-1/4\notin\bigcup_{m\geq 0}\mathcal{E}_m$.

We can similarly define escaping sets and enriched parameter rays for M_L .

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

We now consider the set \mathcal{M}_L of all $\sigma\subset\mathbb{C}$ with $-1/4\notin\bigcup_{m\geq 0}\mathcal{E}_m$.

We can similarly define escaping sets and enriched parameter rays for M_L .

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Theorem (Douady, Lavaurs, Shishikura) For sequences $\lambda_n \to 1$ and $k_n \to +\infty$, if $k_n - \frac{2\pi i}{\log \lambda_n} \to \sigma \in \mathbb{C}$ then $f_{\lambda_n}^{k_n}$ $\chi_{\lambda_n}^{\kappa_n}$ converges to L_{σ} locally uniformly on Int $K(f_1).$

Lemma (Angle lemma)

Assume L_{σ} is d-nonescaping, $f_{\lambda_n}^{k_n} \to L_{\sigma}$, and $z \in E_d$. If z_n is a sequence converging to z and $G_{\lambda_n}(z_n)>2^{-mk_n}$ for some $m\geq 0$, then there exist real numbers $\theta_0, \ldots, \theta_d$ such that the external angle of z_n under f_{λ_n} is by

$$
\theta_0 + \frac{\theta_1}{2^{k_n}} + \cdots + \frac{\theta_{d-1}}{2^{(d-1)k_n}} + \frac{\theta_d + O(1)}{2^{dk_n}}.
$$

l.e., external rays of f_{λ_n} converge* to enriched rays of L_{σ} .

Kロトメ部トメミトメミト ミニのQC

We then pull back by f_1 and L_{σ} .

When $f_{\lambda_n}^{k_n}\to L_\sigma$, Lavaurs' theorem and the angle lemma put analytic and combinatorial constraints respectively on λ_n and σ .

This relationship between analytic and combinatorial data is the heart of the improved Yoccoz inequality.

It follows from the angle lemma that parameter rays in the $-\frac{2\pi i}{\log n}$ $\log \lambda$ plane converge* to enriched parameter rays.

イロメ 不優 トイ選 トイ選人

 \mathbb{R}^n

If we could extend to infinite depth enriched rays, then we could build a cage around $\mathcal{L}_{1/q}$ out of external rays and an equipotential.

イロト 不優 トイミト イヨト 一番

If we could extend to infinite depth enriched rays, then we could build a cage around $\mathcal{L}_{1/q}$ out of external rays and an equipotential.

The size of the cage is asymptotically constant, so $\left| q - \frac{2\pi i}{\log p} \right|$ $\left|\frac{2\pi i}{\log \lambda}\right| < C$ for all $\lambda \in \mathcal{L}_{1/q}.$

If we could extend to infinite depth enriched rays, then we could build a cage around $\mathcal{L}_{1/q}$ out of external rays and an equipotential.

The size of the cage is asymptotically constant, so $\left| q - \frac{2\pi i}{\log p} \right|$ $\left|\frac{2\pi i}{\log \lambda}\right| < C$ for all $\lambda \in \mathcal{L}_{1/q}.$ Thus

$$
\left|\log \lambda - \frac{2\pi i}{q}\right| = \left|q - \frac{2\pi i}{\log \lambda}\right| \frac{|\log \lambda|}{q} \le \left|q - \frac{2\pi i}{\log \lambda}\right| \cdot \frac{C}{q^2} \le \frac{C}{q^2}.
$$

Douady and Hubbard used parabolic implosion to bound the rays landing at $e^{2\pi i p/q}$.

A priori, these bounds are unrelated.

The Lavaurs map L_0 at the root of \mathcal{M}_I has a parabolic fixed point. We can use Douady and Hubbard's argument to bound the enriched parameter rays landing at L_0 .

As f^q_{a} $\epsilon^{cq}_{e^{2\pi i/q}} \rightarrow L_0$, we can view the parabolic implosion near $f_{e^{2\pi i/q}}$ as a perturbation of the parabolic implosion near L_0 .

It follows that the bounds on the parameter rays landing at $f_{e^{2\pi i/q}}$ converge to the bound on the enriched parameter rays landing at L_0 .

As we have control of the whole cage around $\mathcal{L}_{1/q}$, we have a C/q^2 bound in the Yoccoz inequality.

KO K K Ø K K E K K E K V K K K K K K K K K

As we have control of the whole cage around $\mathcal{L}_{1/q}$, we have a C/q^2 bound in the Yoccoz inequality.

Why stop at $\mathcal{L}_{1/q}$?

As we have control of the whole cage around $\mathcal{L}_{1/q}$, we have a C/q^2 bound in the Yoccoz inequality.

Why stop at $\mathcal{L}_{1/a}$?

For a rational number p/q , denote $p/q = [0 : a_1, \ldots, a_n] \in \mathcal{Q}_n$ if

KORKAR KERKER ST VOOR

where each \emph{a}_{j} is a positive integer.

The families of "baby elephants" $p_n/q_n = [0 : n, 2]$

K ロ K K 個 K K 星 K K 星 K …星

 2990

and "seahorses"
$$
p_n/q_n = [0:2, n]
$$

undergo similar parabolic implosions.

Using the same argument, we can control cages for these families and bound the size of the limbs by C_2/q^2 for some $\mathsf{C}_2>0.$

For $p/q \rightarrow [0:2,\infty], [0:\infty,2]$ we have \mathcal{C}_2/q^2 bound. For $p/q \rightarrow [0:3,\infty], [0:\infty,3]$ we have \mathcal{C}_3/q^2 bound. For $p/q \rightarrow [0:4,\infty], [0:\infty,4]$ we have C_4/q^2 bound.

> . .

By doing a secondary parabolic implosion, corresponding to $\rho/q\to[0:\infty,\infty]$, we can uniformly control \mathcal{C}_{j} .

Hence there is a uniform constant for all $p/q \in \mathcal{Q}_2$.

By doing a secondary parabolic implosion, corresponding to $\rho/q\to[0:\infty,\infty]$, we can uniformly control \mathcal{C}_{j} .

Hence there is a uniform constant for all $p/q \in \mathcal{Q}_2$.

Theorem (K, in progress)

For all $n\geq 1$ there exists $\mathcal{C}_n>0$ such that if $p/q\in \bigcup_{j=1}^n\mathcal{Q}_j$ and $\lambda\in\mathcal{L}_{\rho/q}$, then

$$
\left|\log\lambda-\frac{2\pi ip}{q}\right|<\frac{C_n}{q^2}
$$

KORKAR KERKER SAGA

It remains to understand what happens when the length of the continued fraction expansion of p/q tends to infinity.

KO K K Ø K K E K K E K V K K K K K K K K K

It remains to understand what happens when the length of the continued fraction expansion of p/q tends to infinity.

KORKAR KERKER SAGA

For example, when p/q converges to

- $1. \, [0:1,1,1,\ldots]$
- 2. $[0 : \infty, 1, 1, \dots]$
- 3. $[0 : \infty, \infty, \infty, \ldots]$

4. $[0 : \infty, 2, \infty, 2, \ldots]$

5. $[0 : \infty, 1, \infty, 1, 1, \infty, 1, 1, 1, \infty, \dots]$

If $p/q = [0:a_1,\ldots,a_n]$ and $p'/q' = [0:a'_1,\ldots,a'_n]$ with $a_j \le a'_j$ for all $1 \leq i \leq n$, then

$$
\sup_{\lambda \in \mathcal{L}_{p/q}} q^2 \left| \log \lambda - \frac{2\pi i p}{q} \right| \leq \sup_{\lambda \in \mathcal{L}_{p'/q'}} q'^2 \left| \log \lambda - \frac{2\pi i p'}{q'} \right|
$$

It would follow from this conjecture that we only have to consider the case $p/q \rightarrow [0: \infty, \infty, \ldots]$.

KORKARYKERKER POLO