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Rational Surfaces

A rational surface is a surface birationally equivalent to a
projective plane P2.

If X is a rational surface, then there is a sequence of blowups of a
point :

Th—1

T:X=Xp 2 Xpg — - X I Xy = P?
where 7; : X; — X;_1 is a blowup of a point p; € X;_1.

Generators of Cohomology group
> ey = m*[¢] where £ is a line in P?

P ¢; is the cohomology class of the total transform of the
exceptional curve over p;.

> e.eg =1, 6.6 = —1, 6.6 = 0



If f is an automorphism on X,
htop(f) = log A(f)

where A(f) = the spectral radius of thee induced action
F*|HM(X,C) — HY(X,C)) is the dynamical degree of f.
Theorem (Nagata)

If F: X — X is an automorphism on a rational surface X with
A(f) > 1, then there is a birational map f : P?(C) --» P?(C) such
that f =moFon!

X —F 4 x
x lﬂ

P2(C) -y P2(C)



Birational Maps on P?

f is a birational map on P2

» f =[f:f:f] where f/s are homogeneous polynomials of
the same degree.

» There is a rational inverse.

» There is no common divisor of f, f», f5.

» There are points of indeterminacy :
I(f) = ni{f; = 0}
» There are exceptional curves which map to points.

E(f) = {Det(Df) = 0}



Theorem (Ncether Decomposition)

If f : P?(C) --» P2(C) is a birational map, then f can be written

as a composition of the Cremona Involution J and automorphisms
on P?(C).

f=LgoJolio---olk_10JolLy, LjGAUt(Pz(C))

The Cremona Involution

J: P?(C) --» P(C)
1 1 1

Ji[xiixixz] = [— 0 — 1 —] = [xex3: x1x3 1 x1x2]
X1 X2 X3

J is not defined at three points [1:0:0],[0:1:0],[0:0: 1]



The Cremona involution J lifts to an automorphism on a rational
surface X = B{pP?(C) where
P={e1=[1:0:0],eo=[0:1:0],e3=1[0:0:1]}

If f = Lo J with L € Aut(P?(C)),
» Each line {x; = 0} maps to a point p; = Le;
» Each point e; blows up to a line L{x; = 0}.
» If there are three positive integers and a permutation o € 53
such that

F™1(pi) = e (i), and
dimfi(pj)=0forall 0<j<n;—1

then f lifts to an automorphism an a rational surface.



Orbit dataof f = Lo J

Theorem (Nagata)

Suppose F : X — X is an automorphism with positive entropy on
a rational surface X.

Then there is a natural identification between the induced action
F*: HY(X) — HY(X) and an element of a Coxeter group
generated by certain reflections.

Suppose there are ny, ny, n3 € N and a permutation o € S3 such
that

| 4 f""{X; = 0} = €5(i)
» Dim (F/{x;=0})=0forall 1<j<n;, i=1,23

We call these numerical information Orbit data for f.

We say the orbit data is realizable if there is a birational map with
the orbit data.



Rational surface automorphisms with positive entropy:
Construction

Using invariant curves
» McMullen : Existence of maps with n; = n, = 1, n3 > 8 with
a cyclic permutation.

» Diller : construction of (almost all) quadratic maps fixing a
cubic with one singular point.

» Blanc : construction of higher degree maps with a curve of
fixed points.

No periodic curve

> Lesieutre : involutions on a blowup of a cubic surface € P3(C)
at sixpoints.



Diller's construction

Very explicit!!

m =3, =4,n3 =4 and an identity permutation

Suppose f properly fixes a cubic curve C with a cusp.

f = LoJ where L =

20° +a* —a—1 2a* +3a3+3a2+2 —2a% —3a* —3a3 —3a? -

a®—ad a4+ a3 —a® —a*+1
a?—1 o+ 2 —a?—a

total of each row =1

J[x1:x2:x3] = [x2x3: x1x3: x1x2]

where

x(@)=a®—a*—a®-a?+1=0

fle :9(t) = y(1/at +b),  Creg = {1(t),t € C}



Diller's construction

Favorite Example
ny = ny = 1,n3 = 8 and a cyclic permutation 1 -2 -3 — 1
Suppose f properly fixes a cubic curve C with a cusp.

f = LoJ where

0 0 1
L = [a®—ab—a*+1 0 —a’+ab+a* |,
0 a3+ —aP-a’+1

J[x1:x2:x3] = [x2x3: x1x3: x1x2]

where

x(@)=a®+a®—a’"—a® -’ —a*-a*+a+1=0

Fle :v(t) = y(1/at +b),  Creg = {(t), t € C}



In each orbit data, if it is realizable,

» X(t) has exactly one real root A outside the unit circle,
exactly one real root 1/ inside the unit circle. All other roots
are non-real complex numbers of modulus 1.

» Each root « of x(t) determines a birational map f, such that
the multiplier of the restriction map is 1/« and each
coordinate function is in Z(«)[x1, x2, x3].

» The largest real root A of x(t) is the dynamcial degree of
f=A>1

> there are two maps f, f/\_l with real coefficients.

f : P?(C) --» P2(C)
fr : P2(R) --» P2(R)



f\ lifts to an automorphism F : X — X on a rational surface. We
have two related dynamics.

F : X(C) = X(C)
Fr : X(R) = X(R)

> htop(F) = log A
> htop(FR) S htop(F)
» Fr has maximal entropy if hiop(FR) = htop(F)

Let C be a curve with one singularity.

For each orbit data (with few exceptions), there exists two real
rational surface automorphisms properly fixing C. All centers of
blowup are in P(R)



Real Rational Surfaces

X(R) = a blow up of P?(R) along a finite set of points

X(R) = P2(R)#P*(R)# - #P*(R)

the connected sum of n+ 1 copies of P?(R)




Real Rational Surfaces
X(R) = a blow up of P?(R) along a finite set of points

X(R) \ D = a disk with n+ 1 twisted handles attached to the
boundary.

XCRIND

Figure: Each twisted handle is Mobius band



Real Rational Surfaces

X(R) = a blow up of P?(R) along a set of n points
= P2 (R)#P*(R)#--- #P*(R)

n+1 copies

» Hi(X(R)) = (ao, a1, ..., an|2a0 +2a; + ---2a, = 0)
the finitely generated abelian group with one relation.

» 71(X(R),q) = (a0, a1, . ..,an|a3a3 - -- a2 = 1)
the finitely generated NON-abelian group with one relation.

» X(R) is a non-orientable surface!!



Growth rate of homology classes
(join work with J.Diller)

For all choices of realizable orbit data ny, np, n3, € S3 (Some can
not have a map fixing a cusp cubic), we have the induced action
on homology classes

If Fr is associated with the orbit data n; < np < n3 and a cyclic
permutation, then the spectral radius of Fr, is the largest modulus
of roots of x(t)

X(t) = ——= [o(t) = (~ )" (1))

where
o(t) = (—1)mtnetnmstl (—1)mtms (12 4 1)t
t—1
(—1)n2+n3(t3 _ t2 +3t+ l)tn?, (t2 + ].)t"2
t2 -1 t+1

_l’_



For an orbit data ny, np, n3, € S3, we have a formula for the
characteristic polynomial xc(t) of F* on HY1(X(C)).
For example, if o is a cyclic permutation,

Xe(t) = £ = £ (1) 4 1) + D7 +1)



Theorem (Diller - K)
> x(Fr:) is reciprocal and x(Frs) = x(Fgl)

*
» There are rational surface automrophisms F such that FR has
maximal entropy

1,1, n > 8 with a cyclic permutation

2,2,n > 6 with a cyclic permutation

2,3,n > 6 with the identity permutation

2,4, n > 5 with the identity permutation

1,4, n > 6 with the transposition 1 < 2

1,5, n > 4 with the transposition 1 < 2

1,n > 8,2 with the transposition 1 < 2

VVVVYVYYVYY

» There is a complex rational surface automorphism such that
all periodic cycles lie in the real locus.



» There is a family of maps such that their real restriction Fg
do not have maximal entropy.

e.g. 3,3, n with a cyclic permutation
> We identified five orbit data such that FX, = Id for some k.

1,4,8, with a cyclic permutation : period = 180

e.g.
& 2,3,5, with a cyclic permutation : period = 84

This does not mean Fgr has zero entropy.

We need better estimates



Growth rate of homotopy classes
(joint work with E. Klassen)

Recall that we do have a natural choice for a set of generators for
the fundamental group for X(R)

XURIND

> We want to iterate the map. So let g = a non-cusp fixed
point (a saddle point) on the invariant cubic.

> We want to determine the image of each generator under the
action Fgs



Reading curves

ldea
» For each generator «, find a curve X, with [X,] = .
» Calculate the class [Fr(X,)] of the image curve

> With exceptional triangles and the invariant cubic, it is not
hard to find Fr(Xy)

XCRIND



For each i, let R,, denote a line segment joining the two sides of
the boundary of the handle traversed by the generator ;. Once we
put the removed open disk A back, we can extend each line
segment R, to a simple closed curve (which we continue to
denote by R,;) with base point x € A such that

» R, is a simple closed curve for all i,
» For each i, R,, intersects exactly one generator o, and
» {R,,} are pairwise disjoint on X \ {x}.
The curves {R,,} are referred to as reading curves for the
generators {«;}.



With E. Klassen, we compute the induced m; action for real
diffeomorphisms associated with birational maps fixing a cusp
cubic with orbit data ni, np, n3 and a cyclic permutation.

P> The image a generator under the induced action depends on
the location of the base point on the cubic.

» There are only 6 different possibilities.



Eg. Formp =ny=1,n3=38
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> We want to Calculate the growth rate.

p(fR*|7r1(X(R))) = sup{limsup([G(fé’*g))l/”}
geG n—x

where G is a set of generators, and {g(w) is the minimal
length among all words representing w with respect to G.

» m1(X(R), q) is a non-abelian group with one relator.



We want to Caleulate Estimate the growth rate.

P(fRelm (x(r)) 7= sup {limsup(¢6(fig.g))"/"}

geG n—x

where G is a set of generators, and ¢g(w) is the minimal
length among all words representing w with respect to G.

m1(X(R), g) is a non-abelian group with a relator.

For a € m1(X(R), g), the minimum length /() is obtained
by removing more than half-relators.



Theorem (E. Klassen -K)

There are real quadratic rational surface automorphisms with
maximal entropy such that the growth rate of homology classes is
strictly smller than the growth rate of homotopy classes

eg. n=1n=3n=9 with a cylcic permutation
n =1,n =4,n3 =8 with a cylcic permutation
ni=1,n =4,n3 =5 with a cylcic permutation

n =1,n =5,n3 =6 with a cylcic permutation

The exponential homology growth rates for the first two cases
above are zero.



1,1, 8 cyclic case
Fist, we examined the iterations under fgr,
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1,1, 8 cyclic case
Something is going on here!!




There are ten reduced elements
N={y € m(X(R)),1 <i<10}
and a subset A of the set of ordered pairs
Ac{(i,j)I1<ij,<10}

such that
» There are no relations between ~;'s
» We say. v is A-admissible if v = ;i - - - i, with
(ij,ij+1) € A,j=1,...,n (mod n)
» If v is A-admissible then fr, is also admissible up to cyclic
permutation.
The set 4 of admissible cyclic words is invariant under fry7y.



Y1 = a;lbl_las_lefl, Yo = az_lbl_la;la8_2e*
A bflaglagla;za§2e_1

= al_lag2b1_233_la7_la§2e*1

v = aglbfzaglagla;2a§2e_l

v = b1—183—135—136—237—23§26—1

v = a;lagzbfzaglagla;zagze_l

e = 31—132—2 bfzagza;laglag23;2a§2e_l

Yo = 31_132_2b1_233_2.a;2c1_1.aglag2a7_2a§2efl

N 31—182—2 b1_23§2321Cf135_236_237_238_2€_1

G = 3231, G = baja

_ -2 -1_-1_-2_-2_-2 -1
H1 = a; a2 b1 a; ag a5 a; ‘ag‘e



A={(1,4),(1,7),(1,10), (2,8), (2, 10), (3,2),
(3,8),(3,9). (4,10),(5,2),(5.8),(5,9), (6, 1), (6,5),
(7,2),(8,1), (9,1), (9, 2), (10, 3), (10, 5), (10, 6)}.

fae 1t = (e 'aYmoGa(are), il = (e taymioi(are)
fo 13 = (e7'ay om(are), foya = (et Duai(are)
fols = (e lay sm(are),  folve = (e 'ay)rer2(are)
few V7 (e7ta Dmm(ate),  fillye = (e7ta ma(are)
fo e = (e7'ayva(are), for Y10 = CRERLHETY

B =0y, Y5=C0v, and 6 = (1



Since there is no relation, We can get the length growth by
counting number of ;s

V =R with a basis {71,...710}
W = RIMHKL with a basis T UK

Theorem (Klassen-K)
There are two linear maps S, T : V. — W such that

TofRir, =S

and there is a unique vector v € V such that Sv = ATv where X is
the dynamical degree of f

We observed that the same phenomenon occurs in other orbit data.



TofRir, =S

where S, T : V — W are linear.
Is fr«|r, (almost) linear?



There are ten A-admissible words S = {si, ..., sio} where the
action. fry|gp+g on the positive span of S is "Linear”

S1 = 71710750 5,78

fR*|Sp+5 1SS +S+S3+ 54+ S5
S) —> S1 + Se + S7
S$3—>S1+ S+ 53+ S3+ 51+ S5
S4 — S1+ S2+ S4+ S10 + Se + So
S5 > S1 + S4 + S5 + S7
Se —> S1 + Se + So + S5 + S7
S7 > S1+ S+ Sg + Sg
Sg > S1 + Sp+ S4+ S10 + S + Sg + S5 + S7
Sg > S1+S2+Sg+ 53+ 54+ 510+ S6+ S9
S10+> S1+ 5S4+ S5



Sequence of Admissible Words

Since the cubic is invariant and all base loci lie between two fixed
points on the cubic, the X(R) can be drawn as following:




Sequence of Admissible Words

Starting with an admissible word 7, under f,%* we see

R —

i Yo Y o Yz ¥q ¥



Sequence of Admissible Words

Starting with an admissible word ~y, under fr‘%* we see

YiYa Wi Y5 Yy Y Ve Yo Ve s Vg



Sequence of Admissible Words

Starting with an admissible word ~, under frf* we see

Y YT o VoV ¥ Vi ¥s
Y2 Ko Y ¥e Ta ¥ U3 e 7.0 ¢



Sequence of Admissible Words

Starting with an admissible word ~y, under frf* we see

7 Ry —



Sequence of Admissible Words

Starting with an admissible word ~y, under frf* we see




It "seems” that with any choice of an initial word, we get the same
picture with increasing weight (the number of arcs).

» [Kitchens-Roeder] Is this a Plykin attractor?

» We know this grows exponentially.
» There is a repelling fixed point whose basin has full Area.
[Bedford-K]

> Are we seeing a hyperbolic set?
> What do you see?



Thank you!!

ZAREILICH



