Rational Surface Automorphisms Real and Complex dynamics

김경희(Kyounghee Kim), Florida State University

April/12/2022

Rational Surfaces

A rational surface is a surface birationally equivalent to a projective plane \mathbf{P}^2 .

If X is a rational surface, then there is a sequence of blowups of a point :

$$\pi: X = X_n \xrightarrow{\pi_n} X_{n-1} \xrightarrow{\pi_{n-1}} \cdots \xrightarrow{\pi_2} X_1 \xrightarrow{\pi_1} X_0 = \mathbf{P}^2$$

where $\pi_i: X_i \to X_{i-1}$ is a blowup of a point $p_i \in X_{i-1}$.

Generators of Cohomology group

- $ightharpoonup e_0 = \pi^*[\ell]$ where ℓ is a line in \mathbf{P}^2
- \triangleright e_i is the cohomology class of the total transform of the exceptional curve over p_i .
- $e_0.e_0 = 1, e_i.e_i = -1, e_i.e_i = 0$

If f is an automorphism on X,

$$h_{top}(f) = \log \lambda(f)$$

where $\lambda(f)=$ the spectral radius of thee induced action $f^*|H^{1,1}(X,\mathbb{C})\to H^{1,1}(X,\mathbb{C}))$ is the *dynamical degree* of f.

Theorem (Nagata)

If $F: X \to X$ is an automorphism on a rational surface X with $\lambda(f) > 1$, then there is a birational map $f: \mathbf{P}^2(\mathbb{C}) \dashrightarrow \mathbf{P}^2(\mathbb{C})$ such that $f = \pi \circ F \circ \pi^{-1}$

$$\begin{array}{ccc} X & \stackrel{F}{\longrightarrow} X \\ \downarrow^{\pi} & \downarrow^{\pi} \\ \mathbf{P}^{2}(\mathbb{C}) & \stackrel{f}{\longrightarrow} \mathbf{P}^{2}(\mathbb{C}) \end{array}$$

Birational Maps on **P**²

f is a birational map on \mathbf{P}^2 :

- ▶ $f = [f_1 : f_2 : f_3]$ where $f'_i s$ are homogeneous polynomials of the same degree.
- ► There is a rational inverse.
- ▶ There is no common divisor of f_1 , f_2 , f_3 .
- There are points of indeterminacy :

$$\mathcal{I}(f) = \cap_i \{f_i = 0\}$$

▶ There are exceptional curves which map to points.

$$\mathcal{E}(f) = \{ Det(Df) = 0 \}$$

Theorem (Noether Decomposition)

If $f: \mathbf{P}^2(\mathbb{C}) \dashrightarrow \mathbf{P}^2(\mathbb{C})$ is a birational map, then f can be written as a composition of the Cremona Involution J and automorphisms on $\mathbf{P}^2(\mathbb{C})$.

$$f = L_0 \circ J \circ L_1 \circ \cdots \circ L_{k-1} \circ J \circ L_k, \quad L_j \in Aut(\mathbf{P}^2(\mathbb{C}))$$

The Cremona Involution

$$J: \mathbf{P}^{2}(\mathbb{C}) \dashrightarrow \mathbf{P}^{2}(\mathbb{C})$$

$$J: [x_{1}: x_{2}: x_{3}] \mapsto \left[\frac{1}{x_{1}}: \frac{1}{x_{2}}: \frac{1}{x_{3}}\right] = [x_{2}x_{3}: x_{1}x_{3}: x_{1}x_{2}]$$

J is not defined at three points [1:0:0], [0:1:0], [0:0:1]

The Cremona involution J lifts to an automorphism on a rational surface $X = B\ell_P \mathbf{P}^2(\mathbb{C})$ where

$$P = \{e_1 = [1:0:0], e_2 = [0:1:0], e_3 = [0:0:1]\}$$

If $f = L \circ J$ with $L \in Aut(\mathbf{P}^2(\mathbb{C}))$,

- ▶ Each line $\{x_i = 0\}$ maps to a point $p_i = Le_i$
- ▶ Each point e_i blows up to a line $L\{x_i = 0\}$.
- ▶ If there are three positive integers and a permutation $\sigma \in S_3$ such that

$$egin{cases} f^{n_i-1}(p_i) = e_{\sigma(i)}, ext{and} \ \dim f^j(p_i) = 0 ext{ for all } 0 \leq j \leq n_i-1 \end{cases}$$

then f lifts to an automorphism an a rational surface.

Orbit data of $f = L \circ J$

Theorem (Nagata)

Suppose $F: X \to X$ is an automorphism with positive entropy on a rational surface X.

Then there is a natural identification between the induced action $F^*: H^{1,1}(X) \to H^{1,1}(X)$ and an element of a Coxeter group generated by certain reflections.

Suppose there are $n_1, n_2, n_3 \in \mathbb{N}$ and a permutation $\sigma \in S_3$ such that

- $f^{n_i}\{x_i=0\}=e_{\sigma(i)}$
- ▶ Dim $(f^j\{x_i=0\})=0$ for all $1 \le j \le n_i$, i=1,2,3

We call these numerical information **Orbit data** for f.

We say the orbit data is *realizable* if there is a birational map with the orbit data.

Rational surface automorphisms with positive entropy: Construction

Using invariant curves

- McMullen : Existence of maps with $n_1 = n_2 = 1$, $n_3 \ge 8$ with a cyclic permutation.
- Diller: construction of (almost all) quadratic maps fixing a cubic with one singular point.
- Blanc : construction of higher degree maps with a curve of fixed points.

No periodic curve

Lesieutre : involutions on a blowup of a cubic surface $\in \mathbf{P}^3(C)$ at sixpoints.

Diller's construction

Very explicit!!

 $n_1 = 3$, $n_2 = 4$, $n_3 = 4$ and an identity permutation Suppose f properly fixes a cubic curve C with a cusp.

$$f = L \circ J \text{ where } L = \begin{cases} 2\alpha^5 + \alpha^4 - \alpha - 1 & 2\alpha^4 + 3\alpha^3 + 3\alpha^2 + 2 & -2\alpha^5 - 3\alpha^4 - 3\alpha^3 - 3\alpha^2 - \alpha^5 - \alpha^3 & \alpha^4 + \alpha^3 & -\alpha^5 - \alpha^4 + 1 \\ \alpha^2 - 1 & \alpha + 2 & -\alpha^2 - \alpha \end{cases}$$

total of each row = 1

$$J[x1:x2:x3] = [x2x3:x1x3:x1x2]$$

where

$$\chi(\alpha) = \alpha^6 - \alpha^4 - \alpha^3 - \alpha^2 + 1 = 0$$

$$f|_{\mathcal{C}}: \gamma(t) \mapsto \gamma(1/\alpha t + b), \quad \mathcal{C}_{reg} = \{\gamma(t), t \in \mathbb{C}\}$$

Diller's construction

Favorite Example

 $n_1=n_2=1, n_3=8$ and a cyclic permutation $1\to 2\to 3\to 1$ Suppose f properly fixes a cubic curve C with a cusp.

$$f = L \circ J$$
 where

$$L = \begin{pmatrix} 0 & 0 & 1 \\ \alpha^9 - \alpha^6 - \alpha^4 + 1 & 0 & -\alpha^9 + \alpha^6 + \alpha^4 \\ 0 & \alpha^3 + \alpha^2 & -\alpha^3 - \alpha^2 + 1 \end{pmatrix},$$

$$J[x1:x2:x3] = [x2x3:x1x3:x1x2]$$

where

$$\chi(\alpha) = \alpha^{10} + \alpha^9 - \alpha^7 - \alpha^6 - \alpha^5 - \alpha^4 - \alpha^3 + \alpha + 1 = 0$$

$$f|_{\mathcal{C}}: \gamma(t) \mapsto \gamma(1/\alpha t + b), \quad C_{reg} = \{\gamma(t), t \in \mathbb{C}\}$$

In each orbit data, if it is realizable,

- λ $\chi(t)$ has exactly one real root λ outside the unit circle, exactly one real root $1/\lambda$ inside the unit circle. All other roots are non-real complex numbers of modulus 1.
- ▶ Each root α of $\chi(t)$ determines a birational map f_{α} such that the multiplier of the restriction map is $1/\alpha$ and each coordinate function is in $\mathbb{Z}(\alpha)[x_1, x_2, x_3]$.
- ▶ The largest real root λ of $\chi(t)$ is the dynamical degree of $f = \lambda > 1$.
- ▶ there are two maps f_{λ} , f_{λ}^{-1} with real coefficients.

$$\begin{cases} f_{\lambda} : \mathbf{P}^{2}(\mathbb{C}) \longrightarrow \mathbf{P}^{2}(\mathbb{C}) \\ f_{\lambda} : \mathbf{P}^{2}(\mathbb{R}) \longrightarrow \mathbf{P}^{2}(\mathbb{R}) \end{cases}$$

 f_{λ} lifts to an automorphism $F:X\to X$ on a rational surface. We have two related dynamics.

$$\begin{cases} F: X(\mathbb{C}) \to X(\mathbb{C}) \\ F_{\mathbf{R}}: X(\mathbb{R}) \to X(\mathbb{R}) \end{cases}$$

- $h_{top}(F) = \log \lambda$
- \blacktriangleright $h_{top}(F_{\mathbf{R}}) \leq h_{top}(F)$
- ▶ $F_{\mathbf{R}}$ has maximal entropy if $h_{top}(F_{\mathbf{R}}) = h_{top}(F)$

Let C be a curve with one singularity.

For each orbit data (with few exceptions), there exists two real rational surface automorphisms properly fixing C. All centers of blowup are in $\mathbf{P}(\mathbb{R})$

Real Rational Surfaces

 $X(\mathbb{R})=$ a blow up of $\mathbf{P}^2(\mathbb{R})$ along a finite set of points

$$X(\mathbb{R}) = \mathbf{P}^2(\mathbb{R}) \# \mathbf{P}^2(\mathbb{R}) \# \cdots \# \mathbf{P}^2(\mathbb{R})$$

the connected sum of n+1 copies of $\mathbf{P}^2(\mathbb{R})$

Real Rational Surfaces

 $X(\mathbb{R}) = \text{ a blow up of } \mathbf{P}^2(\mathbb{R}) \text{ along a finite set of points}$

 $X(\mathbb{R}) \setminus D = \text{a disk with } n+1 \text{ twisted handles attached to the boundary.}$

Figure: Each twisted handle is Möbius band

Real Rational Surfaces

$$X(\mathbb{R}) =$$
a blow up of $\mathbf{P}^2(\mathbb{R})$ along a set of n points
$$= \underbrace{\mathbf{P}^2(\mathbb{R})\#\mathbf{P}^2(\mathbb{R})\#\cdots\#\mathbf{P}^2(\mathbb{R})}_{n+1 \text{ copies}}$$

- ► $H_1(X(\mathbb{R})) = \langle a_0, a_1, \dots, a_n | 2a_0 + 2a_1 + \dots + 2a_n = 0 \rangle$ the finitely generated abelian group with one relation.
- ▶ $\pi_1(X(\mathbf{R}), q) = \langle a_0, a_1, \dots, a_n | a_0^2 a_1^2 \cdots a_n^2 = 1 \rangle$ the finitely generated NON-abelian group with one relation.
- $ightharpoonup X(\mathbb{R})$ is a non-orientable surface!!

Growth rate of homology classes (join work with J.Diller)

For all choices of realizable orbit data $n_1, n_2, n_3, \in S_3$ (Some can not have a map fixing a cusp cubic), we have the induced action on homology classes

If F_R is associated with the orbit data $n_1 \le n_2 \le n_3$ and a cyclic permutation, then the spectral radius of $F_{\mathbf{R}*}$ is the largest modulus of roots of $\chi(t)$

$$\chi(t) = \frac{1}{t+1} \left[\phi(t) - (-t)^{n_1 + n_2 + n_3 + 1} \phi(1/t) \right]$$

where

$$\phi(t) = (-1)^{n_1+n_2+n_3+1} + \frac{(-1)^{n_2+n_3+1}(t^2+1)t_1^{n_1}}{t-1} + \frac{(-1)^{n_2+n_3}(t^3-t^2+3t+1)t^{n_3}}{t^2-1} + \frac{(t^2+1)t^{n_2}}{t+1}$$

For an orbit data $n_1, n_2, n_3, \in S_3$, we have a formula for the characteristic polynomial $\chi_{\mathbb{C}}(t)$ of F^* on $H^{1.1}(X(C))$. For example, if σ is a cyclic permutation,

$$\chi_{\mathbb{C}}(t) = t - t^{n_1 + n_2 + n_3} + (t - 1)(t^{n_1} + 1)(t^{n_2} + 1)(t^{n_3} + 1)$$

Theorem (Diller - K)

- \star $\chi(F_{\mathbf{R}*})$ is reciprocal and $\chi(F_{\mathbf{R}*}) = \chi(F_{\mathbf{R}*}^{-1})$
- ► There are rational surface automrophisms F such that F_R has maximal entropy
 - ▶ $1, 1, n \ge 8$ with a cyclic permutation
 - ▶ $2, 2, n \ge 6$ with a cyclic permutation
 - ▶ $2, 3, n \ge 6$ with the identity permutation
 - ▶ 2, 4, $n \ge 5$ with the identity permutation
 - ▶ $1, 4, n \ge 6$ with the transposition $1 \leftrightarrow 2$
 - ▶ $1, 5, n \ge 4$ with the transposition $1 \leftrightarrow 2$
 - ▶ $1, n \ge 8, 2$ with the transposition $1 \leftrightarrow 2$
- ► There is a complex rational surface automorphism such that all periodic cycles lie in the real locus.

There is a family of maps such that their real restriction F_R do not have maximal entropy.

e.g. 3, 3, n with a cyclic permutation

▶ We identified five orbit data such that $F_{\mathbf{R}*}^k = Id$ for some k.

e.g. 1,4,8, with a cyclic permutation : period = 180 2,3,5, with a cyclic permutation : period = 84

This does not mean F_R has zero entropy.

We need better estimates

Growth rate of homotopy classes (joint work with E. Klassen)

Recall that we do have a natural choice for a set of generators for the fundamental group for $X(\mathbb{R})$

- We want to iterate the map. So let q = a non-cusp fixed point (a saddle point) on the invariant cubic.
- We want to determine the image of each generator under the action $F_{\mathbf{R}*}$

Reading curves

Idea

- ▶ For each generator α , find a curve X_{α} with $[X_{\alpha}] = \alpha$.
- Calculate the class $[F_{\mathbf{R}}(X_{\alpha})]$ of the image curve
- ▶ With exceptional triangles and the invariant cubic, it is not hard to find $F_{\mathbf{R}}(X_{\alpha})$

For each i, let R_{α_i} denote a line segment joining the two sides of the boundary of the handle traversed by the generator α_i . Once we put the removed open disk Δ back, we can extend each line segment R_{α_i} to a simple closed curve (which we continue to denote by R_{α_i}) with base point $\star \in \Delta$ such that

- $ightharpoonup R_{\alpha_i}$ is a simple closed curve for all i,
- ▶ For each i, R_{α_i} intersects exactly one generator α_i , and
- ▶ $\{R_{\alpha_i}\}$ are pairwise disjoint on $X \setminus \{\star\}$.

The curves $\{R_{\alpha_i}\}$ are referred to as *reading curves* for the generators $\{\alpha_i\}$.

With E. Klassen, we compute the induced π_1 action for real diffeomorphisms associated with birational maps fixing a cusp cubic with orbit data n_1 , n_2 , n_3 and a cyclic permutation.

- ► The image a generator under the induced action depends on the location of the base point on the cubic.
- ► There are only 6 different possibilities.

Eg. For $n_1 = n_2 = 1$, $n_3 = 8$

$$\begin{split} (f_{\mathbf{R}}^{-2})_* &: e \mapsto ea_8^2 a_7^2 a_6^2 a_5^2 c_1 b_1 a_2^2 a_1 e \\ &a_8 \mapsto e^{-1} a_1^{-1} a_2^{-2} b_1^{-1} \\ &a_7 \mapsto b_1 a_2^2 a_1 ea_8^{-1} e^{-1} a_1^{-1} a_2^{-2} b_1^{-1} \\ &a_6 \mapsto b_1 a_2^2 a_1 ea_8^2 a_7^{-1} a_8^{-2} e^{-1} a_1^{-1} a_2^{-2} b_1^{-1} \\ &a_5 \mapsto b_1 a_2^2 a_1 ea_8^2 a_7^2 a_6^{-1} a_7^{-2} a_8^{-2} e^{-1} a_1^{-1} a_2^{-2} b_1^{-1} \\ &a_4 \mapsto b_1^{-1} a_3^{-2} a_4^{-2} c_1^{-1} a_5 c_1 a_4^2 a_3^2 b_1 \\ &a_3 \mapsto b_1^{-1} a_3^{-2} a_4^{-1} a_3^2 b_1 \\ &a_2 \mapsto ea_8^2 a_7^2 a_6^2 a_5^2 c_1 a_3 c_1^{-1} a_5^{-2} a_6^{-2} a_7^{-2} a_8^{-2} e^{-1} \\ &a_1 \mapsto ea_8^2 a_7^2 a_6^2 a_5^2 c_1 b_1 a_2^{-1} b_1^{-1} c_1^{-1} a_5^{-2} a_6^{-2} a_7^{-2} a_8^{-2} e^{-1} \\ &b_1 \mapsto b_1^{-1} a_3^{-2} c_1^{-1} a_5^{-2} a_6^{-2} a_7^{-2} a_8^{-2} e^{-1} \\ &c_1 \mapsto b_1 a_2^2 a_1 ea_8^2 a_7^2 a_6^2 c_1 a_4^2 a_3^2 b_1. \end{split}$$

$$\pi_1(X(\mathbb{R}),q) = \langle e, a_i, b_1, c_1 | e^2 a_8^2 a_7^2 a_6^2 a_5^2 c_1^2 a_4^2 a_3^2 b_1^2 a_2^2 a_1^2 = 1 \rangle$$

▶ We want to Calculate the growth rate.

$$\rho(f_{\mathbf{R}*}|_{\pi_1(X(\mathbb{R}))}) := \sup_{g \in G} \{ \limsup_{n \to \infty} (\ell_G(f_{\mathbf{R}*}^n g))^{1/n} \}$$

where G is a set of generators, and $\ell_G(w)$ is the minimal length among all words representing w with respect to G.

 $ightharpoonup \pi_1(X(\mathbb{R}),q)$ is a non-abelian group with one relator.

We want to Calculate Estimate the growth rate.

$$\rho(f_{\mathbf{R}*}|_{\pi_1(X(\mathbf{R})}) := \sup_{g \in G} \{ \limsup_{n \to \infty} (\ell_G(f_{\mathbf{R}*}^n g))^{1/n} \}$$

where G is a set of generators, and $\ell_G(w)$ is the minimal length among all words representing w with respect to G.

- \blacktriangleright $\pi_1(X(\mathbb{R}),q)$ is a non-abelian group with a relator.
- ▶ For $\alpha \in \pi_1(X(\mathbb{R}), q)$, the minimum length $\ell_G(\alpha)$ is obtained by removing more than half-relators.

Theorem (E. Klassen -K)

There are real quadratic rational surface automorphisms with maximal entropy such that the growth rate of homology classes is strictly smller than the growth rate of homotopy classes

e.g.
$$n_1 = 1, n_2 = 3, n_3 = 9$$
 with a cylcic permutation $n_1 = 1, n_2 = 4, n_3 = 8$ with a cylcic permutation $n_1 = 1, n_2 = 4, n_3 = 5$ with a cylcic permutation $n_1 = 1, n_2 = 5, n_3 = 6$ with a cylcic permutation

The exponential homology growth rates for the first two cases above are zero.

1, 1, 8 cyclic case

Fist, we examined the iterations under $f_{\mathbf{R}*}$

1, 1, 8 cyclic case

Something is going on here!!

There are ten reduced elements

$$\Gamma = \{ \gamma_i \in \pi_1(X(\mathbb{R})), 1 \le i \le 10 \}$$

and a subset A of the set of ordered pairs

$$A \subset \{(i,j)|1 \leq i,j,\leq 10\}$$

such that

- ▶ There are no relations between γ_i 's
- We say. γ is A-admissible if $\gamma = \gamma_{i_1} \gamma_{i_2} \cdots \gamma_{i_n}$ with $(i_j, i_{j+1}) \in A, j = 1, \dots, n \pmod{n}$
- ▶ If γ is A-admissible then $f_{\mathbf{R}*}\gamma$ is also admissible up to cyclic permutation.

The set Γ_A of admissible cyclic words is invariant under $f_{\mathbf{R}*}\gamma$.

$$\begin{array}{llll} \gamma_1 & = & a_2^{-1}b_1^{-1}a_8^{-1}e^{-1}, & \gamma_2 = & a_2^{-1}b_1^{-1}a_7^{-1}a_8^{-2}e^{-1} \\ \gamma_3 & = & b_1^{-1}a_3^{-1}a_6^{-1}a_7^{-2}a_8^{-2}e^{-1} \\ \gamma_4 & = & a_1^{-1}a_2^{-2}b_1^{-2}a_3^{-1}a_7^{-1}a_8^{-2}e^{-1} \\ \gamma_5 & = & a_2^{-1}b_1^{-2}a_3^{-1}a_6^{-1}a_7^{-2}a_8^{-2}e^{-1} \\ \gamma_6 & = & b_1^{-1}a_3^{-1}a_5^{-1}a_6^{-2}a_7^{-2}a_8^{-2}e^{-1} \\ \gamma_7 & = & a_1^{-1}a_2^{-2}b_1^{-2}a_3^{-1}a_6^{-1}a_7^{-2}a_8^{-2}e^{-1} \\ \gamma_8 & = & a_1^{-1}a_2^{-2}b_1^{-2}a_3^{-2}a_4^{-1}a_5^{-1}a_6^{-2}a_7^{-2}a_8^{-2}e^{-1} \\ \gamma_9 & = & a_1^{-1}a_2^{-2}b_1^{-2}a_3^{-2}a_4^{-1}c_1^{-1}a_5^{-2}a_6^{-2}a_7^{-2}a_8^{-2}e^{-1} \\ \gamma_{10} & = & a_1^{-1}a_2^{-2}b_1^{-2}a_3^{-2}a_4^{-1}c_1^{-1}a_5^{-2}a_6^{-2}a_7^{-2}a_8^{-2}e^{-1} \\ \zeta_1 & = & a_2a_1, & \zeta_2 & = & b_1a_2^2a_1 \\ \mu_1 & = & a_1^{-1}a_2^{-2}b_1^{-2}a_3^{-1}a_5^{-1}a_6^{-2}a_7^{-2}a_8^{-2}e^{-1} \end{array}$$

$$A = \{(1,4), (1,7), (1,10), (2,8), (2,10), (3,2), (3,8), (3,9), (4,10), (5,2), (5,8), (5,9), (6,1), (6,5), (7,2), (8,1), (9,1), (9,2), (10,3), (10,5), (10,6)\}.$$

$$\gamma_3 = \zeta_2 \gamma_7$$
, $\gamma_5 = \zeta_1 \gamma_7$, and $\gamma_6 = \zeta_2 \mu_1$

Since there is no relation, We can get the length growth by counting number of γ_i 's

$$V=\mathbb{R}^{10}$$
 with a basis $\{\gamma_1,\dots\gamma_{10}\}$ $W=\mathbb{R}^{|\Gamma_1|+|K|}$ with a basis $\Gamma_1\cup K$

Theorem (Klassen-K)

There are two linear maps $S, T: V \rightarrow W$ such that

$$T \circ f_{\mathbf{R}*}|_{\Gamma_A} = S$$

and there is a unique vector $v \in V$ such that $Sv = \lambda Tv$ where λ is the dynamical degree of f

We observed that the same phenomenon occurs in other orbit data.

$$T \circ f_{\mathbf{R}*}|_{\Gamma_A} = S$$

where $S,T:V\to W$ are linear. Is $f_{\mathbf{R}*}|_{\Gamma_A}$ (almost) linear?

There are ten A-admissible words $S = \{s_1, \dots, s_{10}\}$ where the action. $f_{R*}|_{SP^+S}$ on the positive span of S is "Linear"

$$s_1 = \gamma_1 \gamma_{10} \gamma_5 \cdots, \gamma_8$$

$$\vdots$$

$$f_{R*}|_{SP+S} : s_1 \mapsto s_1 + s_2 + s_3 + s_4 + s_5$$

$$s_2 \mapsto s_1 + s_6 + s_7$$

$$s_3 \mapsto s_1 + s_2 + s_8 + s_3 + s_4 + s_5$$

$$s_4 \mapsto s_1 + s_2 + s_4 + s_{10} + s_6 + s_9$$

$$s_5 \mapsto s_1 + s_4 + s_5 + s_7$$

$$s_6 \mapsto s_1 + s_6 + s_9 + s_5 + s_7$$

$$s_7 \mapsto s_1 + s_2 + s_8 + s_9$$

$$s_8 \mapsto s_1 + s_2 + s_4 + s_{10} + s_6 + s_9 + s_5 + s_7$$

$$s_9 \mapsto s_1 + s_2 + s_8 + s_3 + s_4 + s_{10} + s_6 + s_9$$

$$s_{10} \mapsto s_1 + s_4 + s_5$$

Since the cubic is invariant and all base loci lie between two fixed points on the cubic, the $X(\mathbb{R})$ can be drawn as following:

It "seems" that with any choice of an initial word, we get the same picture with increasing weight (the number of arcs).

- ► [Kitchens-Roeder] Is this a Plykin attractor?
 - ▶ We know this grows exponentially.
 - ► There is a repelling fixed point whose basin has full Area. [Bedford-K]
- ► Are we seeing a hyperbolic set?
- ► What do you see?

Thank you!!

감사합니다!